
On the Definition of Dynamic Permutation Problems
under Landscape Rotation

Joan Alza
The Robert Gordon University

Aberdeen, Scotland
j.alza-santos@rgu.ac.uk

Mark Bartlett
The Robert Gordon University

Aberdeen, Scotland
m.bartlett3@rgu.ac.uk

Josu Ceberio
University of the Basque Country (UPV/EHU)

Donostia, Spain
josu.ceberio@ehu.eus

John McCall
The Robert Gordon University

Aberdeen, Scotland
j.mccall@rgu.ac.uk

ABSTRACT
Dynamic optimisation problems (DOPs) are optimisation problems
that change over time. Typically, DOPs have been defined as a se-
quence of static problems, and the dynamism has been inserted into
existing static problems using different techniques. In the case of dy-
namic permutation problems, this process has been usually done by
the rotation of the landscape. This technique modifies the encoding
of the problem and maintains its structure over time. Commonly,
the changes are performed based on the previous state, recreating
a concatenated changing problem. However, despite its simplicity,
our intuition is that, in general, the landscape rotation may induce
severe changes that lead to problems whose resemblance to the
previous state is limited, if not null. Therefore, the problem should
not be classified as a DOP, but as a sequence of unrelated problems.
In order to test this, we consider the flow shop scheduling problem
(FSSP) as a case study and the rotation technique that relabels the
encoding of the problem according to a permutation. We compare
the performance of two versions of the state-of-the-art algorithm
for that problem on a wide experimental study: an adaptive version
that benefits from the previous knowledge and a restarting version.
Conducted experiments confirm our intuition and reveal that, sur-
prisingly, it is preferable to restart the search when the problem
changes even for some slight rotations. Consequently, the use of
the rotation technique to recreate dynamic permutation problems
is revealed in this work.

CCS CONCEPTS
•Mathematics of computing→ Permutations and combinations;
Evolutionary algorithms; • Theory of computation→ Evolution-
ary algorithms;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326840

KEYWORDS
Dynamic Optimization Problem, Flow Shop Scheduling Problem,
Permutation Problem, Benchmark Generator, Evolutionary Com-
putation

ACM Reference format:
Joan Alza, Mark Bartlett, Josu Ceberio, and John McCall. 2019. On the
Definition of Dynamic Permutation Problems under Landscape Rotation. In
Proceedings of Genetic and Evolutionary Computation Conference Companion,
Prague, Czech Republic, July 13–17, 2019 (GECCO ’19 Companion), 9 pages.
https://doi.org/10.1145/3319619.3326840

1 INTRODUCTION
In real-world situations, optimisation problems usually depend on
changing conditions, and it is important for an optimisation algo-
rithm to react efficiently. Known as dynamic optimisation problems
(DOPs), these problems rely on solving an optimisation problem by
an optimisation algorithm in a time window in which the problem
changes at least once. Consequently, the algorithm requires a reac-
tion to the change to provide new promising solutions. Examples of
real-world dynamic optimisation problems include the arrival of a
new task or the improper functioning of a machine in a scheduling
problem, the influence of traffic in the transportation domain, or
customer demand in logistics.

In the literature, many definitions have been proposed to refer
to DOPs. Some researchers have defined DOPs as a sequence of
static problems linked up by a dynamic rule [12, 16], whereas others
define them as optimisation problems composed by time-dependent
parameters [3, 5]. Not limited to that, in [11], the author inserted
the way that the algorithm solves the problem defining DOPs as
a special class of dynamic problems that are solved online by an
optimisation algorithm as time goes by. However, it is our belief
that not any sequence of static problems should be considered a
DOP. Consider a case where a severe problem-change translates
to a problem completely different. In that case, the adaptability
inserted to existing evolutionary algorithms is harmful to solve the
problem effectively.

Related to the definition of DOPs, the simulation of realistic
scenarios has been an outstanding issue due to the recreation of
real-world applications in academic research. In short, DOPsmodify
the problem over time hindering the search for the new global opti-
mum. In the literature, some dynamic benchmark generators such

1518

https://doi.org/10.1145/3319619.3326840
https://doi.org/10.1145/3319619.3326840

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic J. Alza et al.

asMoving Peaks [4] or exclusive-or (XOR) [14] have been presented.
The XOR DOP generator has been widely used since it rotates the
landscape at each change-step (moment of change), maintaining
the structure of the problem. Although this technique was initially
proposed to generate dynamism into binary problems, later works
extend it to other fields such as permutation problems [10]. It ap-
pears a useful technique to draw preliminary conclusions because
it is a quick and straightforward way to insert dynamism into an
existing permutation problem. However, in this manuscript, we
put in question the utility of this technique to generate dynamism
since it might create such severe modifications on the problem that
the scenario after a change might be categorised as a new problem
completely different.

To that end, we consider the flow shop scheduling problem (FSSP)
as a case study and the state-of-the-art algorithm for that prob-
lem, the random key based estimation of distribution algorithm
(RKEDA) [2]. We select the first instances (considering the different
number of machines) from the original instances of the FSSP [13]
for the sizes 20, 50 and 100, and we insert dynamism considering dif-
ferent change-severity (magnitude of change) values. The landscape
rotations are produced by three distance metrics for permutation
space [7]: Kendall’s-τ , Cayley and Ulam.

For the sake of solving dynamic FSSPs, two different versions
of the RKEDA are presented. The first version adjusts to a prob-
lem change while retaining some previously earned knowledge
(aRKEDA). The second version restarts the search process by gen-
erating an entirely new population every change-step (rRKEDA).
The aim is to compare the performance of aRKEDA and rRKEDA
through different change-severity values under the landscape rota-
tion. Our hypothesis is that reusing knowledge from the previous
state at severe problem-changes will be useless, if not harmful.
Therefore, restarting the algorithm will be more beneficial in that
case. At this point, we can conclude that it is not appropriate to call
dynamic to the changing problem.

Our experiments, surprisingly, show the few cases where the
adaptation using previous knowledge is effective. As expected, for
low-severity changes aRKEDA performs better than rRKEDA, but
they tend to reverse their role so rapidly as change-severity in-
creases that restarting the algorithm from scratch is preferable
even in some of the slightly changing problems. In this way, a se-
quence of FSSPs linked up by the landscape rotation should not be
considered a DOP but a sequence of problems completely different
in case that the effectiveness of restarting the algorithm is higher
than adapting to problem-changes.

The rest of this paper is organised as follows. Section 2 presents
the context used in this work by explaining the background of
permutations. Section 3 describes the commonly used definitions for
DOPs, our points to consider and the dynamic benchmark generator
used. Section 4 introduces the RKEDA, and the methods used to
deal with the dynamism. Section 5 explores the results obtained
by both techniques, before Section 6 provides discussion about the
interpretation of the results. Finally, Section 7 concludes the paper
by giving some conclusions and future works.

Figure 1: Permutahedron1 of order 4.

2 PERMUTATION SPACE
A permutation is a bijection from the set S , composed of natural
numbers, to itself. For a set of size n, there are n! possible permu-
tations, and they form the algebraic group called symmetric group,
denoted as Sn . Figure 1 displays a graphical representation of Sn of
size 4 in the form of a Permutahedron1. Commonly permutations
are represented as σ ,π ∈ Sn , where σ (i) stands for the element at
position i .

There is a special permutation, the identity permutation, in
which the item i is mapped on the position i, and it is usually
denoted as e. In addition, for every permutation σ , there is an in-
verse permutation σ−1 ∈ Sn , where each item and its position on
the permutation σ are exchanged.

The composition of two permutations is used to provide a new
permutation, and it is defined as σ ◦π (i) = σ (π (i)). In this sense, the
composition of permutation σ and its inverse permutation σ−1 is
equal to the identity permutation, σ ◦σ−1 = e . It is worth noting that
the composition of two permutations is not in general commutative,
σ ◦ π ̸= π ◦ σ .

2.1 Distance metrics
The distance between permutations can be defined as the minimum
number of steps to change one permutation into another. There are
many metrics, although Kendall’s-τ , Cayley and Ulam distances
have been prominently used as the distance between permutations
in combinatorial space [7].

Given two permutations σ and π , Kendall’s-τ metric counts the
minimum number of pairwise disagreements between two per-
mutations. Equivalently, it corresponds to the number of adjacent
swaps to turn σ−1 into π−1. The maximum distance between two
permutations under Kendall’s-τ metric is

(n
2
)
, where n represents

the size of the permutations.
The Cayley metric counts the minimum number of (possibly

non-adjacent) swaps that are needed to turn σ into π . In the case of

1https://upload.wikimedia.org/wikipedia/commons/3/3e/Permutohedron.svg

1519

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Cayley metric, the maximum distance between two permutations
is n − 1.

Finally, the Ulam metric represents the minimum number of
insertions needed to transform a permutation into another. The
maximum Ulam distance between two permutations is n − 1.

For a better understanding about the metrics, consider the fol-
lowing two permutations: σ = (3, 4, 2, 1) and e = (1, 2, 3, 4), whose
inverts permutations are σ−1 = (4, 3, 1, 2) and π−1 = (1, 2, 3, 4).
The distance between both permutations is the following for each
metric:
• The Kendall’s-τ distance between σ−1 and π−1 is equal to 5:

(4, 3, 1, 2)
3−1
−−−→ (4, 1, 3, 2)

4−1
−−−→ (1, 4, 3, 2)

3−2
−−−→ (1, 4, 2, 3)

4−2
−−−→

(1, 2, 4, 3)
4−3
−−−→ (1, 2, 3, 4).

• The Cayley distance between σ and π is equal to 3:
(3, 4, 2, 1)

3−1
−−−→ (1, 4, 2, 3)

4−2
−−−→ (1, 2, 4, 3)

4−3
−−−→ (1, 2, 3, 4).

• The Ulam distance between σ and π is equal to 2:
(3, 4, 2, 1)

1
−→ (1, 3, 4, 2)

2
−→ (1, 2, 3, 4).

3 DYNAMIC OPTIMISATION PROBLEMS
In the literature, researchers have defined DOPs as problems that
change over time while an optimisation algorithm solves them.
Changes may affect the objective function, the problem instance,
or the constraints of the problem, among other elements. They are
divided into two types: dimensional changes and non-dimensional
changes. Dimensional changes alter the cardinality of the solution
space while non-dimensional ones change the variables and/or
constraints of the problems. Dynamic problems with dimensional
changes tend to be harder to solve [9].

Recently, researchers have defined DOPs in several ways: (i) a
sequence of static problems linked up by a dynamic rule, (ii) opti-
misation problems composed by time-dependent parameters or (iii)
dynamic problems that are solved by an optimisation algorithm as
time goes by. In the latter case [11], the author proposed a definition
composed of full-description forms, dynamic drivers and an optimisa-
tion algorithm. That work interprets DOPs as full-description forms
that represent a finite set of static instances governed by dynamic
drivers while an optimisation algorithm solves the problem online2.
Furthermore, others have also mentioned that the definition of a
sequence of static problems linked up by a dynamic rule might be
ambiguous because of the way to cross from a static problem into
another [11]. Dynamic drivers on the previously introduced def-
inition addressed that problem. For further details, we refer the
interested reader to Chapter 4 in [11].

3.1 Dynamic benchmark generator for
combinatorial space

Dynamic benchmark generators are tools to construct DOPs using
controllable parameters such as the change-frequency, the change-
severity or the number of changes. Often, DOPs are considered hard
to construct because of the difficulty of simulating real-world situa-
tions. Therefore, DOPs are treated mainly as academic problems.
Usually, they mix real-world data and randomly generated data in
order to reduce the evaluation complexity of real-world data [16].

2We return to this point in Section 6

Hence, most of the proposed dynamic benchmark generators have
focused on empirical testing.

The XOR DOP generator [14] is one of the most popular gener-
ators because it constructs DOPs from any static binary problem.
The generator rotates the landscape at a change-step applying an
exclusive-or operator to every individual of the search space, shift-
ing them to a new location of the search space. In [10], the authors
extended the previous method to the permutation space modifying
the encoding of the problem instance. In any case, the structure of
the problem is maintained over time without affecting the fitness
of the global optimum.

These techniques offer a quick and straightforward way to gen-
erate dynamism in any combinatorial problem, but it is not likely
to find them in real-world situations.

In this work, DOPs are obtained from a dynamic benchmark ge-
nerator similar to the one presented in [10]. As we are working with
dynamic permutation-based optimisation problems, we generate
different dynamic scenarios to recreate changes on a static permu-
tation problem. In this way, we change the labelling of the previous
scenario to rotate the landscape, creating a concatenated changing
problem. To that end, we compose the solutions of the problemwith
a random permutation at a specific distance value using the metrics
presented in Section 2, where the increment of the distance pro-
duces more severe changes in the problem. Mathematically, given
an objective function f and a solution σ ∈ Sn ,

f (e ◦ σ) = f (σ)
c1
−→ f (π1 ◦ σ)

c2
−→ f (π2 ◦ π1 ◦ σ)

c3
−→ · · ·

ck
−−→ f (Ω ◦ σ),

(1)

where e is the identity permutation, ci is the ith change of the
problem, k is the number of changes and Ω = (πk ◦ · · · ◦ π1) is the
composition of the previous permutations.

In this way, the dynamic benchmark generator reorders the labels
of the items that compose the problem according to a permutation.

4 CASE STUDY: FSSP AND RKEDA
In the flow shop scheduling problem (FSSP) [1], the permutation
represents a set of n jobs that have to be scheduled onm machines
reducing a given measurement. Regardless of the measurement
used, the general idea is to maintain the flow of the sequence of
jobs minimising the idle and waiting time of machines. FSSP is
categorised as a NP-hard problem [6].

Typically, in optimisation, two different measurements are con-
sidered: makespan and the total flow time measurements. The
makespan measurement counts the processing time taken to finish
a batch of jobs. In contrast, the total flow time measurement sums
the time to complete each job. The mathematical representation of
the FSSP using the total flow time measurement is defined as:

F (σ) =
∑
i ∈n

Cσ (i),m ,

where F (σ) is the fitness value of permutation σ and C is the com-
pletion time of each job at each machine. The completion time of

1520

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic J. Alza et al.

Algorithm 1 Pseudo-code of both RKEDA
1: P ← GenerateM random individuals.
2: θ ← Initialise cooling scheme.
3: Evaluate, sort and normalise individuals in P .
4: best ← Pbest .
5: repeat
6: if best = Pbest ∧ f (best) ! = f (Pbest) then
7: if rRKEDA then
8: Back to line 1.
9: else if aRKEDA then
10: θ ← Initialise cooling scheme.
11: end if
12: end if
13: P top ← Select best ts solutions from P .
14: µ← Average of P top for each position.
15: P ′← Create new population of sizeM by sampling N (µ,θ).
16: P ← P ′.
17: θ ← Update cooling scheme.
18: Evaluate, sort and normalise individuals in P .
19: best ← Pbest .
20: until Stopping criteria is met.

job i on machine j may be calculated recursively as follows.

Ci, j =

pi, j , if i, j = 1,
pi, j +Ci, j−1, if i = 1, j > 1,
pi, j +Ci−1, j , if i > 1, j = 1,
pi, j + max{Ci−1, j ,Ci, j−1}, if i > 1, j > 1,

where pi, j is the processing time of job i at machine j.
The fitness value of a solution depends on the position of each

item in addition to the whole ordering of the permutation. Note
that there is a strong correlation between a job and the ordering of
the rest of the jobs.

In order to solve the FSSP effectively, the random key based EDA
(RKEDA) has been proposed [2]. RKEDA is an EDA that creates
new solutions by learning and sampling a Gaussian distribution
based on mean values of the promising solutions of the population
and a variance parameter. The variance parameter, like that used in
simulated annealing, is based on a gradient descent cooling that de-
creases the probability of accepting worse solutions as the solution
space is explored. In this way, it is cooled from a set initial value
until it reaches zero at the end of the process.

As we are working with DOPs, it is necessary to modify the algo-
rithm by introducing an optimisation approach to react to problem
changes. Commonly, the consciousness of changes has been as-
sumed just using few detectors [15].In this paper, we adopt a simple
scheme where the algorithm realises a change has occurred by the
variation of the fitness value of the solutions in the population
with respect to the previous generation whereas their permutation
structure remains unchanged.

Two different versions are utilised in our study to analyse the
resemblance between scenarios: an adaptive version and an iter-
ative version of the RKEDA. The adaptive version of the RKEDA
(aRKEDA)maintains the knowledge earned before a problem-change

to adjust to the new state. The idea is to benefit from the new envi-
ronment transferring the knowledge of the previous state.

In contrast, the restarting version of the RKEDA (rRKEDA)
restarts the optimisation process of the algorithm from scratch
when a change occurs, generating a new random population. In
this case, the new scenario is considered as a new problem.

The purpose of comparing both version is to analyse whether
a problem should be considered a DOP or, in contrast, a sequence
of unrelated static problems. Therefore, a sequence of static prob-
lems should only be considered a DOP in the event that aRKEDA
outperforms the performance of rRKEDA.

Algorithm 1 displays the pseudo-code of both versions. When
the problem changes, aRKEDA only resets the variance whereas
rRKEDA restarts the optimisation process from scratch.

5 EXPERIMENTAL STUDY
In this section, we present the experimental design and the results
obtained. The section is divided into three parts. First, we explain
the dynamism inserted to existing problems. Next, we present the
experimental setup to run the experiments. Finally, we present the
results obtained.

5.1 Dynamism generation
As previously mentioned, our DOPs are concatenated scenarios
generated by a rotation technique. Initially, the rotation is applied
into an existing instance to generate a new scenario, and the next
changes are performed based on the previously generated scenar-
ios. The number of problem-changes, the change-severity and the
metric to calculate the change-severity are aspects to be borne in
mind to generate DOPs. For each DOP, we considered 10 changes
that occur regularly and are distributed periodically through the
optimisation process. All the changes of each DOP share the same
change-severity, so the changes perturb similarly every change-
step.

In Section 2.1, we presented three different metrics to perform
landscape rotations: Kendall’s-τ distance, Cayley distance and Ulam
distance. It is worth mentioning that Cayley and Ulam distances
share the maximum distance between permutations, n − 1, whereas
Kendall’s-τ metric extends to

(n
2
)
. It is computationally too expen-

sive to test all the cases for the Kendall’s-τ metric, so we have
established limitations to reduce the computational cost limiting
the information loss:

• On problems of size 20, generate all the combinations.
• On problems of size 50, generate DOPs considering the
Kendall’s-τ distance from 1 to 150.
• On problems of size 100, generate DOPs considering the
Kendall’s-τ distance from 1 to 50.

All metrics follow the same pattern for modifying the encoding
of the problem. A permutation at the required distance is gener-
ated uniformly at random and composed with the permutation of
the previous state (see Equation 1 at Section 3.1). The R package
PerMallows [8] is used for this process.

1521

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Table 1: Parameter values for the experimental study.

Parameter Default value

Population size 10n
Truncation size 10%
Elitism criteria TRUE
Initial variance 0.15

Number of samples 10n
Stopping criteria 100nk generations

n: problem size
k: number of changes

5.2 Experimental setup
Both algorithms are executed over many dynamic benchmarks
generated from the static versions of the FSSP. The original Tail-
lard’s instances [13] are used as the first scenario of each dynamic
benchmark. The configurations used in this work are as follows3.
• 20 × 5, 20 × 10 and 20 × 20.
• 50 × 5, 50 × 10 and 50 × 20.
• 100 × 5, 100 × 10 and 100 × 20.

In this way, for each instance, we generated 30 different DOPs
with each distance metric considering the limitations presented in
Section 5.1.

The execution parameters for the RKEDA algorithms are those
from [2], slightly modified to account for the dynamic behaviour,
as shown in Table 1. The elitism criteria is used to detect a problem-
change by the variation of the fitness of the best solution of the
population whereas the permutation is maintained.

A basic scheme [5] is used to calculate the performance of the
algorithms for every dynamic benchmark: the average relative
percentage deviation (ARPD). As the structure of the problem is
maintained through the optimisation process, the best-known value
is known permanently allowing the usage of this performance
measure. In this case, the ARPD is used to minimise the sum of the
distance from the optimum to the best solution at each generation,
so it measures the quality of the best fitness value at each generation.
It is calculated as follow:

ARPD =
1
G

∑
i ∈G

fi (best) − Best known
Best known

,

where G is the maximum number of generations and fi (best) is the
fitness of the best solution at generation i .

5.3 Results
The results4 are summarised in Table 2. The table shows the number
of times in which aRKEDA outperformed rRKEDA in terms of the
ARPD measure and the percentage of rotation distances for which
the generated problem can be considered as a DOP under the Cayley,
Kendall’s-τ and Ulam metrics. In general, increasing the problem
size increases the number of times that the adaptive version is
preferable to restarting the process from scratch. These results
suggest that most of the studied benchmarks are probably better
3Number of jobs × Number of machines
4The Ulam metric experiments on problems of size 100 have not been performed
because of the high computational cost to generate uniformly at random permutations

Table 2: Number of case that aRKEDAoutperforms rRKEDA.
The number in parentheses displays the percentage consid-
ering the maximum distance between permutations.

Jobs Cayley Kendall’s-τ Ulam
20 2 (10%) 1 (5%) 2 (10%) 2 (1.05%) 3 (1.58%) 3 (1.58%) 0 (0%) 0 (0%) 0 (0%)
50 7 (14%) 7 (14%) 12 (26%) 14 (1.14%) 7 (0.57%) 8 (0.65%) 0 (0%) 2 (4%) 1 (2%)
100 19 (19%) 15 (15%) 20 (20%) 16 (0.32%) 19 (0.38%) 26 (0.52%) - - -

5 10 20 5 10 20 5 10 20
Machines

viewed as sequences of unrelated static problems than as dynamic
problems.

For a better understanding of the results, Figure 2, Figure 3, and
Figure 4 show the distribution of the ARPD through the DOPs
generated at different permutation distance changes for instances
of size 20, 50 and 100. The plots confirm that, for small changes,
it is beneficial to transfer the previous knowledge, but the situa-
tion reverses rapidly as the change-severity increases. However,
in DOPs of size 20 generated by Ulam metric, it is always more
effective to restart the algorithm from scratch when the problem
changes. The increase of the problem size extends the preference
of using aRKEDA for slight changes up to the point of being much
more beneficial than rRKEDA on DOPs generated at the smallest
distance. The continuity of the restarting version could be under-
stood because the algorithm is able to obtain approximately the
same fitness value at each change-period.

It is worth emphasising some aspects of aRKEDA on problems of
size 20. On the one hand, the increase of the number of machines in
the problem produces a chaotic behaviour of the adaptive version
as can be observed in the variance of the results. On the other hand,
the Kendall’s-τ and Ulam metrics reflect a curious case on instances
with 20 machines. Kendall’s-τ metric reflects an arc shape where
aRKEDA is preferred on DOPs at the minimum and maximum
distances. Surprisingly, under the Ulam metric, aRKEDA is only
preferred at the maximum distance, since at minimum distance it
is even preferable to restart the algorithm.

Analysing the performance of aRKEDA and rRKEDA, we might
conclude that the values in Table 2 are mostly distributed over
DOPs that are generated at small distances, but it also includes the
anomaly cases mentioned above. With respect to the performance
of each metric, the Ulam metric shows that restarting the algorithm
from scratch is almost always the best option.

6 DISCUSSION
The experiments conducted reveal that, under the rotation tech-
nique with the considered distances, restarting the optimisation
is almost always preferable to reusing previously earned knowl-
edge in the FSSP, even when slight modifications are applied. More
than three-quarters of the problems generated under the rotation
technique produce such severe modifications that considering the
new state as a new problem is the best option. However, the perfor-
mance difference between both versions is considerably higher for
slightly rotating DOPs. Be that as it may, in most of the cases, the
problem generated should not be considered a DOP, but a sequence
of unrelated problems.

The percentages with respect to the maximum distances have
indicative purposes only. The means of the percentage over each

1522

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic J. Alza et al.

0.0110

0.0115

0.0120

0.0125

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_5_0 - Kendall

0.0110

0.0115

0.0120

0.0125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_5_0 - Cayley

0.0110

0.0115

0.0120

0.0125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_5_0 - Ulam

0.015

0.016

0.017

0.018

0.019

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_10_0 - Kendall

0.015

0.016

0.017

0.018

0.019

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_10_0 - Cayley

0.015

0.016

0.017

0.018

0.019

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_10_0 - Ulam

0.0150

0.0175

0.0200

0.0225

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_20_0 - Kendall

0.0150

0.0175

0.0200

0.0225

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_20_0 - Cayley

0.0150

0.0175

0.0200

0.0225

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_20_0 - Ulam

Figure 2: Performance of aRKEDA and rRKEDA for instances of size 20 showing the mean and interquartile ribbon of each
run through different change-severities (in terms of permutation distances). The plots are distributed by columns specifying
the metric used (Kendall’s-τ , Cayley and Ulam from left to right) and by rows representing the number of machines of each
problem (5, 10 and 20 machines from top to bottom).

metric are 15% on Cayley metric, 1% on Kendall’s-τ metric and
0.5% on Ulam metric. It is of special interest that although the per-
centages are relatively small in all the cases, Kendall’s-τ and Ulam
metrics present surprisingly few cases in which reusing previous
knowledge is beneficial.

In the case of Ulam metric, restarting the algorithm is almost
always the best option, even for permutation distances equal to 1. It
can be justified as the Ulam metric produces more chaotic changes
compared to the other metrics. This is mainly motivated by the
type of rotation (relabelling) applied by the Ulam metric. In con-
trast to Kendall’s-τ and Cayley metrics, where only a few elements
are swapped for slight changes, a simple insert operation on the
Ulam metric might cause the relabelling of all the permutation. The
following example will clarify the concept.

Let us consider the same example proposed in Section 2.1, where
σ = (3, 4, 2, 1) and e = (1, 2, 3, 4). The simple movement of the item
σ (4) to the position 1 causes the translation of the items at the
positions {1, 2, 3} one position to the right. Therefore, all the item
of the permutation are relabelled on a simple insertion, and it is
likely that even a slight rotation produces a severe change on the
fitness in the landscape of solutions.

As commented in Section 3.1, the rotation technique gives an
obvious and straightforward way to generate dynamism in existing
static permutation problems. Nonetheless, the results obtained for
the case study in this work show that the rotation technique would
generate a set of independent and unrelated problems that should
be senseless to associated with DOPs.

Taking that fact into account, we glimpse the need to extend the
existing definitions for dynamic permutation-based optimisation
problems, especially concerning the change-severity to distinguish
related-sequences of static problems from sequences of completely
different problems. In this sense, the author in [11] uses notations
such as full-description form, a dynamic driver and the optimisa-
tion algorithm to define DOPs that encompasses more aspects of
dynamism. Therefore, the definition used by the author in [11]
should be explored and enhanced in order to include the impact of
the change on the performance of the algorithm for a more accurate
description of dynamic permutation-based optimisation problems.

7 CONCLUSIONS AND FUTUREWORK
Over the last decades, DOPs have been a topic of growing interest
in the field of evolutionary optimisation due to their similarity with

1523

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

0.038

0.040

0.042

0.044

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_5_0 - Kendall

0.038

0.040

0.042

0.044

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_5_0 - Cayley

0.038

0.040

0.042

0.044

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_5_0 - Ulam

0.052

0.056

0.060

0.064

0.068

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_10_0 - Kendall

0.052

0.056

0.060

0.064

0.068

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_10_0 - Cayley

0.052

0.056

0.060

0.064

0.068

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_10_0 - Ulam

0.045

0.050

0.055

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_20_0 - Kendall

0.045

0.050

0.055

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_20_0 - Cayley

0.045

0.050

0.055

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_20_0 - Ulam

Figure 3: Performance of aRKEDA and rRKEDA for instances of size 50 showing themean and interquartile ribbon of each run
through different change-severity values (in terms of permutation distances). The plots are distributed by columns specifying
the metric used (Kendall’s-τ , Cayley and Ulam from left to right) and by rows representing the number of machines of each
problem (5, 10 and 20 machines from top to bottom).

existing real-world situations where problems change over time.
In academic research, DOPs have been defined in several ways,
although our intuition is that existing definitions do not fully cover
all aspects of dynamism. Current definitions of DOPs encompass
all type of changing problem, including problems that change dras-
tically, which, in our opinion, should not be interpreted as DOPs,
but as sequences of different problems. In that case, considering the
new state as a new problemmight be more beneficial than adjusting
an algorithm to overcome a change of the problem.

In this paper, we test the current definitions considering per-
mutation problems under the landscape rotation technique that
generates dynamism into an existing permutation problem. This
technique shifts the landscape of solutions maintaining the struc-
ture of the problem. In order to illustrate the sense of rotating
the landscape to generate dynamic problems, we considered the
FSSP and two versions of its state-of-the-art algorithm to deal with
dynamism: an adaptive version and a restarting version. The adap-
tive version stays ahead from the previous knowledge to address
a problem-change, whereas the restarting version initialises the
algorithm from a new random solution. The aim is to identify those
rotations that, due to their severity, make the restarting version of

the algorithm outperform the adaptive version. Therefore, the prob-
lem should not be considered a dynamic problem but a sequence of
unrelated problems.

The results revealed that restarting the algorithm is preferable
for the majority of tested landscape rotations because of the severity
of the produced changes. Looking at the results over the metrics,
we perceive that the adaptive version performed poorly for Ulam
metric to the point of restarting the algorithm is almost always the
best option. That could be understood by the relabelling type of
the Ulam metric since a simple insertion might produce shifting
all the elements of the permutation (a full relabelling). In contrast,
the Kendall’s-τ and the Cayley metrics only swap some items for
a simple change, producing more limited changes that the ones
produced by the Ulam metric.

This work can be extended in several ways. One of the most in-
teresting research lines is to analyse and motivate the performance
difference of the metrics used in this work such as analysing the
reason for which generating dynamism under the Kendall’s-τ and
Cayley distances produces such different results. One appealing ap-
proach would be analysing the number of relabelled items for each
metric and tracking the quality of the model. Not limited to that,

1524

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic J. Alza et al.

0.030

0.035

0.040

0.045

0.050

0.055

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_5_0 - Kendall

0.030

0.035

0.040

0.045

0.050

0.055

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_5_0 - Cayley

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_10_0 - Kendall

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_10_0 - Cayley

0.035

0.045

0.055

0.065

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_20_0 - Kendall

0.035

0.045

0.055

0.065

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_20_0 - Cayley

Figure 4: Performance of aRKEDAand rRKEDA for instances of size 100 showing themean and interquartile ribbon of each run
through different change-severity values (in terms of permutation distances). The plots are distributed by columns specifying
the metric used (Kendall’s-τ and Cayley) and by rows representing the number of machines of each problem (5, 10 and 20
machines from top to bottom).

the experimental comparison could be extended to other metrics
such as the Hamming metric [7]. Other possible lines for future
work could be considering other algorithms to analyse their be-
haviour since deciding whether a problem is dynamic or a sequence
of unrelated problems has been carried out for a particular case.
Similarly, other methods of generating dynamism, other permu-
tation problems or even more ways to measure the performance
of the algorithms could be also analysed in future investigations.
Finally, we find it interesting to study the existing definitions for
DOPs and, if necessary, extend them to include more observations
such as the severity of the problem-change in their description.

ACKNOWLEDGMENTS
This work has been partially supported by the project TIN2016-
78365-R from the Spanish Ministry of Economy, Industry and Com-
petitiveness.

REFERENCES
[1] Ali Allahverdi, C.T. Daniel Ng, Tai Chiu Edwin Cheng, and Mikhail Y. Kovalyov.

2008. A survey of scheduling problems with setup times or costs. European
Journal of Operational Research 187, 3 (2008), 985 – 1032. https://doi.org/10.1016/
j.ejor.2006.06.060

[2] Mayowa Ayodele, John McCall, Olivier Regnier-Coudert, and Liam Bowie. 2017.
A Random Key based Estimation of Distribution Algorithm for the Permutation

1525

https://doi.org/10.1016/j.ejor.2006.06.060
https://doi.org/10.1016/j.ejor.2006.06.060

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Flowshop Scheduling Problem. In 2017 IEEE Congress on Evolutionary Computa-
tion (CEC). 2364–2371. https://doi.org/10.1109/CEC.2017.7969591

[3] Thomas Back. 1998. On the behavior of evolutionary algorithms in dynamic
environments. In 1998 IEEE International Conference on Evolutionary Computation
Proceedings. IEEEWorld Congress on Computational Intelligence (Cat. No.98TH8360).
446–451. https://doi.org/10.1109/ICEC.1998.699839

[4] Jurgen Branke. 1999. Memory enhanced evolutionary algorithms for chang-
ing optimization problems. In Proceedings of the 1999 Congress on Evolution-
ary Computation-CEC99 (Cat. No. 99TH8406), Vol. 3. 1875–1882 Vol. 3. https:
//doi.org/10.1109/CEC.1999.785502

[5] Carlos Cruz, Juan R. González, and David A. Pelta. 2011. Optimization in dynamic
environments: a survey on problems, methods and measures. Soft Computing 15,
7 (01 Jul 2011), 1427–1448. https://doi.org/10.1007/s00500-010-0681-0

[6] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA.

[7] Ekhine Irurozki. 2014. Sampling and learning distance-based probability models
for permutation spaces. Ph.D. Dissertation.

[8] Ekhine Irurozki, Borja Calvo, and Jose Lozano. 2016. PerMallows: An R Package
for Mallows and Generalized Mallows Models. Journal of Statistical Software,
Articles 71, 12 (2016), 1–30. https://doi.org/10.18637/jss.v071.i12

[9] Changhe Li and Shengxiang Yang. 2008. A Generalized Approach to Construct
Benchmark Problems for Dynamic Optimization. In Simulated Evolution and
Learning, Xiaodong Li, Michael Kirley, Mengjie Zhang, David Green, Vic Ciesiel-
ski, Hussein Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb,
Kay Chen Tan, Jürgen Branke, and Yuhui Shi (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 391–400.

[10] Michalis Mavrovouniotis, Shengxiang Yang, and Xin Yao. 2012. A Benchmark
Generator for Dynamic Permutation-Encoded Problems. In Parallel Problem Solv-
ing from Nature - PPSN XII, Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy
Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 508–517.

[11] Trung Thanh Nguyen. 2011. Continuous dynamic optimisation using evolutionary
algorithms. Ph.D. Dissertation. University of Birmingham.

[12] Philipp Rohlfshagen and Xin Yao. 2008. Attributes of Dynamic Combinato-
rial Optimisation. In Simulated Evolution and Learning, Xiaodong Li, Michael
Kirley, Mengjie Zhang, David Green, Vic Ciesielski, Hussein Abbass, Zbigniew
Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke, and
Yuhui Shi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 442–451.

[13] Eric D. Taillard. 1993. Benchmarks for basic scheduling problems. European
Journal of Operational Research 64, 2 (1993), 278 – 285. https://doi.org/10.1016/
0377-2217(93)90182-M Project Management anf Scheduling.

[14] Shengxiang Yang. 2003. Non-stationary problem optimization using the primal-
dual genetic algorithm. In The 2003 Congress on Evolutionary Computation, 2003.
CEC ’03., Vol. 3. 2246–2253 Vol.3. https://doi.org/10.1109/CEC.2003.1299951

[15] Shengxiang Yang. 2015. Evolutionary Computation for Dynamic Optimization
Problems. In Proceedings of the Companion Publication of the 2015 Annual Confer-
ence on Genetic and Evolutionary Computation (GECCO Companion ’15). ACM,
New York, NY, USA, 629–649. https://doi.org/10.1145/2739482.2756589

[16] Abdunnaser Younes, Paul Calamai, and Otman Basir. 2005. Generalized Bench-
mark Generation for Dynamic Combinatorial Problems. In Proceedings of the 7th
Annual Workshop on Genetic and Evolutionary Computation (GECCO ’05). ACM,
New York, NY, USA, 25–31. https://doi.org/10.1145/1102256.1102262

1526

https://doi.org/10.1109/CEC.2017.7969591
https://doi.org/10.1109/ICEC.1998.699839
https://doi.org/10.1109/CEC.1999.785502
https://doi.org/10.1109/CEC.1999.785502
https://doi.org/10.1007/s00500-010-0681-0
https://doi.org/10.18637/jss.v071.i12
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1109/CEC.2003.1299951
https://doi.org/10.1145/2739482.2756589
https://doi.org/10.1145/1102256.1102262

	Abstract
	1 Introduction
	2 Permutation space
	2.1 Distance metrics

	3 Dynamic Optimisation Problems
	3.1 Dynamic benchmark generator for combinatorial space

	4 Case study: FSSP and RKEDA
	5 Experimental study
	5.1 Dynamism generation
	5.2 Experimental setup
	5.3 Results

	6 Discussion
	7 Conclusions and future work
	References

