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ABSTRACT
This paper presents a novel optimisation approach, called Structured-
Chromosome Genetic Algorithm (SCGA), that addresses the issue
of handling variable-size design space optimisation problems. This
is based on variants of standard genetic operators able to handle
structured search spaces. The potential of the presented method-
ology is shown by solving the problem of defining observation
campaigns for tracking space objects from a network of tracking
stations. The presented approach aims at supporting the space sec-
tor in response to the constantly increasing population size in the
around-Earth environment. The test case consists in finding the
observation scheduling that minimises the uncertainty in the final
state estimation of a very low Earth satellite operating in a highly
perturbed dynamical environment. This is evaluated by coupling
the optimiser with an estimation routine based on a sequential
filtering approach that estimates the satellite state distribution con-
ditional on received indirect measurements. The solutions found
by employing SCGA are finally compared to the ones achieved
using more traditional approaches. Namely, the problem has been
reformulated to be faced using standard Genetic Algorithm and
another variable-size optimiser, the "Hidden-genes" Genetic Algo-
rithm variant.
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1 INTRODUCTION
Tracking objects in space has become amajor issue for the aerospace
community and the general public. Operational satellites require
accurate knowledge of their position and velocity to deliver increas-
ingly precise services and solid scientific outputs. Non-collaborative
objects tracking is needed for collision avoidance and re-entry pre-
diction, events which pose a threat respectively to the around-Earth
and the terrestrial environment. The continuous growth of the
population of artificial objects and small debris orbiting the Earth
requires an adequate response in tracking capabilities, schedul-
ing, and processing routines. In particular, this necessity applies to
the tracking of non-collaborative objects or small missions which
cannot rely on dedicated extensive tracking networks.

Therefore, this research develops a scheduling approach to com-
pute optimal observation campaigns for a generic object in space.
The goal is to improve the knowledge of the object’s state at the end
of the tracking window while respecting an allocated budget. As an
alternative, the developed approach can also reduce the resources
to achieve an accuracy requirement.

In this problem the scheduling can be interpreted as the man-
agement of the following free variables: 1) the number of times a
specific ground station is used, 2) in which observation’s window
this has to measure and 3) the number of measurements to perform.
Consequently, without simplifying assumptions, the architecture
and the number of design variables can vary among the solutions,
and the observation scheduling optimisation falls under the area of
the variable-size mixed-discrete global optimisation. To deal with
dynamically varying search spaces, a number of additional chal-
lenges harden dramatically the complexity of the search algorithm.
Genetic Algorithms (GAs) can overcome most of these issues by
means of an appropriated encoding. As stated in [9], GAs is one of
the most suited classes of optimisers for variable-size optimisation.
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A variety of GAs variants for facing variable-sized global optimi-
sation can be found in the literature, mostly employed for space tra-
jectory design [2, 7, 8]. Of particular interest is the "Hidden-genes"
GA (HGGA) adaptation introduced in [2]. In this algorithm, each
candidate is represented using all the possible genes and additional
"activation genes" indicating which genes have to be considered
or when computing the objective and constraint functions. The
main drawbacks are that the maximum dimensionality of the prob-
lem has to be known a priori and that this is further enlarged by
the "activation genes". A more complex, but effective adaptation
of GA is proposed in [7, 8]. In these cases, a hierarchical multi-
level chromosome structure is adopted in place of the standard
"string" one. Defining the concepts of vicinity and hierarchy of
genes, the authors introduced a problem formulation that enhanced
the exchange of information between chromosomes as well as the
computational efficiency in respect to the HGGA. Moreover, this
hierarchical formulation can produce a more meaningful exchange
of information between chromosomes.

In light of these considerations, we decided to make use of a
Genetic Algorithm variant based on hierarchical search spaces
and apply it to the problem of generating optimal observation
scheduling.

The structure of the paper is the following. Sec. 2 first introduces
the general tracking problem and the scheduling formulation, then
it presents the specific problem scenario and discusses the cost
function. Sec. 3, describes the employed algorithms focusing in
particular on the SCGA. The analyses of results are presented in
Sec. 4. Finally, final considerations and outlooks of this research
are given in Sec. 5.

2 MODEL
This section introduces themodel for the scheduling of observations
campaigns of space objects from terrestrial ground stations.

First, the generic tracking problem is introduced in Sec. 2.1 in
a state estimation probabilistic formulation. Then, the tracking
scenario of space objects from ground stations ismodelled in Sec. 2.2.
The selection of a performance index for quantifying the estimation
uncertainty follows in Sec. 2.3. Finally, the specific problem scenario
to be used as reference test case is presented in Sec. 2.4.

2.1 Tracking
The system under consideration evolves according to determin-
istic ordinary differential equations f (ODE) describing its state
evolution x(t) in time {

Ûx = f (t , x) (1)
x(t0) = x0 , (2)

where x0 is the system initial state at the initial time t0. The state
at later times can be computed by classical numerical integration
schemes for ODE.

In real-life scenarios, uncertainty always affects such systems
and, therefore, the knowledge of the state at a later time xt = x(t).
This uncertainty can result from a partial knowledge of the ini-
tial state, ambiguously specified model parameters, or unmodelled
terms in the equations of motion. Therefore, measurements yt are
employed to enhance the knowledge of the system state. Gener-
ally, it is not possible to observe the system state directly, and the

measurements are affected by noise. Hence, the state-observation
relationship is modelled as

yt = h(t , xt ) + ε , (3)

where ε ∼ N
(
0;σ 2

y
)
is a Gaussian noise with standard deviation σy .

The addressed hidden dynamical process is affected by two
sources of epistemic uncertainty: the initial state is only partially
known, and its uncertainty is modelled with a normal density func-
tion p(x0) = N

(
x0;σ 2

x0
)
; the received observation yt is noisy, and

its uncertainty is described by a probability distribution p(yt |xt ) =
N

(
h(t , xt );σ 2

y
)
conditional on the state value.

Given a sequence of observations y1:l , the tracking problem aims
at combining the a priori information about the initial state with
the available observations to compute an updated state distribution
conditional on the observationsp(xl |y1:l ). In Bayesian filtering, this
inference step is formulated by Bayes’ rule [10]

p(xl |y1:l ) =
p(yl |xl )p(xl )

p(y1:l )
, (4)

where the conditional independence of earlier measurements has
been used to simplify the density p(y1:l |xl ) = p(yl |xl ). The condi-
tional distribution in Equation (4) is the complete solution of the
tracking problem.

However, this update equation has no closed-form solution for
general probability distributions. In this work, the inference step is
solved using a Square-Root Unscented Kalman Filter (SR-UKF) [14],
a sequential filtering approach suitable for normal distributions and
non-linear dynamical and observational models. For this sequential
scheme, the observations are processed as soon as they are available,
and the updated posterior distribution propagated in future until the
time of the next measurement. The unscented transform improves
the estimation accuracy of standard Kalman Filters for an equal
computational burden, whereas the square-root version has more
robust numerical stability. The output conditional distribution from
the SR-UKF is a multivariate normal distribution described by two
parameters, i.e. mean and covariance matrix, as

p(xl |y1:l ) = N(x̂l ;σ 2
xl ) (5)

The smaller are the elements of the covariance matrix σ 2
xl the more

certain is the estimate of the system state.
The described tracking problem is depicted in Fig. 1 for a two-

dimensional scenario, where only the first and fourth stations are
used to take measurements of the satellite. The ellipses represent
the satellite state and its uncertainty in time corresponding to
the Gaussian distributions. The colours orange, yellow and green
are used respectively for the predicted density, the measurement
likelihood, and the filtered distribution.

2.2 Tracking Station Scheduling
It is intuitive to realise that two observation campaigns y1:l , differ-
ing for the employed sensors, times and number of observations,
would generally result in different posterior distributions. As an
example, two extreme possibilities are either to use no observation,
or to measure the highest number of times possible, resulting re-
spectively in an extremely uncertain scenario, or a very certain
estimate.
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Figure 1: Graphical 2D representation of satellite single pas-
sage over network of ground stations. The dark faded blue
field-of-view indicates that a station is used to takemeasure-
ment, whereas the light faded blue indicates that the station
is not operated. The ellipses symbolise a confidence region
of the uncertain state of the satellite. The different colours
orange, yellow and green are used to indicate respectively
the predicted state, the measurement and the posterior dis-
tribution.

Table 1: General free variable ui scheme for observation op-
timisation.

Description Variable Type Values
Use ground station j Discrete ON/OFF

Number of passages to use Integer [0, pmax ] ∈ N
Indexes of passages to use Discrete [1, pmax ] ∈ N

Number of observations per passage Integer [0, Nobsmax ] ∈ N

Times of observations per passage Continuous t ∈ [Tin, Tout ]
p
j

In this paper, the challenge addressed is to find the observation
campaign which produces the most certain estimate of the satellite
final state xf , while respecting a budget constraint, given a net-
work of variegated ground stations (GS). The budget constraint
is introduced because, in real satellite operations, taking measure-
ments from a tracking station has an associated expense, both in
terms of human and monetary costs. This constraint prevents the
aforementioned extreme case to be a feasible optimum. To further
increase the model reality, each tracking station may be charac-
terised by specific features depending on its geographical location,
and characteristics of the instruments available in loco.

Hence, a station GSj is uniquely specified by defining: its ge-
odetic coordinates, namely latitude latj and longitude lonj ; the
measurements model hj (t , xt ); observation covariance σ 2

y at 90 deg,
whereas at lower elevations the covariance elements are assumed
to degrade as ∼ 1/sin (El) [11], where EL is the object evelation
angle over the local horizon at the observation time. Given such
specifications, the object to be tracked may orbit in each station
field-of-view (FOV) once, multiple times, or never, depending on
the tracking window time-span, station-object relative geometry,
and the object initial orbital parameters.

Clearly, it is not possible to pick an observation realisations yi
directly, but there is an optimisable action ui which influences
the measurement yi (ui ). In the most general case, the action ui ,
associated to the ground station GSj, instructs the model whether to
take a measurement from GSj or not, how many, at which passage,
and when in the passage the measurements are to be taken. The
variables enclosed in an action ui are summarised in Tab. 1.

Hence, the free variables of the scheduling problem are the se-
quence of actions u1:l that reduces a performance index on the final
state uncertainty, while respecting imposed budget levels.

2.3 Cost Function
Selecting a performance index which quantifies the accuracy of the
filtered state estimate is a non-trivial task [11]. First, since the true
state is unknown, a direct measure of the estimation error cannot be
computed. Second, each scalar measure would only provide limited
information out of the multi-dimensional posterior distribution
characterising the state uncertainty.

The Kalman Filter solution returns the Gaussian posterior distri-
bution in terms of mean and covariance matrix, which intuitively
expresses how spread the density function is. In this work, the
trace of the covariance is chosen as performance index to express
how confident we are on each element of the state vector. Indeed,
although the covariance matrix is usually an optimistic measure,
for scheduling purposes only a relative indication of the accuracy
between two observation campaigns is needed.

Hence, the scheduling problem can be formally stated as finding
the optimal sequence of actions u1:l that reduces the uncertainty
on the state at the end of the tracking window, conditional on the
observations, as

min
u1:l

J = Tr
{
σ 2
xt
(
xf |y1:l (u1:l )

)}
. (6)

Graphically, this performance index corresponds to shrinking the fi-
nal orange ellipse in Fig. 1 as much as possible. Being the covariance
diagonal composed only of positive terms, the theoretical minimum
is zero, i.e. the case of perfect knowledge of the satellite state.

2.4 Reference Scenario
The scenario investigated in this research is characterised by a
network of nine ground stations characterised by different geodetic
coordinates. Each ground station can take measurements composed
of three scalar quantities, namely the relative satellite range, az-
imuth, and elevation. The observation covariance at El = 90deg is
set as three-dimensional diagonal with elements equal to 1.0e−5.

The satellite to track is in very low-Earth orbit, and the obser-
vation window of interest spans from the 2018 October 29 12:00
UTC to the 2018 October 29 20:00 UTC. The initial state estimate
in Keplerian elements is

x0 = (a[km], e[-], i[rad],Ω[rad],ω[rad],θ [rad])

= (6608.17, 1.61e−3, 1.685, 5.662, 1.199, 1.589) .

After conversion to Cartesian coordinates [13], this estimate is the
mean of the Gaussian initial state distribution with covariance set
as

σ 2
x0 = diag(1.0e−2 km, 1.0e−2 km, 1.0e−2 km,

1.0e−4 km/s, 1.0e−4 km/s, 1.0e−4 km/s)
The dynamical model determining the satellite evolution in a

low Earth orbit has several force contributions [6]: the gravitational
forcemodelled employs the EGM96 geopotential model up to degree
and order 10; atmospheric drag according to Jacchia-Gill model;
third-body disturbances due to the Moon and Sun gravitational pull;
solar radiation pressure (SRP) with a conical shadow model. The
satellite drag cross-section is set to 15.0 m2. The mean solar flux

1957



GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic L. Gentile et al.

0

45

90

135

180

225

270

315

90

60

30

0

GS-1

0

45

90

135

180

225

270

315

90

60

30

0

GS-2

0

45

90

135

180

225

270

315

90

60

30

0

GS-3

0

45

90

135

180

225

270

315

90

60

30

0

GS-4

0

45

90

135

180

225

270

315

90

60

30

0

GS-5

0

45

90

135

180

225

270

315

90

60

30

0

GS-6

0

45

90

135

180

225

270

315

90

60

30

0

GS-7

0

45

90

135

180

225

270

315

90

60

30

0

GS-8

0

45

90

135

180

225

270

315

90

60

30

0

GS-9

1st Pass

2nd Pass

3rd Pass

4th Pass

5th Pass

0

45

90

135

180

225

270

315

90

60

30

0

GS-1

0

45

90

135

180

225

270

315

90

60

30

0

GS-2

0

45

90

135

180

225

270

315

90

60

30

0

GS-3

0

45

90

135

180

225

270

315

90

60

30

0

GS-4

0

45

90

135

180

225

270

315

90

60

30

0

GS-5

0

45

90

135

180

225

270

315

90

60

30

0

GS-6

0

45

90

135

180

225

270

315

90

60

30

0

GS-7

0

45

90

135

180

225

270

315

90

60

30

0

GS-8

0

45

90

135

180

225

270

315

90

60

30

0

GS-9

1st Pass

2nd Pass

3rd Pass

4th Pass

5th Pass

0

45

90

135

180

225

270

315

90

60

30

0

GS-1

0

45

90

135

180

225

270

315

90

60

30

0

GS-2

0

45

90

135

180

225

270

315

90

60

30

0

GS-3

0

45

90

135

180

225

270

315

90

60

30

0

GS-4

0

45

90

135

180

225

270

315

90

60

30

0

GS-5

0

45

90

135

180

225

270

315

90

60

30

0

GS-6

0

45

90

135

180

225

270

315

90

60

30

0

GS-7

0

45

90

135

180

225

270

315

90

60

30

0

GS-8

0

45

90

135

180

225

270

315

90

60

30

0

GS-9

1st Pass

2nd Pass

3rd Pass

4th Pass

5th Pass

0

45

90

135

180

225

270

315

90

60

30

0

GS-1

0

45

90

135

180

225

270

315

90

60

30

0

GS-2

0

45

90

135

180

225

270

315

90

60

30

0

GS-3

0

45

90

135

180

225

270

315

90

60

30

0

GS-4

0

45

90

135

180

225

270

315

90

60

30

0

GS-5

0

45

90

135

180

225

270

315

90

60

30

0

GS-6

0

45

90

135

180

225

270

315

90

60

30

0

GS-7

0

45

90

135

180

225

270

315

90

60

30

0

GS-8

0

45

90

135

180

225

270

315

90

60

30

0

GS-9

1st Pass

2nd Pass

3rd Pass

4th Pass

5th Pass

Figure 2: Sky plots of satellite passes over ground stations;
the circles correspond to different elevation levels, while
the angular quantity indicates the azimuth measured east-
wards from the local north. Different colours indicate dif-
ferent satellite passes over the same station.

considered is 106.4 in solar flux units, with amean SRP cross-section
of 1.625 m2 and a SRP coefficient of 1.3.

Given this scenario, the geometry of this satellite passes above
the considered network of tracking stations is visualised in the
sky plots shown in Fig. 2, which shows the azimuth and elevation
of the satellite when it is over the stations’ local horizon. Hence,
the station-satellite relative geometry and the extension of the
tracking window determine a number of possible observations
windows equal to 21. The best passage over one station’s local
horizon is registered for the tracking station GS-9 with an elevation
of ≈ 71 deg , which furthermore sees the satellite in five different
passes. Stations GS-3, GS-4 and GS-8 see the satellite with decent
elevation angles ≥ 50 deg, while the worst passages are realised
over stations GS-2 and GS-5. Therefore, it can be predicted that an
optimal schedule would take measurements from stations which
see the satellite at higher elevation angles, as in the model the
observation covariance degrades when the elevation decreases.

Generally, the more observations are used the more reliable the
computed estimate is, hence the lower the value of the cost func-
tion will be. As discussed, this new information comes at a cost
in a real-life scenario. For this reason, the maximum number of
measurements will be imposed as a constraint and varied over the
different runs. In order to quantitatively assess the impact of the
maximum available number of the observations over the uncer-
tainty in satellite tracking, the analysed optimisation strategies have
been repeated varying this in a range from 15 to 65 with the span of
5. These values are representative of an operative mission scenario
that would benefit more from the employment of the proposed
algorithm.

3 OPTIMISATION PROBLEM
This section introduces the methodologies adopted for minimis-
ing the uncertainty associated with the state of an object in space
varying the scheduling of the observation campaign. The opti-
misation strategies, as well as the problem formulations, will be
described and compared in detail. In this research, the proposed
Structured-Chromosome Genetic Algorithm (SCGA) is compared
to the standard Genetic Algorithm and an implementation of the
"Hidden-genes" Genetic Algorithm (HGGA). All of them have been
used for minimising the uncertainty associated with the state of
the satellite at the end of the tracking window.

The optimal resources allocation for the object’s tracking is the
common aim of all the optimisers employed but, as will be shown
in the following sections, the problem formulations are different.
In particular, a throughout explanation of the proposed optimiser
and its problem formulation is given in section 3.2 and the others
are summarised in section 3.1.

3.1 Standard GA and "Hidden-genes" GA
The performances of the proposed optimiser have been compared to
the ones of a standard Genetic Algorithm [5] and the HGGA variant
proposed in [2] . As well known, the standard GA is not suitable for
handling variable-sized optimisation problems. Therefore, applying
this strategy for facing the presented problem requires making
assumptions on the maximum dimensionality. In this particular
problem, this entails assuming that the GSs are always used. If
that, the quantity to be managed by the optimiser is limited to
the budget for measurements at each satellite pass over the GSs.
This assumption, in theory, should not tragically compromise the
strategy’s capability of optimally allocating the budget but, as the
results will show, extremely harden the task.

The HGGA makes use of activation genes for activating or de-
activating genes. As in the previous case, it is assumed that the
GSs are used at every pass so the dimensionality of the problem
is the greatest possible. Then, at every gene an "activation" one is
associated. Its value indicates whether to consider or not the asso-
ciated gene in the decision space. By means this trick, it is possible
to encode and manage solutions with different architectures using
standard genetic operators.

In the scenario considered, the maximum number of decision
variables is 21, one for each time the satellites falls in the FOV of
one of the GS composing the tracking network. In the standard GA
problem formulation, these constitute the complete decision space
whereas, in the HGGA one, the 21 additional activation genes are
introduced.

Two different implementations of the HGGA have been tested. In
one the crossover operator performs a one-point crossover acting
at one on the overall chromosome (original+activation genes) in
the second, this is applied separately on the decision and activation
genes as proposed in [2] .

Both standard GA and the HGGA variants have been imple-
mented using the GA R package [12] and using the default options
but for the selection operator. For consistency, a selection operator
identical to the one used in the SCGA has been used.
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3.2 Structured-Chromosome Genetic
Algorithm

3.2.1 Problem Formulation. The adopted problem formulation
aims at condensing the information in the free variables (see Tab. 1)
making use of the concept of hierarchy for enhancing the operators
capability of reaching good performing solutions. One of the main
advantages of this problem formulation is that it is not required
assuming a priori the number of ground stations to use and the
number of passes in which these are activated. This implies that the
characteristics of the candidate observation campaign are contained
in a flexible number of decision variables.

In this problem formulation, the search space has been struc-
tured in a hierarchical way imposing dependencies between genes.
Consequently, the target of the operators is not a single gene but
rather an entire gene structure. This structure is actively helping
the operators to perform "meaningful" transformations over the
candidates. In fact, it helps to preserve the overall information lim-
iting the extrapolation of one gene from its context. Due to the
elevated interactions, blindly exchanging genes might lead to a
high information destruction rate.

Differently from classical genetic algorithms, in SCGA a chro-
mosome (solution) is represented by a matrix either indicating the
value of the gene either its position in the hierarchy of the chromo-
somes. The genes are grouped into gene classes that characterise
them by data type, dependent genes, and bounds. For the observa-
tion scheduling optimisation, the hierarchical structure is stratified
in three levels.

The gene class Ground Station forms the top of the hierarchical
structure. The value of this gene indicates the number of different
satellite passes in which the specific ground station will be em-
ployed to measure the satellite state. Thus, given that the modelled
GS network is constituted by nine ground stations, nine genes be-
longing to this class are present in all the solutions, one for each GS.
However, the limiting upper bound of these genes is determined by
the referring GS. In fact, sown in Fig. 2, every GS has the satellite
in its FOV a different number of times. So the genes belonging to
the gene class Ground Station don’t have all the same bounds.

The gene class Orbit index (OI ) constitutes the second level
of hierarchy. This variable specifies the index of the pass of the
satellite in the FOV of the associated GS to allocate the budget
for measurements specified by the subordinated gene class Budget
for Measurements (BfM). Obviously, a one-to-one correspondence
between the bounds assigned to Ground Station and Orbit index
genes has to exist.

As mentioned, as a rule of thumb, the more the observations the
more reliable the estimate should be. To simulate a real-life scenario,
a cost associated to each observation has been introduced to simu-
late the restrictions of a real observation campaign. Consequently, a

Table 2: Decision variable of the Observation Scheduling op-
timisation Problem.

Gene Type Lower Bound Upper Bound
Ground Station Integer 0 ∀ GS91 [2, 1, 1, 1, 2, 1, 5, 3, 5]
Orbit index Discrete 1 ∀ GS91 [2, 1, 1, 1, 2, 1, 5, 3, 5]
Budget Real 0 ∀ GS91 1 ∀ GS91

budget limitation constraining the number of observations has been
imposed and it has been varied into the independent runs in order
to have a quantitative indication of its effect on the uncertainty in
the final state estimation.

The Budget for Measurements gene class indicates the percentage
of the total available budget allocated for a set of measurements
performed by a given GS at a given pass of the satellite in its FOV.
The relation between the decision variables in the optimisation
Budget for Measurements and the value requested by the model
Number of Measurements is expressed by the equation:

NoM =

⌊
Bf M

Cost

⌋
(7)

where NoM is the Number of Measurements and Bf M the allocated
Budget for Measurements. This indirect measure of the number of
measurements has been preferred in the perspective of testing the
proposed approach assigning different levels of reliability and sen-
sibility to the measurements of every GS. Accordingly, the unitary
cost of the measurements by different GSs will also differ. In this
experiment, for the sake of simplicity, the same unitary cost has
been assigned to each GS.

3.2.2 The algorithm. The adopted algorithm is a population-
based heuristic optimiser that relies on two operators to pursue the
search of the global optimum: the crossover and themutation. These
operators, nowadays established in stochastic fixed-length mixed-
discrete optimisation, have been redefined in order to manipulate
candidates characterised by different length and structure. Then,
these strategies are integrated into the classical structure of genetic
algorithms [5]. In the following, a throughout explanation of the
most relevant aspects of the proposed operators will be given.

3.2.3 Initial population. The optimiser has to deal with bounds
and incompatibility constraints that considerably reduce the search
space. In the test case, the number of times the object falls in the
FOVs of the different GSs is different. This means that the upper
bound imposed to the gene classes Ground Station and Orbit in-
dex cannot be one value but rather a set of values. Furthermore,
another problem is that the values of the genes belonging to the
gene class Orbit index and dependent on the same gene cannot
assume the same value. An additional limitation is imposed on the
gene class Budget for measurements for not exceeding the overall
budget. Hence, creating feasible solutions is not a trivial problem.
Therefore, an ad-hoc strategy for defining an initial feasible popu-
lation has been created. The first step in the presented algorithm
consists in the definition of the first set of candidates (population).
In classical global optimisation, this often relies on techniques that
aim at maximising the information-gain distributing samples in the
search space following some strategy. However, none of them can
be carelessly adopted in variable-size optimisation problems [9]. In
the SCGA an iterative algorithm that creates feasible candidates has
been developed. The creation starts from the gene at the top of the
hierarchy and defines the value using random uniform sampling
on the range of feasible values. Once a value has been assigned to a
gene, the ranges of the possible values for all the dependent genes
are recomputed in order to guarantee their feasibility. Nevertheless,
a population size equals to 30 has been chosen for this experiment.
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3.2.4 Selection. In stochastic optimisation the way candidates
are selected is crucially important. This, greatly affects the veloc-
ity of convergence towards a region, determining the balance be-
tween exploration and exploitation of the search space. This step
is strongly dependent on the method used for fitness assignment.
The fitness shall reflect the "goodness" of a candidate orienting the
selection to the most promising chromosomes. In the observation
scheduling optimisation problem the objective function can assume
awide range of values that can differ in 7 order of magnitude or even
be impossible to compute because of model divergence. In light of
this, it has been decided to use ranking fitness assignment filtering
the objective function differing less than 3 order of magnitude from
the best of the current population. For selecting the chromosomes
for crossover, the Tournament selection with tournament size equal
to 6 has been used. In addition, the best 10% members of the popula-
tion are preserved immutably. This can sometimes have a dramatic
impact on performance by ensuring that the algorithm does not
waste time re-discovering previously found solutions.

3.2.5 Crossover. The crossover is an operator that exchanges
genes between two different chromosomes (parents) to produce two
new candidates (children). This aims at combining and transferring
the information contained in the parents to the children. In such a
way, hopefully, the children will contain the relevant characteristics
that originated the performance of their parents.

In classical fixed-size algorithms, all the genes lie on the same
level and have a well-defined position and meaning. Genes in the
same positions in the strings of two different chromosomes repre-
sent the same variable. This is not the case for structured chromo-
somes. Here, swapping genes among parent chromosomes on the
basis of their position may result in selecting genes that represent
different variables and creating unfeasible and meaningless solu-
tions. Hence, a different strategy for selecting genes to swap based
on their class has been proposed by [7].

The crossover operation is permitted only on genes belonging
to the same class. This approach guarantees a semantically correct
crossover where the picked gene, as well as the dependent genes,
are swapped. Furthermore, the adopted crossover operator aims
at maximising the information exchange per crossover operation.
However, in the preliminary stage of this research, the strategy
proposed in [7] has been used but appeared to be too destructive,
making the information contained in the parents disappear over
the generations. For this reason, a revised one has been developed.
In this, the number of exchanging genes belonging to each class is
computed in regards to the structure of the two parents chromo-
somes. This helps to homogenise the crossover operation all over
the hierarchy of the chromosome. Moreover, the already swapped
genes are removed from the list of eligible genes for crossover. This
helps to prevent the repetition of the crossover operation on the
same genes that would reduce the exchange of information. It is
worth to mention that, although the crossover on genes related to
the same GS and OI is encouraged, the probability of exchanging of
information between uncorrelated genes is preserved. The feasibil-
ity then is not guaranteed and the candidates are always checked
and, if needed, repaired. The procedure adopted is then able to
create meaningful children that respect the hierarchical structure
of the parents. However, the respect of bounds or constraints is

not guaranteed and a step of repair is necessary for evaluating the
response of the candidates.

3.2.6 Mutation. The mutation operator is characteristic of most
of the population-based optimiser. Many different variants of this
operator can be found in literature for standard fixed dimension
optimisation [3]. As in the case of the crossover, a new mutation
operator has been introduced to deal with structured chromosome.
In this case, two main steps can be recognised in the mutation op-
eration. First, the mutation of the chosen gene to be mutated and in
particular its value, then, treating the context of the mutated gene.
The former finds many similarity points with the standard mutation
operators. Indeed, it aims essentially at perturbing the current value
of the gene in order to introduce randomness in the chromosomes’
evolution. In the problem of tracking observation campaigns deter-
mination, variables of different types have to be managed. Hence,
the basics of the mutation operations described in [4] have been
borrowed to be used as gene variable perturbation operators. The
mutation of the offspring relies on operations acting differently on
real, integer and discrete variables, all respecting the requirements
for a mutation strategy in the search spaces: Accessibility, Feasi-
bility, Symmetry, Similarity, Scalability, and Maximal Entropy [4].
The operator achieves this by adding normally distributed noise
to real-valued variables. For integer variables, the distribution is
based on the difference of two geometrical distributions. Categori-
cal variables are simply re-sampled (uniform randomly) with some
probability. The probability and the magnitude of mutation are
controlled by hyperparameter, the strategy parameters, that evolve
during the optimisation in a self-adaptive fashion. To each candi-
date, a set of hyperparameter is associated. This is initialised as
described in Alg. 1 and evolves undergoing the same crossover
operations of the associated chromosome. However, the crossover
operation for the mutation hyperparameter consists in simply av-
eraging the hyperparameter sets associated to the chromosomes
selected by the operator. Hence, the mutation strength itself is also
governed by an evolutionary process. The philosophy behind self-
adaptation is that the evolutionary process can solve two problems
simultaneously: the determination of the best strategy variables,
and the determination of the best object variables.

The second step of the mutation consists in treating the depen-
dent genes. In particular, their value has to undergo the mutation
operation and their number has to be consistent with the new value
assumed by the higher-level gene. For better clarify the process,
the pseudocode of the mutation is reported in Alg. 2.

In this case as well, the respect of all the constraints is not guar-
anteed. Then, the repair function is employed to guarantee feasible
solutions.

3.2.7 Repairing. For ensuring candidates feasibility after the
evolutionary operations, a repairing strategy has been introduced.
This guarantees that all the candidates are semantically correct, that
the genes’ values lie in their feasibility range, and the budget con-
straint is still respected. Firstly all the dependent genes are checked.
In the specific, it is secured that the number of genes belonging to
the classOrbit index corresponds to the one indicated by theGround
Station gene value associated. If not, if the referring GS can poten-
tially be used in all the passes indicated by the Orbit index genes, its
value is modified in order to have a consistent chromosome. Else,
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input:Chromosomes, LB,UB;
NGenesPerType← average number of type of the genes in
the chromosomes;

τ = 1√
2·NGenesPerType

;

ρ = 1√
2·
√
NGenesPerType

;

σcontinuous = (UB − LB) × 0.1;
σinteдer = (UB − LB) × 0.33 ;
σcateдor ical = 0.1 ;

Algorithm 1: Initialisation of the mutation hyperparameters for
Observation scheduling optimisation. The global learning rates
are denoted by τ , the local learning rate by ρ and step sizes by σ .

the Orbit index genes are removed to be maximum the number
of times the satellites falls in the ground station’s FOV and their
values are modified in order to minimise the difference between the
unfeasible and the feasible solution. The second operation aims at
identifying and correcting the Orbit index genes that don’t respect
the semantic constraints. In example, whether more Orbit index
genes refer to the same satellite’s pass or whether an Orbit index
gene refers to an unfeasible satellite’s pass. Finally, the algorithm
checks whether the budget limit is exceeded. If this happens, all
the BfM are scaled to be have an overall used budget equal to the
maximum allowed.

4 RESULTS
The developed tool is tested in a quasi-realistic scenario for the
tracking of a satellite in a very low Earth orbit (LEO), where the
dynamics is highly nonlinear, as presented in Sec. 2.4.

Three optimisation strategies have been tested on the satellite
tracking observation campaigns problem: the standard GA, the
HGGAwith the one-point and two-points crossover, the SCGAwith
adaptive mutation, and the SCGA with mutation hyperparameters
fixed to the initial ones. Specifically, these algorithms have been
tested varying the maximum number of possible measurements in
a range from 15 to 65 with a span of 5. For each configuration 5
independent runs have been run in order to have more statistically
significant results.

All the optimisation runs have been limited to 500 generations,his
results in 13503 function evaluations for the SCGA,and 15000 for
the others algorithms.

The results in all the problem configurations are summarised
in Fig. 3 where the covariance trace of the final optimal solutions
found in the different runs is depicted by means box plots. For all
the budgets, the GA is significantly outperformed by the others.
This straightens the hypothesis that traditional fixed-size optimi-
sation strategies actually struggle to face variable-size problems,
even when they have been reformulated. To compare the other algo-
rithms, the Conover’s rank-based pairwise multiple-comparison [1]
tests have been used. These tests indicate that there is no signifi-
cant difference between all the other algorithms’ performance. For
further considerations, a visualisation of the best-found solutions
in the configuration with the maximum number of measurements =
25 has been reported in Fig. 4. From this Figure, it can be seen that

input: geneToMutate,σ ,τ , ρ, LB,UB;
genesPresence← lenдths(genesPerClass);
for i ∈ geneToMutate do

дeneClass ← geneClass of i;
if gene type of i is real then

дeneValue ←
дeneValue + σдeneClass · N (0, 1) · (UB − LB) ;
дeneValue ←max(дeneValue,LBдeneClass );
дeneValue ←min(дeneValue,UBдeneClass );

end
if gene type of i is integer then

NGene ← genePresenceдeneClass ;
p ← σ

NGene ·σдeneClass
;

p ←
1−p

1+
√
1+p2

;

p ←max(p, 1e − 3);
G1← rдeom(NGene,prob = p);
G2← rдeom(NGene,prob = p);
дeneValue ← дeneValue + (G1 −G2) · (UBi − LBi );
дeneValue ←max(дeneValue,LBi );
дeneValue ←min(дeneValue,UBi );

end
if gene type of i is categorical then

Activation = N (0, 1) > σдeneClass ;
if Activation then

дeneValue ← pick one random possible feasible
value

end
end
if i has dependent genes then

if number of dependent genes has to be changed then
if genes have to be added then

initialise new dependent genes
end
if genes have to be removed then

randomly pick dependent genes to be removed
end

end
Mutate all the dependent genes

end
end
for i ∈ geneClass do

NGene ← дenePresencei ;
if gene type of i is real or integer then

σi ←max(1,σi · eτi ∗N (0,1)+ρi ∗N (0,1));
end
if gene type of i is categorical then

σi ←
1

1+( 1−σiσi
)·eτi ∗N (0,1)+ρi ∗N (0,1)

;

end
end

Algorithm 2: Algorithm summarising the main steps of the mu-
tation operator. The notation N (0, 1) denotes a random number
generated from a normal distribution centred in 0 having a stan-
dard deviation = 1.
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Figure 3: Box-plots of representing the best results found by
all the algorithms in all the analysed problem’s configura-
tions.
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Figure 4: Visualisation of the best solutions found with the
maximum number of measurements=25. On the vertical
axis, the J value and the Orbit indexes at which every GSs is
used are reported. The colour shades represent the budget al-
located to the specific observation: the darker themoremea-
surements employed. The colour indicates the optimiser em-
ployed.

the solutions found by the standard GA differ significantly from
the ones found by the competitors: the standard GA does not make
use of all the available budget, and only the observation campaigns
found by the standard GA employ the GS-5 that is one of the two
(with GS-2) with the lowest elevation angle.

The solutions found by the HGGA and the SCGA are also inter-
esting. Notably, one of the convenient stations for the early part of
the tracking window, GS-1 and GS-3, are employed in almost all
solutions whereas, for the late part, both the high elevation ones
GS-8 and GS-9 are always employed. However, Fig. 4 shows great
variability in the selected orbit indexes and the budget allocation,
that reveals a high multimodality and complexity of the search
space.

Finally, the impact of the maximum number of measurements
can be addressed by comparing the uncertainty in the final state
for the best solutions when varying this parameter. This has a
strong influence on the configurations with small budgets, whereas
it appears to vanish with the growth of the available budget.

The results indicate that only the variable-size optimisers are
able to find and select the most important features while discarding
the bad characteristics.

5 CONCLUSIONS
This paper presents a novel strategy, Structured-Chromosome Ge-
netic Algorithm, that aims at tackling variable-size design space
optimisation problems advantaging of the concept of genes hierar-
chy.

This algorithm has been applied for solving the problem of au-
tonomously generating optimal satellite tracking observation cam-
paigns under a limited budget. This concerns the aerospace com-
munity as nowadays the presence of objects orbiting the Earth
is being pushed to the limit. Enhancing the efficiency of the ob-
servation schedules aims at making the tracking of space objects
sustainable for the future. The presented scheduling formulation re-
quires to optimise the sequence of observations in order to improve
the knowledge of the satellite position and velocity at the end of
the tracking window. Each observation results from a free action
associated with each tracking station in the considered network.
Such observations are processed using the SR-UKF to compute the
posterior distribution of the state uncertainty, by efficiently merg-
ing different sources of information, namely the prior knowledge,
the dynamics, and the measurements. The trace of the associated
covariance matrix has been selected as performance index to syn-
thetically measure the uncertainty associated with each component
of the satellite state.

The proposed method has been tested on a quasi-realistic sce-
nario in which nine ground stations were available to track a satel-
lite in very low Earth orbit. For comparison, the standard GA and
the "Hidden-gene" GA have been run on the same test case. The in-
fluence of the budget on the uncertainty in final state estimation as
well on the searching algorithms’ performance has been addressed
by varying the number of available measurements.

The results indicate that the presented methodology can suc-
cessfully enhance resources allocation strategies in space object
tracking problems if compared to traditional approaches. How-
ever, the limited number of repetitions made, the complexity and
the apparent deceptiveness of the objective function make further
analyses absolutely needed for a definitive claim.

The SCGA has been implemented to work with any dynamic,
measurement model and station network such that different test
cases can be tested in future. The apparent parity of the SCGA
and "Hidden-genes" GA performances can be partially due to the
simplicity of the problem formulation. In the authors’ opinion,
introducing additional features such like a cost associated to the
measurements dependent by the GS employed or differentiating
the GSs by their accurateness could accent the SCGA’s capacity of
handling complex problem formulations. A further possible outlook
of this research would be the definition of a similarity measure in
order to embed this optimiser in a Surrogate model-based optimi-
sation framework. Finally, a real-time approach that employs this
observation schedule as first guess could be developed to improve
the solution optimality in online applications.
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