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ABSTRACT
Hyperparameter tuning is an important mixed-integer optimisation
problem, especially in the context of real-world applications such as
games. In this paper, we propose a function suite around hyperpa-
rameter optimisation of game AI based on the card game Splendor
and using the Rinascimento framework. We propose several differ-
ent functions and demonstrate their complexity and diversity. We
further suggest various possible extensions of the proposed suite.

CCS CONCEPTS
• General and reference → Performance; • Theory of com-
putation→ Evolutionary algorithms; • Computing methodolo-
gies→ Artificial intelligence; • Applied computing→ Computer
games;
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1 INTRODUCTION
At the time of writing, the Game-Benchmark for Evolutionary Al-
gorithms (GBEA) contains 4 function suites based on two different
games, namely TopTrumps and Mario [11]. Since the suites in the
GBEA are intended to represent real-world problems related to
games [11], we suggest to add a function suite aimed at hyper-
parameter tuning of game Artificial Intelligence (AI) algorithms.
The performance of game AI is usually very sensitive to hyperpa-
rameters [7]. It is thus important to find a suitable configuration
for game AI hyperparameters that optimises its performance in a
game, usually measured as a score or winrate. Tuning problems
are difficult to tackle for several reasons. Hyperparameters are usu-
ally a mixture of continuous and discrete variables, making tuning
them a mixed-integer problem. These types of problems have not
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received much attention in research on benchmarking evolutionary
algorithms until recently [9].

There are also some characteristics about game AI that introduce
further complexity into tuning problems. Scores or wins are usually
awarded for achieving specific discrete goals, thus resulting in steps
in the fitness landscapes instead of continuous changes. These steps
in fitness can be comparably large because even small changes in
the parameters can potentially result in considerable changes in
game scores achieved by the corresponding AI. Even minor changes
in player behaviour (e.g. going left instead of right in a maze) can
lead to very different game experiences and resulting scores (e.g.
finding the exit instead of falling into a trap). This factor is usually
exacerbated in multi-player games, where a small change in player
behaviour can cause a chain of different reactions.

Additionally, most modern game AI and game engines are sto-
chastic. Stochasticity can also lead to small changes in AI behaviour,
thus resulting in different game outcomes as described above. The
fitness associated with a hyperparameter configuration is thus also
non-deterministic, making the fitness landscape noisy. Due to the
achievement-based manner in which scores are usually awarded
in games, they would follow a multinomial distribution. Common
assumptions in noise handling for evolutionary algorithms, such
as normalcy or symmetry, would therefore not hold [10].

As argued above, hyperparameter tuning of algorithms is an im-
portant as well as complex problem in the context of game AI and
beyond. We thus suggest to add a function suite representing hyper-
parameter tuning of game AI to the GBEA. In the remainder of this
paper, we describe such a suite based around the game Splendor.
To this end, we first describe the game in section 2.1 and motivate
its suitability for this purpose. We also give a brief description of
the implementation of the game using the Rinascimento research
framework and specify the various game AI algorithms to be tuned.
Following this, we propose several diverse functions for the suite
and provide some preliminary characterisations of their fitness land-
scapes. We conclude the paper with a discussion of the identified
characteristics and the associated difficulties for optimisation.

2 BACKGROUND
2.1 Splendor
Splendor is a 2-4 player card-based board game, first published in
2014 by Space Cowboys. It has received several awards and was a
Spiel des Jahres nominee in 2014. The goal of the game is to collect
prestige points by buying bonus cards using tokens that can be
taken from the table. Cards have different values (three decks with
three different prestige points distributions), prices and suits (gem
colour: red, green, black, blue and white). Cards, in turn, can be
used to buy other cards reducing the number of tokens needed. On
the side there is a number of noble tiles (each worth 3 points) that
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Figure 1: Rinascimento’s UI.

independently move to players’ hand when they own a specific
combination of cards (e.g. 4 blue and 4 green). For a more detailed
description of the game, please see [2].

Splendor is a popular game (ranked 16 among family games
on boardgamegeek.com1). The complexity of the game involves
dealing with limited resources (tokens and cards) available to the
players during each turn. Moreover each player’s action can sig-
nificantly change the game state and consequently the available
actions for the other players. This means that it’s particularly hard
to plan for long strategies. However it is possible to play very dif-
ferent kinds of strategies: (1) gather many cheap cards quickly and
harvest many points from nobles, (2) focus more on expensive cards
worth more points, (3) step gradually from cheap to medium and
then expensive cards, or a mixture of them. Splendor is a stochastic
game due to card shuffling but it is also partially observable as only
few cards are accessible and face up. Nonetheless, the game state
is very simple to read with very few game elements (cards, tokens
and nobles), plus all the information is discrete. The actions have
very clear instant outcomes without any timed or durable effects.
This makes the game fairly easy to analyse with obvious differences
between game states. Finally, since it is a board game without any
heavy computation needs (e.g. physics modelling) we were able to
write a fast implementation that can simulate more than 1.7 million
actions per second2.

2.2 Rinascimento
Rinascimento is a research framework that implements the game
Splendor in an extensible and modular fashion intended to investi-
gate various questions in games research. At the time of writing, it
contains 3 parameterised AI agents, which are described in section
2.3 in more detail. It also includes a user interface depicted in figure
1 so that human players may join the game using the console to in-
put actions. In addition, this feature allows observing the AI agents’
1https://boardgamegeek.com/familygames/browse/boardgame?sort=rank&
rankobjecttype=family&rankobjectid=5499&rank=16#16
2Run on Intel(R) Core(TM) i7-3615QM (2012) CPU @ 2.30GHz, 8GB 1600 MHz DDR3
RAM.

behaviours within the context of a visualised game state, which
makes it easier for a human to identify and understand patterns,
as well as to find potential problems. One peculiarity of Splendor
is the fact that the number of available actions changes with the
game state. To account for this, Rinascimento provides a seeded
random action generator (RAG) that samples valid actions.

2.3 Agents
In this section, we describe the three agents to be optimised, their
algorithmic nature and their hyperparameters. More thorough de-
tails can be found in [2]. All agents implement Statistical Forward
Planning (SFP), i.e. they search the game states using a forward
model to simulate actions and future states. Such states are evalu-
ated using a given heuristic that shapes the objective function of
the search. The agents can also model opponent behaviour during
their simulations. Therefore, all three agents have two parameters
to define the opponent model and the simulation budget allotted
to run them, respectively om ∈ {0, 1, 2} and ombs ∈ [0, 1]. All the
agent-specific hyperparameters are briefly described in Table 1.

Two of the agents (BMRH and SRH) are based on the Rolling
Horizon Evolutionary Algorithm (RHEA) introduced in [8]. RHEA
is an evolutionary algorithm that evolves and evaluates action se-
quences of predefined length. Once the budget is exhausted, it plays
the first action of the best evolved sequence. Their key difference is
that while BMRH evolves explicit action sequences, SRH finds seeds
for the RAG. This allows the usage of standard variation operators
instead of game-specific ones.

The third agent is Monte Carlo Tree Search (MCTS) [3]. It grad-
ually builds a tree where each node represents an action and esti-
mates the quality of it through Monte Carlo sampling of the action
space. The main feature of the MCTS agent is that during the Tree
Policy step with probability ep it will further expand the current
node sampling ps-times the actions space through the RAG.

3 FUNCTION SUITE
3.1 Single-Objective Functions
Each function we propose in the following describes the success of
hyperparameter tuning an AI agent with Rinascimento framework
measured as the achieved winrate in 1 000 games against one or mul-
tiple opponents. However, hyperparameter tuning can be intended
for several usecases, such as finding parameters that are suitable
for beginner games or for robust performance. We have modelled
4 different usecases as function types, which are characterised by
the opponents the tuned AI is tested against:

• Beginner: against simple agents (1-step look-ahead [2])
• Advanced: against agents that perform well in beginner use-
case (identified via grid-search)

• Robust: against agents randomly picked from agent pool
• Exploits: against best agents found of the same type

To fully define the experiment, further specifications have to be
made regarding the choice of AI algorithm to be tuned, as well as the
number of opponents it is tested against and what budget is allowed
for the agents during runtime. We thus implement several variants
listed below that can be combined in order to create experiments:

• AI algorithm: BMRH, MCTS, SRH (see Section 2.3)
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Table 1: Agents’ hyperparameters: the parameter type can
be either boolean (B), integer (I) or double (D).

BMRH
Symbol Type Range Description
l I [1,∞) sequence length
n I [0,∞) sequences evaluated
usb B {⊥,⊤} if it uses shift buffer
mo B {⊥,⊤} if it has to mutate once
mr D [0, 1] mutation probability

SRH
Symbol Type Range Description
l I [1,∞) sequence length
n I [0,∞) sequences evaluated
usb B {⊥,⊤} if it uses shift buffer
mo B {⊥,⊤} if it has to mutate once
mr D [0, 1] mutation probability

MCTS
Symbol Type Range Description
d I [1,∞) max rollout depth
c D (-∞,∞) exploration constant of UCB
e D (-∞,∞) ϵ of UCB
ep D [0, 1] expansion probability
ps I [1,∞) actions sampled during expansion
rt I {0, 1, 2} recommendation type

• Number of opponents3: 1, 3
• Budget [# of simulated actions]4: 1 000, 5 000 and 10 000
(these budgets were chosen to keep a reasonable execution
time, i.e. ∼ 13minutes per evaluation when budget is 10 000).

The combinations of the proposed function types with the im-
plemented variants results in 72 total functions. The number of
functions can probably be reduced based on first results, e.g. if the
problems are too easy or too similar to others.

3.2 Multi-Objective Functions
There are two main ways in this context to pose hyperparameter
tuning as a multi-objective problem. The first is an extension of
the robust and advanced usecases as described above. Winrates
against different agents that ideally represent different types of
gameplay can be interpreted as different objectives. Agents around
the centre of the Pareto front of this problem would thus exhibit
robust performance against different strategies. In contrast, con-
figurations towards the extreme edges would result in very strong
performances against specific strategies. Analysing the solutions
found on the Pareto front could create better insight into the effects
of different hyperparameters and allow for quick adaptation.

Alternatively, additional objectives could be introduced. Several
usecases in AI-assisted game design require AI agents that exhibit
specific types of behaviour, e.g. aggressive or defensive playing
styles [6]. If the similarity to intended playing styles can be ex-
pressed numerically (e.g. by the percentage of aggressive moves),
3For advanced usecase: In case of 3 opponents, these are the best agent configurations
found by grid-search on beginner function for BMRH, MCTS and SRH. In case of 1
opponent, it is randomly picked from this pool
4Budget of 1 000 used in previous work [2], results in ∼ 7 − 28 full games

it is a suitable second objective. Further possible objectives are the
similarity to human behaviour as well as successful collaboration
with human players5.

Furthermore, if the tuned AI algorithms are intended as oppo-
nents for human players in a single-player version of the game,
creating strong opponents is probably not the sole objective. Instead,
the game designers usually want to ensure a specific experience.
Introducing an additional objective function that describes e.g. the
tension6 during the game could help finding configurations that
result in interesting and skillful games against AI players.

3.3 Specifications for COCO
Objectives. As described above, functions could have 1 or more

objectives. In case the different objectives are winrates against
various AI agents, the resulting functions might even be considered
many-objective problems. Because all proposed functions can be
expressed as rates or percentages, the theoretical optimum is at
function value 1, while the minimum is at 0.

Search Space Dimension, Scalability and Constraints. The search
space dimensions and constraints are defined by the hyperparam-
eters available to the different agents as defined in Table 1. For
some parameters, it would be possible to specify a smaller area of
interest based on further experiments and practical restrictions. For
example, the sequence length and number of sequences evaluated
is automatically restricted by the budget available to the agent.

Hyperparameter tuning problems are generally not easily scal-
able in search space. One option is to keep specific parameters
constant, but this reduces the complexity of the problem drastically.
Another option is to use an indirect representation as suggested in
[4]. Alternatively, the search space of each function could also be
kept constant, as scalability is not of particular interest in hyperpa-
rameter tuning problems. Tuning different agents already results
in search spaces of different dimensions.

Instances. There are several options to introduce instances in
this function suite. The most promising one is to vary the opponent
behaviour that the tuned AI is tested against slightly, e.g. by small
modifications of their hyperparameters. It would need to be ensured
that the resulting fitness landscapes are similar but not identical
in this case. The simplest option would be transformations such as
rotations and shifts akin to instances in BBOB [5].

Runtime. Simulating 1 000 games with 4 players, i.e. evaluating a
single configuration, usually takes around 60 seconds on the setup
described in section 2.1. An estimate for the upper bound of an
evaluation based on the average simulation speed of a game and on
the maximum duration of games observed in our experiments for
an algorithm using the maximally available budget is 80 seconds.

3.4 Characterisation of Fitness Landscapes
In order to be able to provide a first characterisation of the problems
in the proposed suite, we discuss some preliminary experiments
in the following. The first is a grid-search for the best configura-
tion for all AI algorithms with a budget of 1 000 simulated actions,
5http://hanabi.fosslab.uk/
6Tension has been described as the number of times the lead changed during the game
as well as closeness in score [12].
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Figure 2: Ordered fitness landscape.

tested against 3 1-step look-ahead opponents (beginner usecase).
The winrates that were obtained are plotted in figure 2, where the
obtained values are sorted for easier visualisation. The widths of
the coloured lines represent the observed standard deviation.

From the plot, we can see that the performance of all agents de-
pends strongly on their hyperparameter configuration. This demon-
strates that finding suitable hyperparameters is indeed crucial in
game AI. The grid-search is able to reach winrates of above 90%
for MCTS and BMRH, and above 80% for SRH. It is further promis-
ing to see the range of achieved winrates and the relatively low
corresponding noise. This should create sufficient feedback for an
optimisation algorithm to operate successfully. The plot additionally
suggests that tuning MCTS with simple approaches such as ran-
dom search is more difficult than optimising the other algorithms,
because relatively fewer configurations obtain good winrates. This
observation was confirmed by experiments with random search,
which resulted in mean winrate of around 20%, whereas for BMRH,
almost 60% winrates are reached on average.

We ran a preliminary test to support the above conjectures on
the difficulty of the functions by running the N-Tuple Bandit Evo-
lutionary Algorithm (NTBEA), a hyperparameter tuning algorithm
specialised in game AI [7], on the beginner problems as specified
above. The best winrates obtained by NTBEA for each algorithm
and for different evaluation budgets are depicted in figure 3.

We find that even for very low budgets, NTBEA already finds
solutions with high winrates for BMRH and SRH. Despite the seem-
ingly easy problem, the results are still significantly better than
those achieved by Random Search. It is however very striking how
NTBEA is able to discover far better configurations of MCTS in a
consistent manner (low variance) if given a higher budget. This
also suggests that the fitness landscapes for the three AI algorithms
are very different.

Instead of landscape walks, which are difficult in a mixed-integer
space, we created boxplots of the distribution of fitness values for
the various categorical and boolean parameters. These distributions
mostly look similar, suggesting that the problems are not separable
by any of these categories. The functions in the beginner usecase
are thus of suitable complexity for testing evolutionary algorithms,
especially for low budgets. The remaining function types will likely
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Figure 3: NTBEA results for the three agents with different
budgets.

pose even more difficult problems, as the configurations will proba-
bly be less distinguishable by the achieved winrates. This is because
a larger percentage of configurations will result in losses against
the best agents found previously, thus resulting in larger plateaus
in the corresponding fitness landscapes.

4 CONCLUSIONS AND FUTUREWORK
Hyperparameter tuning is an important optimisation problem, es-
pecially in context of real-world applications such as games. In
this paper, we suggest a function suite consisting of several diverse
hyperparameter tuning problems for game AI implemented using
the Rinascimento framework. An implementation of a working
interface to GBEA can be found in our public github repository7. A
preliminary analysis of the fitness landscapes demonstrates reason-
able optimisation complexity as well as diversity.

There are several ways to further extend the proposed function
suites. For example, the number of tuneable agents implemented
in the Rinascimento framework could be increased. Another op-
tion is to introduce an additional hyperparameter for all agents
by providing different heuristics to evaluate the game states. This
would be especially interesting as finding appropriate heuristics is
an open question in current research [1]. Furthermore, the Rinasci-
mento framework also supports modifications of the deck available
in the game. A function suite around deck generation could thus
be implemented using the same framework and agents.

Besides the possible extensions, a more detailed investigation of
the fitness landscapes in the proposed suite should be conducted.
It would for example be interesting to investigate the correlation
between search and objective space for the continuous and integer-
valued parameters. In addition, noise handling could be made an
essential part of problems in GBEA. For example, the reported fit-
ness values in our implementation of the proposed function suite
are currently averaged over 1 000 simulated games in order to allow
for relatively low noise (see figure 2). However, it would be inter-
esting to allow the optimiser to pick which configurations should
be evaluated repeatedly (as done by NTBEA, see figure 3).
7https://github.com/TheHedgeify/coco/tree/rw-new-suite
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