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ABSTRACT
Reinforcement learning is gaining prominence in the machine learn-
ing community. It dates back over three decades in areas such as
cybernetics and psychology, but has more recently been applied
widely in robotics, game playing and control systems. �ere are
many approaches to reinforcement learning, most of which are
based on the Markov decision process model. �e goal of reinforce-
ment learning is to learn the best strategy (referred to as a policy
in reinforcement learning) of an agent interacting with its envi-
ronment in order to reach a speci�ed goal. Recently, evolutionary
computation has been shown to be of bene�t to reinforcement learn-
ing in some limited scenarios. Many studies have shown that the
performance of evolutionary computation algorithms is in�uenced
by the structure of the �tness landscapes of the problem being opti-
mised. In this paper we investigate the global structure of the policy
search spaces of simple reinforcement learning problems. �e aim
is to highlight structural characteristics that could in�uence the
performance of evolutionary algorithms in a reinforcement learn-
ing context. Results indicate that the problems we investigated are
characterised by enormous plateaus that form unimodal structures,
resulting in a kind of needle-in-a-haystack global structure.
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1 INTRODUCTION
Reinforcement learning (RL) is a training method based on reward-
ing desired behaviours and/or punishing undesired ones of an agent
interacting with its environment. �e agent learns by taking ac-
tions in the environment to maximize its cumulative long-term
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reward. RL is used in various �elds such as operations research,
information theory, game playing, control theory, simulation-based
optimization, multi-agent systems and swarm intelligence.

In 2016 RL came into the spotlight when Google DeepMind’s
AlphaGo [24] program defeated the Go world champion, Lee Sedol.
Due to promising results in areas such as controlling continuous sys-
tems in robotics [12], playing Atari [14], competitive video games
[23, 29] and tra�c light control [1], RL has experienced dramatic
growth in a�ention and interest. �e growth of the �eld through
the number of RL-related publications per year is illustrated in [7];
almost 15000 in 2016 compared to less than 2500 in the year 2000.

�e essential elements of an RL system are the agent in an en-
vironment, a set of actions that the agent can perform and a set
of possible states of the environment. Within this, the agent has
a policy, which is a mapping from every state that the agent can
observe to a choice of action for the state. A policy can be thought
of as a lookup table that associates an action with every possible
state. A good policy will take an agent from the current state to a
be�er state. �e aim of RL is to �nd the policy that maximises the
reward of the agent.

�e most common algorithmic approaches to RL are methods
that learn value functions. �is means that the agent uses a partic-
ular model to estimate the long-term value of a sequence of actions
from any particular starting state, allowing the expected reward of
individual state-action pairs to be evaluated. In contrast, evolution-
ary methods do not learn value functions or evaluate individual
state-action pairs, but instead consider the full search space of all
possible policies. Each policy as a whole is evaluated only a�er a
period of interaction with the environment.

�ere is a common belief that evolutionary methods are only
e�ective if the space of policies is su�ciently small, or if the search
space can be structured so that good policies are “easy to �nd”
[28]. However, the question of what makes a problem easy to
search for an evolutionary algorithm is not clear. �e concept of
�tness landscapes is used to understand this di�culty of �nding
good solutions in di�erent problem search spaces [13]. Landscape
features that have a strong in�uence on heuristic search are the
number of local optima or peaks in the landscape, the distribution
of the local optima in the search space, the correlation between
�tness values of neighbouring points in the landscape and the
topology of the basins of a�raction of the local optima [17]. A
further feature that can a�ect problem di�culty is high neutrality
(solutions with the same �tness value) in the search space, which is
common in di�cult combinatorial search spaces. �e �tness values
are not changing in a neutral portion in a landscape, and this could
therefore be mistaken for convergence on a local optimum.
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�is paper aims to investigate the nature of the full policy search
spaces of RL problems as theywould be experienced by evolutionary
algorithms. �is is a �rst step towards deciding when evolution-
ary approaches could be appropriate for solving RL problems. To
achieve this, we investigate the global structure of the solution
space of three simple RL problems using local optima networks
[15], a technique that characterises the global structure of problems.
A current disadvantage of this approach is that it requires a full
enumeration of the search space. �is study is therefore restricted
to very simple problems, but still provides insight into the nature
of policy search spaces.

Brief descriptions of RL, �tness landscapes and local optima
networks are provided in Section 2. In Section 3 the three prob-
lem instances which are considered in this paper are discussed in
the framework of RL and in Section 4 the �tness distributions for
each problem instance are presented. Section 5 de�nes the neigh-
bourhood for each problem instance and discusses the algorithmic
approach to determining the local optima networks. Section 6
presents the �ndings of this paper, followed by a discussion and
conclusion in Sections 7 and 8.

2 BACKGROUND
In this section we discuss key concepts of RL, introduce the concept
of a �tness landscape together with a selection of features which
will be used in this paper, and give an overview of local optima
neutral networks and their components.

2.1 Reinforcement learning
Reinforcement learning is when an agent learns to complete a task
by interacting with its environment and being rewarded for desir-
able behaviours or penalised for undesirable behaviours. �e state
in which the agent �nds itself at each possible time step is therefore
an important concept in RL. �e observable or perceivable state
of an agent can be thought of as the information that is available
to the agent about its environment. If the agent can only observe
part of its environment, the environment is referred to as partially
observable. �e world state is a complete description of the envi-
ronment that the agent is in. If the agent can observe all aspects of
its environment, the world state and observable state are the same,
and the environment is referred to as fully observable. An RL agent
must be able to sense the state of its environment to some extent
and must be able to take actions that a�ect the state. �e agent
must have a goal or goals relating to the state of the environment.

An RL agent also has a policy, which can be thought of as a
mapping from every possible state to the action that should be
taken in that state. �e policy determines the behaviour of the
agent. �e goal of RL is to learn the best policy to achieve a speci�c
goal, which is referred to as the optimal policy. Policies that still
result in goal achievement, but not as e�ciently or e�ectively as
the optimal policy, are referred to as sub-optimal policies.

2.2 Fitness landscapes
A discrete �tness landscape is formulated as a triplet (S,V , f ) [20]
where S is the set of all admissible solutions, V : S → P(S) (where
P(S) is the power set of S) de�nes a neighbourhood structure in the
solution space, which is a function that assigns a set of neighbours

V (s) for every s ∈ S , and f : S → R is a �tness function that assigns
a solution quality to every s ∈ S . In this subsection we will discuss
a selected number of �tness landscape features, but �rst we provide
the de�nition of a local optimum, which is used in the discussion
and in the rest of the paper.

Local optimum: A local optimum, which is taken to be a maxi-
mumhere, is a solution s∗ such that for every s ∈ V (s∗), f (s) ≤ f (s∗).

Horn and Goldberg [8] de�ne a local optimum as a point or
region (a set of interconnected points with equal �tness) with �tness
function value greater than those of all its nearest neighbours. �is
de�nition would consider �at plateaus at the tops of hills and ridges
as single optima.

An RL problem is a type of optimisation problem since the learn-
ing agent has tomaximise some reward function. A selected number
of features of optimisation problems that could a�ect algorithm
performance are discussed below. A detailed discussion on �tness
landscape features can be found in the work of Malan and Engel-
brecht [13].

Fitness distribution: �e frequency with which each �tness value
occurs in the search space S can be used to provide a pro�le of
the problem. Due to the size of most search spaces, the �tness
distribution of a problem cannot always be determined exactly and
therefore sampling and grouping strategies are used to estimated
the �tness distribution.

Modality: Functions which only have one local optimum are
referred to as unimodal functions and the local optimum is then the
global optimum. Multimodal functions have more than one local
optimum.

Landscape structure of optima: Ochoa et al. [15] proposed a mod-
elling technique for compressing the essential landscape features
for combinatorial optimisation problems into a graph called a lo-
cal optima network (LON). A LON characterises the structure of
a landscape and the distribution of local optima, and is discussed
further in Subsection 2.3.

Neutrality: A �tness landscape is neutral if there are a large
number of solutions s ∈ S which have neighbours with the same
�tness value, i.e. if x ∈ V (y), then f (x) = f (y). �e solutions x and
y are then referred to as neutral neighbours. �e landscape is then
composed of several sub-graphs of con�gurations with the same
�tness value. Neutrality manifests in features such as plateaus and
ridges in a landscape.

Neutrality in a �tness landscape can have a profound e�ect
on the success of search algorithms, since a neutral portion in a
landscape could be mistaken for convergence on a local optimum.
A �tness landscape with large masses of neutrality could then be
di�cult to search, due to the lack of information available to the
algorithm.

2.3 Local optima networks
Local optima networks [15, 17] were inspired by the modelling
of complex physical energy landscapes in chemical physics [27]
and later those of small atomic clusters [6] by taking only the
con�gurations that correspond to energy minima as vertices. When
two energy minima are connected (i.e. when the energy barrier
separating them is su�ciently low) an edge is traced between them.
�is idea is adapted for combinatorial search spaces, where local
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optima are the vertices of the network and edges represent the
possible search transitions between local optima.

To analyse the structure of a neutral combinatorial �tness land-
scape, the concept of a LON is extended to that of a local optima
neutral network (LONN) in the work of Verel et. al. [16]. De�ni-
tions of the components of the LONN model are provided below.
For the equivalent de�nitions for non-neutral landscapes, see [17].

Neutral network: A neutral network is a connected sub-graph of
the search space whose vertices are con�gurations with the same
�tness value. Two vertices in a neutral network are connected if
they are neutral neighbours.

Local optimum neutral network (LONN): A neutral network is a
local optimum if all the con�gurations of the neutral network are
local optima. Note that this de�nition includes single solution local
optima which are just local optima in the non-neutral case.

Basin of a�raction of a LONN:�e basin of a�ractionbi of LONNi
is the set of all solutions s ∈ S that could possibly reach LONNi
using a stochastic hill-climbing algorithm for a su�ciently large
number of iterations.

Local optima network (LON):�e local optima networkG = (N ,E)
is the graph where the nodes are the LONNs and there is an edge
between nodes LONNi and LONNj if there are two solutions si ∈ bi
and sj ∈ bj such that si ∈ V (sj ). A detailed de�nition of weighted
edges can be found in [16].

3 PROBLEM INSTANCES
In this section the three problem instances which are considered in
this paper are explained and discussed in the framework of RL.

3.1 Vacuum world
In their reference work “Arti�cial Intelligence: A Modern Ap-
proach”, Russel and Norvig [21] use a very simple vacuum-cleaner
world example to illustrate the ideas of intelligent agents. �eworld
is illustrated in Figure 1.

Figure 1: A vacuum-cleaner world with just two locations
from [21, p. 36].

�e environment has just two locations: squares A and B. �e
vacuum agent perceives which square it is in and whether there is
dirt in the square. It can choose to move le�, move right or suck
up the dirt. �e objective is to remove the dirt from both locations.
Moving le� in the le� square, moving right in the right square and
sucking in a clean square have no e�ect.

�e agent can observe the whole environment, therefore the
observable state and the world state are the same. �e state is
determined by both the agent location and the dirt locations and
consequently there are 2 × 22 = 8 possible environment states. A
policy in this example would be a list of eight actions, where each
state has one action. �e behaviour of the agent is deterministic

with a policy always choosing the same action for a given state.
Since there are three possible actions for each state: move le�, move
right and suck, the resulting policy space has a size of 38.

�e initial state of the agent is illustrated in Figure 1: the agent
is in location A and there is dirt in both locations.

�e �tness of a policy is determined through simulated game
play. �e game terminates if the dirt in both locations has been
sucked up or if the agent has executed ten actions. �e �tness
equals the number of actions before termination and is minimised.
�e optimal �tness has a value of 3 and is associated with the policy
that results in the following sequence of actions from the initial
state: suck, move right, suck.

3.2 Mazes
�e second problem we consider is that of a simple maze puzzle.
Due to their familiarity and intuitive nature, maze puzzles are o�en
used for demonstrating and testing AI and RL techniques [21, 28].
�e maze environment consists of a rectangular grid of cells, with
an agent in a starting location and having a goal location. �ere
are two types of cells: occupied cells (walls) and free cells (where
the agent is allowed to move). In this paper we use �ve di�erent
maze puzzles of varying di�culty. �e maze puzzles are provided
in Figure 2, where the start location is illustrated by the dark grey
cell and the goal location by the light grey cell.

(a) Maze 1. (b) Maze 2.

(c) Maze 3. (d) Maze 4.

(e) Maze 5.

Figure 2: �e �ve instances of the maze puzzle used in this
paper.
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For this problem instance, the agent only has a partial view of the
environment. It can perceive the cell in front of it, the cell directly
on the le� side of it and the cell directly on the right side of it. �e
actions available to the agent are taking a step forward, rotating
le� or rotating right.

�e agent must navigate the maze to �nd the shortest possible
path from the initial location to the goal location. �e initial location
is the same for all the mazes we consider: the top le� corner of the
maze.

�e observable state of the agent is determined by the three cells
that the agent perceives, and whether they are occupied (a wall) or
not. For example, one observable state is where there is a wall in
front and on the le� of the agent, and the cell on the right is free.
�erefore, there are 23 = 8 possible observable states. A policy here
would also be a list of eight actions, where each observable state
has one action, and the behaviour of the agent is also deterministic.
Since there are also three possible actions for each state, the size of
the policy space is 38.

�e �tness of a policy is determined through simulated game
play. �e agent is allowed 100 actions before termination. If the
agent reaches the goal location, the game terminates. If the agent
does not reach the goal location, the �tness is equal to the negative
of the Manha�an distance (ignoring walls) between the agent’s
�nal location and the goal location. If the agent reaches the goal
location, the �tness is equal to the maximum number of actions
allowed minus the number of actions the agent took to reach the
goal location. Here the �tness is maximised. Other measures for
the �tness of unsuccessful policies can also be used, such as the
number of cells along the shortest path (respecting the walls) from
the agent’s �nal location and the goal location.

�e mazes that we consider are so-called perfect mazes [10]. A
perfect maze is comprised of a start and end location and a spanning
tree where every node is connected without cycles, and it is possible
to reach one node from every other node. �is means that there
are no loops and unconnected areas in the maze, and the start and
end location can be placed anywhere with a guaranteed unique
solution.

3.3 Fruit collection task
In [11] a meta-algorithm for RL is introduced and evaluated on
a fruit collection task. �e next problem under consideration in
this paper is this fruit collection task. �e environment is a simple
tabular domain: a 5 × 5 gridworld problem (see Figure 3), where
the grey squares are occupied cells (walls) and the white circles are
fruit. �e goal is to collect the fruit placed at each corner as fast as
possible.

�e agent can observe the whole environment, therefore the
world state is the same as the observable state. �e agent has 18
possible positions to be in. �ere are four fruit to collect and the
state of each fruit is either collected or not collected. �e fruit
can therefore be in 24 possible con�gurations. When all fruit are
collected the game terminates, therefore there are 24 − 1 = 15 non-
terminal fruit con�gurations. �is results in 18 × 15 = 270 possible
states. �e agent can choose to move North, East, South or West.
A policy would be a list with length equal to the number of states,

Figure 3: �e Gridworld from [11, p. 9]
.

where each state has one option between any of the four possible
actions. �erefore the size of the policy space is 4270.

A full enumeration of a policy space of this size is computation-
ally infeasible. �e size of the policy space grows exponentially as
the number of actions and/or states increase. We therefore consider
simpler cases of the problem. �e di�erent cases are illustrated in
Figure 4.

(a) Gridworld 1. (b) Gridworld 2.

(c) Gridworld 3. (d) Gridworld 4.

Figure 4: �e four instances of the fruit task collection prob-
lem used in this paper.

�e �rst two instances are 3 × 3 domains, with three occupied
cells. �e �rst instance (Gridworld 1) has one fruit in the bo�om
right corner and the second instance (Gridworld 2) has a second
fruit in the top right corner of the grid. For the �rst instance there
are six states and therefore 46 policies. For the second instance
there are (22 − 1) × 6 = 18 possible states and therefore 418 policies.

�e third instance (Gridworld 3) is a 4×4 grid, with four occupied
cells and one fruit in the bo�om right corner of the grid. �ere are
12 possible states and which results in a policy space with size 412.

�e fourth instance (Gridworld 4) is a 5 × 5 grid with seven
occupied cells as in Figure 3 and one fruit in the bo�om right corner
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of the grid. Here there are 18 possible states and consequently the
size of the policy space is 418.

As before, the �tness of a policy is determined through simulated
game play. �e agent is allowed ��een actions before termination.
If all the fruit has been collected, the game terminates. �e �tness
equals the number of actions before termination and is minimised.

4 FITNESS DISTRIBUTION
A full enumeration of the policy search space of each problem
instance is performed to construct a complete �tness landscape. In
this section the �tness distribution of the various problem instances
are presented and discussed. �e �tness distribution for the problem
instances is reported in Table 1. �e optimal and sub-optimal policy
percentages are provided. �e policies with the worst �tness are
the result of the agent not completing the task.

Table 1: �e �tness distribution for a collection of problem
instances

Instance Size of Non- Sub- Optimal
policy completing optimal policy
space policy % policy % %

Vacuum 38 95.1% 1.2% 3.7%
world
Maze 1 38 95.884% 0.412% 3.7%
Maze 2 38 95.884% 0.412% 3.7%
Maze 3 38 99.588% None 0.412%
Maze 4 38 99.588% None 0.412%
Maze 5 38 99.771% 0.091% 0.137%

Gridworld 1 46 99.61% None 0.39%
Gridworld 2 418 99.974% 0.002% 0.024%
Gridworld 3 412 99.951% None 0.049%
Gridworld 4 418 99.997% None 0.0003%

�e �tness distribution for Maze 2 is provided in Figure 5, as
an example to visually illustrate the proportions of the di�erent
policies. �ere are 3.7% of the policies that have the best �tness, 0.4%
of the policies are sub-optimal and the remaining policies (95.884%)
do not complete the task, with 69.1% of the policies ending at a
Manha�an distance of 6 from the goal location and 26.7% ending
at a Manha�an distance of 10 from the goal location.

From this data we observe that large proportions of the policy
space will result in the agent not completing the task. Additionally,
we observe that for all instances there are multiple optimal policies
with the same �tness. �e number of these global optima (optimal
policies) could be large. For example, there are 412 optimal policies
for Gridworld 2.

It is also noted that even in the vacuum world problem instance
where the environment is very simple, 95.1% of policies result in
the agent not completing the task of cleaning all the dirt. �e
percentage of policies not completing the assigned task becomes
even more with the increase in environmental di�culty. In the
case of Gridworld 4 we see the worst ratio of 99.997%, which is
particularly concerning if we consider the size of the policy space
(418, approximately 68.7 billion), implying that when the policy

Fitness: -6

69.1%

Fitness: -10

26.7%

Fitness: 47
3.7%

Fitness: 33 0.4%

Figure 5: �e �tness distribution for Maze 2

space is searched, �nding a policy that completes the task will be a
di�cult and time consuming process.

�ese observations lead to the investigation into how these op-
tima are distributed in the policy space. Are the optima connected
or far apart in the search space? �ese questions are investigated
in the next section using the LONNs discussed in Subsection 2.3.

5 GLOBAL STRUCTURE ANALYSIS
In this section the concepts introduced in Section 2 are applied to
the problem instances discussed in Section 3. We �rst de�ne the
the de�nition of a neighbourhood for each problem instance and
then discuss how the LONNs are obtained.

5.1 Neighbourhood de�nition
�e de�nition of a neighbourhood for each problem instance is
now de�ned, which is used in determining the global structure of
the policy space. In the present study, a policy is represented by
a list of ns actions, where ns represents the number of states in
the search space. Each action can take on na possible values. For
example, in Gridworld 1, ns = 6 and na = 4 (for North, South, East
and West).

For the vacuum world and maze puzzle problem instances, the
neighbourhood of a policy is the set of all policies that can be
reached by changing a single component of the policy into a dif-
ferent action. For example, if the actions for the vacuum world
instance are represented by the le�ers L (move le�), R (move right)
and S (suck), the policy SRLRLSSS will be in the neighbourhood of
the policy SLLRLSSS but not in the neighbourhood of the policy
SRLLRRSS (since the actions di�er in three components).

For the fruit collection task problem, let the movement actions
be represented by the le�ers N (North), E (East), S (South) andW
(West). We de�ne the neighbourhood of a policy as all policies
that can be reached by changing a single component of the policy
into a direction that is a single 90 degree turn away. For example,
a movement N is one step away from the movementsW and E,
but S is two steps away. Mathematically this can be expressed
as follows. Let the symbols (N ,E, S,W ) correspond to the integer
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values (0, 1, 2, 3), then the distance between two policies P1, P2 ∈ S
is de�ned as

d(P1, P2) =
ns∑
i=1

d(P1,i , P2,i ),

where Pj,i is the ith component of the policy Pj , and

d(P1,i , P2,i ) =

{
1 if

��P1,i − P2,i �� = 3,��P1,i − P2,i �� otherwise.
�e policy P1 is a neighbour of policy P2 if d(P1, P2) = 1.

5.2 Determining local optima neutral networks
In the case of non-neutral LON construction, the �rst step is to
test each solution to �nd all local optima. When there is neutrality
in the landscape, the neutral networks (that is, solutions of equal
�tness that are connected by the de�nition of neighbourhood) intro-
duce additional challenges because all of the solutions in a neutral
network have to be considered in the process. �e algorithmic
approach to constructing a LON with neutrality is to �rst deter-
mine the neutral networks as sets of solutions. Once the neutral
networks are determined, each neutral network is considered in
order to determine whether it is a local optima plateau or not.

To �nd the neutral network that any policy belongs to, the neu-
tral neighbours of the policy are determined. �is is done by �rst
generating all the neighbours of the policy and then determining
which neighbours have the same �tness as the policy. �e neutral
neighbours are added to the neutral network set and the same pro-
cedure is followed with each element in the set. �e process ends
when there are no more neutral neighbours that are not already in
the set.

If there is a policy in the neutral network that has a neighbour
with be�er �tness, then the neutral network is not a LONN. If all
the policies in the neutral network have be�er or equal �tness than
any of their neighbours, then the neutral network is a LONN.

5.3 Local optima network construction
Once the local optima have been determined, the next step in LON
construction is usually to portion the search space into basins of
a�raction for each optimum. Edges are then de�ned between local
optima based on some notion of neighbourhood between basins. In
this study, the landscapes were all found to be unimodal with neu-
tral plateau global optima, resulting in a single basin of a�raction.
�e construction of edges was therefore not required.

6 RESULTS
In this section the LONNs for each problem instance are determined
and the results discussed. �e neutral networks for each problem
instance are provided in tables.

�e vacuum world was found to have three neutral networks
consisting of all policies. �is means that no policy was not part of a
neutral network. Table 2 presents the data on the neutral networks
for the vacuum world problem. All optimal policies are in the same
neutral network, all sub-optimal policies are in the same neutral
network and all policies where the agent does not complete the
task are in the same neutral network. �ere is only one LONN: the
neutral network that consists of all the optimal policies. �e LON
is therefore a unimodal graph.

Table 2: �e neutral networks for the policy space of the
vacuum world

Neutral network Size Fitness
Optimal policies 243 3
Sub-optimal policies 81 4
Non-completing policies 6237 10

�e neutral networks for the four fruit collection task problems
are presented in Table 3. �e structure of the problem is the same
as for the vacuum world problem instance: the optimal policies
result in a neutral network, the sub-optimal policies (if there are
any) result in a neutral network and the policies where the agent
does not complete the task result in a neutral network. Again, there
is only one LONN which is the neutral network consisting of all
the optimal policies, and the resulting LON is unimodal.

Table 3: �e neutral networks for the policy space of the
fruit collection task problem instances

Instance Neutral network Size Fitness
Gridworld 1 Optimal policies 16 4

Sub-optimal policies None None
Non-completing policies 4080 15

Gridworld 2 Optimal policies 412 6
Sub-optimal policies 410 8
Non-completing policies 68.7 × 109 15

Gridworld 3 Optimal policies 8192 8
Sub-optimal policies None None
Non-completing policies 16769024 15

Gridworld 4 Optimal policies 2 × 410 8
Sub-optimal policies None None
Non-completing policies 68.7 × 109 20

In Table 4 the neutral networks for the collection of maze puzzles
are provided. �e same results as for the other problem instances
are observed: there is only one LONN which is the neutral network
consisting of all the optimal policies. �e sub-optimal policies
with the same �tness (if there are any) result in a neutral network
for each �tness, but for this problem instance some of the non-
completing policies with the same �tness result in more than one
neutral network.

�e reason for the mass connectedness of the policies with the
same �tness, is that in these problems only certain elements of a
policy have an e�ect on the optimality. For example, let us consider
the fruit collection task problem, Gridworld 1. Each empty cell
represents a possible position of the agent (see Figure 6 for the
position numbers of each empty cell). Since there is only one fruit,
the state space has size 6 (see Subsection 3.3) and therefore the
length of a policy is 6. In position 1, the agent has to move east,
since moving in any other direction will result in the agent staying
in the same position. Once the agent is in position 2 it has to
move south, since moving north will result in it staying in the same
position, moving west will result in a loop between position 1 and
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Table 4: �e neutral networks for the policy spaces of a col-
lection of maze puzzles

Instance Neutral network Size Fitness
range range

Maze 1 Optimal policies 243 44
Sub-optimal policies 27 28
Non-completing policies 6291 -8

Maze 2 Optimal policies 243 47
Sub-optimal policies 27 33
Non-completing policies 4536, 1755 -6, -10
(2 networks)

Maze 3 Optimal policies 27 44
Sub-optimal policies None None
Non-completing policies 27, . . . , 4536 -16, . . . , -8
(4 networks)

Maze 4 Optimal policies 27 72
Sub-optimal policies None None
Non-completing policies 27, . . . , 3564 -13, . . . , -3
(8 networks)

Maze 5 Optimal policies 9 82
Sub-optimal policies 6 42
Non-completing policies 3, . . . , 3627 -14, . . . , -2
(12 networks)

2 and moving east will result in a loop between position 2 and 3 (if
the agent then moves west in position 3). Following this logic, if we
represent the moves by the symbols N (North), E (East), S (South)
andW (West), then an optimal policy will have to be of the form

State 1 State 2 State 3 State 4 State 5 State 6
E S

e
S E

e

where the
e

can be any of the four possible actions. Since there
are two components of the policy that can take on any of the four
possible actions, there will be 42 = 16 optimal policies. Due to
the de�nition of neighbourhood, all of these policies are direct or
indirect neighbours and therefore connected in the same neutral
network.

Figure 6: �e position placement for Gridworld 1.

In a similar way, the non-completing policies share common
actions in speci�c components of the policy, resulting in connect-
edness of policies with the same �tness value.

To imagine what these landscapes could look like, the data of
Maze 2 (shown as a pie chart in Figure 5) is visualised as a two-
dimensional continuous �tness landscape with neighbourhood in

Figure 7. To visualise the size of the search space, the number
of policies in Maze 2 (6561) was used as the domain of the two
continuous variables. �e proportions of solutions with each �tness
value were mapped to equivalent ranges of these two variables.
Approximately 26.7% of the search space has the worst �tness of
-10 (shown in black in Figure 7) and is connected to a plateau with
�tness -6, containing approximately 69.1% of the policies. �is
plateau is in turn connected to the sub-optimal plateau with �tness
33 containing 0.4% of the policies, which is visible in the change
in colour from purple to orange in Figure 7. �e optimal neutral
network containing 3.7% of the policies is visualised as the small
yellow plateau in Figure 7.

Figure 7: Two-dimensional plot of a continuous version of
the search space for Maze 2

In summary, the LONs for all the problem instances are unimodal,
with the LONN node consisting of all the optimal policies. �e
neutral networks for the non-completing policies can be large and
the neutral networks for the optimal and sub-optimal policies are
relatively small.

7 DISCUSSION
We have identi�ed that the landscape structure of the RL problems
under consideration are unimodal and contain large degrees of neu-
trality. It should be reiterated, that although there are many optimal
policies for each problem instance, since they are connected in the
same neutral network they are regarded as unimodal [8]. Given this
information, the questions are then which search algorithms are
best suited to solve RL problems with this type of global structure
and when do search algorithms have to be adapted to e�ectively
solve problems with certain features, for example high neutrality.

Recently, evolutionary computation has been shown to be of
bene�t to RL in some scenarios [5, 22, 30]. Studies have shown
that the performance of evolutionary computation algorithms is
in�uenced by the structure of the �tness landscapes of the prob-
lem being optimised. Horn and Goldberg [8] show that there are
problems with maximum modality (such as their one-max function
with “bumps”) that are easy for a genetic algorithm to optimise
and there are problems with minimal modality (such as long path
problems) that are hard for a genetic algorithm to optimise. �e
global optima in the problem instances in this paper are isolated,
resulting in a kind of needle-in-a-haystack problem, since the basin
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of a�raction is large. Rana [19] studied the e�ect of multimodality
on genetic algorithm performance and found that although the
number of local optima did not always a�ect genetic algorithm
behaviour, highly �t local optima, particularly with large basins
of a�raction (which is present in the problems in this paper), did
present a problem for genetic algorithm search.

Other than the number of global optima in the search space,
neutrality in the search space can have a profound e�ect on the
success of search algorithms [2, 18, 25]. If one chooses to use
a evolutionary search approach to solve the problem instances
investigated in this paper, the issue of neutrality has to be e�ectively
dealt with. Speci�cally, evolutionary search techniques need to be
modi�ed to work e�ectively when problems have signi�cant levels
of neutrality [3]. For example, Owen and Harvey [18] show that
a simple adaptation to the particle swarm optimisation algorithm
- updating the global best position when a di�erent solution of
the same �tness is found - resulted in signi�cant improvements in
performance on problems with high levels of neutrality. �e idea is
to introduce the possibility of ‘neutral dri�’, where the algorithm
moves across plateaus rather than stagnating, which is what would
normally happen in standard evolutionary approaches. When there
is large-scale neutrality, then algorithms should not only be adapted
to avoid stagnation, but also to increase the speed of traversal
across neutral areas [18]. A possible approach to achieving this
in genetic algorithms is proposed by Stewart [26], where neutral
solutions that are further away from the centroid of the population
have a higher probability of selection for reproduction than neutral
solutions closer to the centroid, resulting in a faster traversal across
plateaus. In a study of neutral landscapes Beaudoin et al. [4] found
that neutrality had a smoothing e�ect on problem di�culty in that
adding neutrality to a deceptive landscape made the problem easier,
whereas adding neutrality to an easy landscape made it harder (as
measured by the �tness distance correlation di�culty metric [9]).
�e landscapes in this study are easy, but the masses of neutrality
present in the landscapes make them di�cult to search.

In order to be able to e�ectively select an optimisation approach
for a given problem, either automated or manually, knowledge of
the problem structure is o�en very useful, as is evident from the
discussion above. However, in the area of RL there has been li�le
work trying to characterise the structure of the solution space of
the RL problems. Such characterisation of RL problem structure is
vital if the automation of RL algorithm selection is to be successful.

8 CONCLUSION
�e purpose of this paper was to conduct an analysis on the global
structure of the solution space of three simple RL problems in order
to investigate the landscape features of RL problems. �e three
simple problems considered in this paper is the simple vacuum
world used in [21], a collection of simple perfect maze puzzles and
the fruit collection task problem from [11]. A full enumeration of
the policy search space of each problem instance was performed to
construct a complete �tness landscape.

In each problem instance we found masses of neutrality, there-
fore for each �tness there are multiple policies. In each case the
resulting LON is a unimodal graph, with the only node the LONN

with a single basin of a�raction, resulting in a kind of needle-in-a-
haystack problem. �e neutral networks for the non-completing
policies can be very large and searching the policy space can be di�-
cult. �e use of evolutionary computation techniques to search the
policy space is in�uenced by the structure of the �tness landscape,
and the adaptation of algorithms could become necessary.

�is paper is a preliminary investigation into the global structure
of RL problems. Since a full enumeration of the policy space of these
types of problems can become computationally infeasible, future
work can include the investigation into sampling techniques for
larger problem instances. Investigating problems with continuous
policy search spaces to determine whether these masses of neutral-
ity still occur is a next step in the investigation of RL problems and
their global structure.
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