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ABSTRACT
An appropriate bus timetable is vital for bus enterprises to
improve service quality and save operational cost. Most existing
literature on bus timetable optimization divide a whole day into
several periods and assume that departure time intervals are the
same for each period. As passengers’ flow varies over time in a
period, giving the same time interval for each period cannot really
meet the demand of passengers. In this paper, we study the
optimization of bus timetable with unequal time intervals. Aiming
at characteristics of this problem, a memetic algorithm is devised
that combines a genetic algorithm with elite strategy and a local
search. To handle infeasible solutions, a repair method is
proposed to repair solutions that do not meet the constraint. A new
metric reflecting the degree of bus carrying capability matching
passengers’ need is introduced. The metric together with
passengers’ waiting time is used to evaluate a bus timetable.
Experiments show that compared to the actually used timetables,
timetables optimized by the proposed approach are able to save
about 4.54-12.84% cost and 11.87-37.76% passengers’ waiting
time.

CCS CONCEPTS
• Mathematics of computing → Combinatorial optimization; •
Computing methodologies → Planning and scheduling; •
Applied computing→ Operation research;
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1 INTRODUCTION
Public transportation is an important part of urban transportation
systems. The bus timetable is directly related to the quality of
service and operational cost of bus enterprises. An appropriate
timetable is able to meet passengers’ need, save operational cost
and promote the service level of bus companies [1-4].

Bus timetable optimization is to determine the bus headway
(departure time interval). Existing approaches on the optimization
of bus timetables typically divide the time of a day into multiple
periods, and consider the vehicles departs with an equal time
interval (fixed departure frequency) in each period [7-15]. It
means that each period in the timetable has the same time interval
and time intervals of different periods are different.

Bus timetable is based on passenger’s flow of a bus line. The
adjacent two times in the timetable have a large (small) time
interval if passengers’ flow at that time is small (large). Those
typical approaches facilitate the optimization of timetables since
the number of decision variables (time intervals) to be optimized
are quite limited. However, giving the same time interval
(departure frequency) for each period cannot really reflect the
demand of passengers, since passengers’ flow in a period usually
changes over time. That will result in the increase of operational
cost and prolonging waiting time of passengers. In addition, it is
not easy to divide a whole day into several reasonable time
periods to make each period has similar passengers’ flow.

In this paper, we propose an approach to optimize bus
timetables with unequal time intervals (bus headway). Optimizing
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bus timetables with unequal intervals is much more complex than
the optimization of timetables with equal ones. A memetic
algorithm combining a genetic algorithm and a local search is
devised for the problem. To handle infeasible solutions generated
during the search procedure, a solution repair method is proposed
to repair infeasible solutions to make them become feasible
(satisfy the constraint).

In existing literature, the operational cost of bus companies
and the passengers’ waiting time are two common metrics to
evaluate a bus timetable [8-14]. In practice, the departure
frequency (time interval) is usually determined by vehicles’
carrying capability of satisfying the need of passengers. That is,
the departure frequency is expected to be as smaller as possible
under the condition of satisfying the need of passengers’ comfort
and waiting time. A small departure frequency means saving the
operational cost. It is quite a reasonable method to making bus
timetable, but there are no literature using it as a metric to
optimize bus timetable. In this paper, we introduce this metric as
an optimization objective to evaluate the quality of timetable.

The paper is organized as follows. Section 2 reviews the
related literature. Section 3 presents the problem of bus timetable
optimization. The memetic algorithm is presented in Section 4.
Section 5 gives experimental results. Finally, conclusions are
drawn in Section 6.

2  RELATED WORK
Bus timetable making is based on passengers’ flows, which are
much different in different periods within a day. The passengers’
flow is large in rush (peak) hours and small in off-peak hours. A
small time interval (high departure frequency) should be given for
large passengers’ flow, and a large time interval (low departure
frequency) for small passenger’s flow.

Existing studies typically divide a day into several periods and
give a fixed departure time interval for each period, based on the
assumption that passengers’ flow is the same at every moment in
this period [5-15]. Lampkin et al. [5] designed a heuristic to
provide a route network and service frequencies to maximize the
service quality of passengers. Four methods were presented by
Ceder et al. [6] to obtain the bus frequency: two methods are
based on point check (maximum load) data and the other two use
ride check (load profile) data. Oudheusden et al. [7] developed an
integer program model and two heuristics to design the departure
frequency: one is based on a linear program and the other is a
straightforward derivation of common bus operation practice. Sun
et al. [8] provided a departing time interval control model,
considering generalized trip cost of passengers and bus
enterprises’ operational cost. Luhua et al. [9] used the sum of the
operation cost and passengers’ cost as the objective function, and
presented a genetic algorithm to optimize bus timetable, with
consideration of the influence of signal lamp on the waiting time.
Tang et al. [11] presented a timetable optimization model based
on the trade-off between the cost of bus operation and benefit of
passengers and used a quantum genetic algorithm to solve the
model. Zhu et al. [12] presented an integer program model and
used a branch and bound algorithm to solve it. Qian et al. [13]

designed a hybrid algorithm combining a genetic algorithm and a
tabu search for the problem. Dong et al. [14] presented a
departure time interval transition method, which considers
passengers’ travel demand and traffic congestion. Ceder et al. [15]
presented a methodology to approach even-headway and even-
load timetables by utilizing different bus sizes. The methodology
uses a graphical heuristic to examine different strategies during
the optimization of timetables. About methods lead to the problem
of how to divide reasonable periods in a day. There are researches
on the time periods division. For example, Big et al. [16]
proposed an algorithm based on GPS data to partition bus
operating hours into several time intervals.

Instead of giving a fixed departure frequency for each period,
some studies consider a day as one period and give the same
departure frequency for a day [10]. Yu et al. [10] presented a
parallel genetic algorithm combined with a coarse-grained
strategy and a local search to optimize a bus timetable with equal
headway.

There are studies that do not divide a day into periods and
optimize the timetable with unequal time intervals. That is, the
time interval may be different for each pair of adjacent times in
bus timetable. Such studies are scarce, and we find two literatures
on this topic. They optimize a short segment (one or two hours) of
a bus timetable, and do not optimize the bus timetable in a whole
day. Sun et al. [17] proposed a heuristic algorithm for flexible
timetable optimization. A hybrid vehicle size model is used to
tackle the demand fluctuations in transit operations. They only
select one hour of peak and one hour of off-peak to verify their
approach. Aiming to minimize passenger waiting time and
maximize the number of passengers a bus carries, Li et al. [18]
proposes two algorithms, a hybrid particle swarm optimization
and a genetic algorithm to optimize the bus timetable. Only one
hour of the timetable is optimized. There exist quite limited
researches on the optimization of bus timetable with unequal time
interval. Existing researches consider the optimization of a small
segment of a bus timetable and do not optimize the whole
timetable, which significantly simply the problem and may not be
effective for a real-world bus timetable optimization.

3 THE BUS TIMETABLE OPTIMIZATION
PROBLEM

Generally, a bus line has two control points (a starting station and
a terminal station), each of which has a departure timetable. Thus,
a bus line has two timetables: one is for upward direction and the
other for the downward direction. Optimizing a bus timetable is to
determine the time interval of each pair of adjacent times in the
timetable. In other words, it is to determine the departure
frequency of vehicles. Bus timetable making is an important issue
for bus enterprises since a reason timetable is able to save the
operational cost and meanwhile improve the service quality.

The optimization of the bus timetable of a bus line is based on
the requirement of passengers taking the bus line. Such
requirement can be reflected by passengers’ flows amongst each
pairs of stations in the bus line, which is denoted by an origin-
destination (OD) matrix of passengers’ flows. The bus timetable
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optimization is based on the OD matrix of passengers’ flows. The
timetable should have a large (small) time interval at the time
when the passengers’ flow is small (large). As the passengers’
flow of a bus line may vary and therefore may be different at
different moments. Correspondingly, time intervals at different
moments in the bus timetable should not be equal. In this paper,
we consider the optimization of the bus timetable with unequal
time intervals.

4 PROPOSED SOLUTION APPROACH
Compared to the optimization of bus timetable with equal time
intervals, optimizing bus timetable with unequal time intervals is
more complex due to the sharp increase of decision variables. For
the timetable with equal time intervals, a day is partitioned into
several periods, and the number of time intervals to be optimized
equals the number of periods. However, for the bus timetable with
unequal time intervals, the number of time intervals to be
determined equals the number of times in the timetable, which is
much greater than the partitioned periods. Due to the huge
solution space of such problem, an effective search algorithm is
needed to solve it.

Memetic algorithm (MA) is a type of optimization algorithms
that combine evolutionary algorithms and local searches. It uses a
population-based evolutionary algorithm to perform global search
to explore excellent regions in the solution space, and uses an
individual-based local search to find good solutions in local
regions. MA been proved to be very effective for both of
continuous and combinatorial optimization problems.

In this paper, we propose a bus timetable optimization
approach based on a memetic algorithm (BTOA-MA) to optimize
a bus timetable with unequal time intervals. A genetic algorithm
with an elite strategy is used to perform global search, and a local
search is devised and embedded into the genetic algorithm. The
flow chart of BTOA-MA is shown in Fig. 1. First, each individual
in the initial population P(1) is generated randomly. The
population consists of N individuals. Then, calculate objective
function values of individuals in current population P(g). The
objective function calculation can be found in Section 4.1.
Subsequently, the selection, crossover, and mutation operations
are conducted on the population. If the number of generations, g,
is a multiple of Lf, then the local search is performed. It means
that the local search is conducted every Lf generations of
population evolution. Above procedure is repeated until the
maximum number of generations, ��ul, is reached.
The genetic algorithm adopts an elite strategy to prevent the

population degeneration. An elite individual is the best individual
found so far. If the best individual in the current population is
better than the elite individual, then replace the elite individual
with the best individual; otherwise, replace the worst individual in
the current population with the elite individual. Note that the local
search is only applied to the elite individual, not to each individual
in the population, to improve the search efficiency.

During the search procedure, some individuals that do not
meet the problem’s constraint may be generated. Those

individuals are considered as infeasible solutions. A repair method
is proposed by adjusting the departing times in the timetable to
make infeasible individuals become feasible.

The evaluation function will be introduced next, followed by
the genetic operations and the local search.

Figure 1: Flow chart of BTOA-MA

4.1 Evaluation function design
Evaluation function is a key issue for a meta-heuristic to
optimization a bus timetable. In this paper, a new metric based on
carrying capability is introduced to evaluate the bus timetable of a
bus line.
4.1.1 Carrying capability to match passengers’ flow. Assume
that a bus line consists of � stations and that the distance between
station � and � be ��,� , �,� ∈{1, 2, …, �} and i≠j. Suppose that the
bus line uses vehicles of same size and the number of seats in
each vehicle is C. The minimum unit in a bus timetable is minute,
and one vehicle must depart at each departure time in the
timetable. A timetable must contain the time when the service
begins (ends) in a day, to ensure the service quality.

The carrying capacity of a vehicle is defined as the travel
distance of all passengers on that vehicle. For a bus timetable Z
with � times, assume that the mth time in the timetable is �� ,
� ∈ {1, 2, …, �th The carrying capability of a vehicle departing
at each time of �� is given by

1338



GECCO’19, July 13-17, 2019, Prague, Czech Republic G. Gubbiotti et al.

�� � �� � � � (1)

where L is the length of the bus line; α is a coefficient reflecting
the comfort level of passengers in the vehicle and is given 1.5
here.

Suppose that there are � times in the actually used timetable.
Let �� be the kth time in the timetable, �∈{1, 2, …, K}, and let
��� (���) be the number of passengers getting on (off) the vehicle
departing from �� at station �. From station (i-1) to i, the number
of passengers on the vehicles that actually depart in the interval
[Zm-1, Zm] can be calculated by

��� �
��{�h��ul � �� � ��t ��l

�

��� u ����� (2)

The total travel distance of passengers on the vehicles
departing in the period of [Zm-1, Zm] can be calculated by

�� �
��l

�ul

��,��l���� (3)

Eq. (3) reflects the actual need of passengers on carrying
capability in the period of [Zm-1, Zm]. Recall that �� is the carrying
capability of a vehicle. Since one vehicle departs in [Zm-1, Zm], ��
is the carrying capability provided by the timetable in the period.
The different between �� and �� is expected to be as smaller as
possible. It means that we expect using a timetable with the
minimum number of departure times to satisfy the need of
passengers taking buses. A small number of departure times in a
timetable indicates low operation cost. Thus, the following metric
in (4) is suggested to evaluate a bus timetable.

� �
�

�ul

�� u���
(4)

To demonstrate the actual need of passengers on carrying
capability and carrying capability provided by a bus timetable, the
service time of a real-world bus line (upward direction of the bus
line 18 in experiment part) is partitioned into time slices of half an
hour. Using �� in (3), the actual need of carrying capability in
each time slice [�u,��] can by calculated by

�� � �u � �� � ��

��� (5)

Similarly, we can calculate the carrying capability provided by
the timetable in the slice [ta,tb].

�� � �u � �� � ��

��� (6)

Figure 2 shows the actual need on carrying capability in (5)
and the carrying capability provided by the timetable in (6) for
each time slice (half an hour). The horizontal ordinate represents
the time slices. The value of carrying capability is marked in the
beginning of each time slice. For example, the carrying capability
provided by the timetable from 6:00 AM to 6:30 AM is 4563.8,
and the needed carrying capability in this period is 938.61.

Figure 2: Actual need of passengers on carrying capability vs.
carrying capability provided by a bus timetable.

Figure 2 shows that the carrying capability provided by the bus
timetable and the needed carrying capability are much different. It
means that the bus timetable may contain more departure times
(more trips) than actual need, thereby wasting the operational cost.
Through optimizing the time intervals of a bus timetable, we may
make the carrying capability of timetable match the actual need on
carrying capability.

4.1.2 Passengers’ waiting time. Passengers’ waiting time
refers to the time of passengers waiting for the next bus. For a
vehicle departing from the time Zm in a bus timetable, the number
of passengers to get on the vehicle at station i can be calculated by
the number of passengers that get on the vehicles that depart
(according the actual timetable) in the period [Zm-1, Zm]. Thus, the
number of passengers getting on the vehicle at station i is:

��� �
��{�h��ul � �� � ��t

���� (7)

Assume that passengers randomly arrive at a station, following
the uniform distribution. The average waiting time of passengers
at station i equals ���ul u �����. Thus, the sum of waiting time
of passengers for the vehicle at station i is:

��� �
������ u ��ul�

�
(8)

The total waiting time of passengers for the vehicle (departing
from Zm) at all station can be calculated by

�� �
��l

�ul

���� (9)

The total waiting time of all passengers is computed by

� �
��l

�

��� (10)

4.1.3 Fitness function. The metric of carrying capability
expects a timetable to have a small number of departure times to
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satisfy the need of passengers taking buses, to save the operation
cost. The metric of waiting time expects short waiting time of
passengers (more departure times in a timetable are preferred) to
ensure the service quality. We hope a timetable is able to meet the
need of passengers and meanwhile make the waiting time as
smaller as possible. Thus, the two metrics are linearly combined
to form the following fitness function.

� � ��ul u ���� � ����
(11)

�h�h �� u�� � � , � ∈ {l, �, �, �t (12)

where �� and �� are weights for waiting time and carrying capabi
lity and �� � �� � l; the constraint(12) means that the carrying c
apacity of a bus line must meet the need of passengers on the carr
ying capacity; ��ul is a given positive value to make a solution w
ith smaller metrics have a larger fitness function value.

4.2 Genetic algorithm
The algorithm’s outline is shown in Figure 1. The detailed
operations are introduced below.
4.2.1. Solution encoding and decoding. A binary solution coding
is suggested to represent a solution (timetable), as shown in
Figure 3. Each gene is a binary number, corresponding to a
minute during the service time. For the coding in Figure 3, the
service time are from 6:00 to 22:00. There are total 961 minutes in
this period, such that the coding length is 961.

The value of a gene is “1” if the timetable contains the time
represented by the gene. For example, the two genes
corresponding to 6:00 and 6:03 are marked with “1”. It means the
two times are in the timetable and there are two trips departing
from them. If the value of a gene is “0”, then the time
corresponding the gene is not in the timetable. That is, no trip
departs from the time.

Figure 3: Solution coding

Such solution coding can be easily decoded into a bus
timetable, which contains all times marked in “1” in the coding.
The number of times in the timetable equals the number of “1” in
the solution coding.

4.2.2 Genetic operations. As the solution coding is a binary
coding, which can be handled by many genetic operations. In this
paper, we simply adopt the operations of single point crossover
and random mutation [19]. The roulette selection is used to
perform the selection operation.

4.2.3 Repair infeasible solutions. According to constraint
(12), a bus timetable’s carrying capability must satisfy the actual
need of passengers on carrying capability to ensure the service
quality. For an individual generated during the search, it may not

satisfy the constraint. An individual (solution) is infeasible if it
does not satisfy (12). Discarding infeasible solutions directly
would decrease the search efficiency, thus that we propose a
method to repair infeasible solutions to make them be feasible.

The constraint (12) shows that Em must be greater than Om for
each time m in a bus timetable Z. The timetable (solution) is
infeasible if there is a time m where Em<Om. For example, Figure
4 is a part of bus timetable Z. T1-T6 are the times in the actual
timetable, and Z1-Z4 are the times in timetable �. In this example,
suppose that E1 (E2, E3) is greater than O1 (O2, O3) but E4 is
smaller than O4. The solution shown in Figure 4 is infeasible
because E4<O4. To repair this solution, we move the departure
time Z4 to the middle point between T5 and T6 to make Z4 only
cover T5, instead of T5 and T6. Thus, O4 is reduced to make it
smaller than E4. Each time m in the timetable is checked to
observe whether Em>Om. If there are time m that does not satisfy
Em>Om, then the time m is moved forward by above method. After
the forward adjustment of departure times, there may be one or
more Tk that are at the end of timetable and do not be covered by
any Zm. In this case, one or more times are inserted into the
timetable Z to cover them.

Figure 4: An example to repair an infeasible solution.

4.3 Local search
A local search (LS) is devised and embedded into the genetic
algorithm. It uses the same solution coding and evaluation
function as the genetic algorithm. It is applied to the elite
individual of the genetic algorithm every Lf generations.

The LS consists of two mutation operators: One is random
mutation operator and the other is reverse operator [20]. In the
early stage of population evolution (the number of generations is
less than ���h�), the random mutation operator is used to perform
local search. As individuals in the population of early stage have
low fitness function values, the operator is to explore the solution
space in a large range. In the latter stage of population evaluation
(the number of generations is greater than ���h�), the LS is carried
out by the reverse operator. Pseudocode of LS is given below.

Input: the elitist solution �h; the number of generation g.
Output: the updated �hh
1: Let � � �hh
2: For � = 1 to ��ul do
3: If (g� ���h��, then
4: Randomly create 20 neighbors of S by the

random mutation.
5: Else

Randomly create 20 neighbors of S by the reverse
mutation.
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6: End if
7: Find the best solution ��h�� from the set of

neighbors.
8: Let � � ��h��.
9: If (��h�� is better than �h), then
10: �h � ��h��.
11: End if
12: � � � � l.
13: End for
14: Output �h.

4.3.1 Random mutation operator. Each gene of an individual
mutates according to a mutation probability of 0.01. If a gene
mutates, its value is changed to 1(0) if its original value is 0(1).

4.2.2 Reverse operator. First, a random integer, R, in the range
of [0, 60] is generated. Two integers �l and �� are randomly
generated in [0, hZh u R] . Then, all the genes between position
�l (�� ) and position �l � � (�� � �) in the individual are reversed
with the probability of 0.5. Finally, the genes between �l and
��l � �� are swapped with those between �� and ��� � ��.

5 EXPERIMENTAL RESULTS
BTOA-MA is applied to 4 real-world bus timetables in a city,
China. Its results are compared against the actually used
timetables and results obtained by a genetic algorithm.

5.1  Problem and Algorithm parameters
The numbers of four bus lines are 18, 115, 29 and 38. Each bus
line has two timetables: one is for upward direction and the other
for the downward one. As passengers’ flow of two directions are
different, two timetables of each bus line need to be optimized
separately.

Real world data of those bus lines on one day is collected. The
information of those bus lines is shown in Table 1. The “Length”
means the total length of a bus line; “Stations” is the number of
stations in a bus line; “Passengers” is the total number of
passengers getting on the vehicles of a bus line on that day. The
number of seats, �, of each vehicle is 31.

Parameters of BTOA-MA are presented in Table 2. Pc and Pmu
are crossover and mutation probabilities of the genetic algorithm,
respectively.

In evaluation function (11), parameters �� and �� serve to
balance two metrics of carrying capability and waiting time. We
determine the two parameters based on the proportion of carrying
capability (waiting time) in the sum of total carrying capability
and waiting time, to make them be consistent with their
magnitudes in the actual situation. �� and �� are calculated as
follows:

�� � �
�ul���

�
�ul �� � ���

(13)

�� �
�
�ul���

�
�ul �� � ���

(14)

Table 1: Information of bus lines.

Lines Direction Service time Length
(km) Stations Passengers

18 Up 06:00-23:00 16.358 33 7739
Down 06:45-22:00 16.958 33 6818

115 Up 06:20-22:00 16.622 36 4968
Down 06:30-22:00 17.998 35 4515

29 Up 06:00-23:05 21.805 35 5896
Down 06:40-23:40 21.480 36 5082

38 Up 06:20-22:00 14.972 27 4485
Down 06:30-22:00 16.286 28 3889

Table 2: Parameters of BTOA-MA.

Parameters Values Parameters Values
� 50 ��� 0.002
�� 0.5 ���h� 800
�� 20 ��ul 11
��ul 5000

5.2  Result analysis
BTOA-MA is coded in C++ language. Experiments are conducted
on a PC with 3.20 GHz CPU and 8G RAM. 30 independent runs
of BTOA-MA are done.

Solutions obtained by BTOA-MA is compared against the
actually used timetables of the four bus lines. The local search is
removed from BTOA-MA to form a genetic algorithm based
approach (GA). The GA adopts the same solution coding,
evaluation function, genetic operators, repair method and
algorithm parameters as BTOA-MA. The results of BTOA-MA
are compared with those of GA to observe the effect of memetic
algorithm. To make fair comparison, the GA is given the same
number of object function evaluations (5000  50=25000) as
BTOA-MA.

Tables 3 and 4 present experimental results obtained by
BTOA-MA, GA and actually used timetables for upward and
downward directions of the four bus lines. The best results are in
bold type. The third column is the average fitness value. The
fourth column is the average number of times in the timetable.
Fifth column is the average departure interval in the timetable.
Column six represents the average carrying capacity matching
(metric O) in (4). Column seven is the average total waiting time.
The eighth column represents the average of passengers’ waiting
time. The last column contains weight values �� and �� . The
percentage in brackets means the percentage reduction in the
corresponding metrics.

Tables 3 and 4 show that BTOA-MA is able to produce
solutions with the best average fitness values amongst the three
approaches. Compared to the actually used timetables, BTOA-
MA reduces the metric O by 7.26-19.43%.MA reduces the metric
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Table 3: Experimental results of BTOA-MA, GA, and the actual timetable for the upward direction.

Lines Fitness No. of times Interval
(min)

Capability
(metric O)

Total waiting time
(min)

Waiting time
(min) Weights

18

Actual 43604.69 110 8.81 54764 35054.50 4.53
��=0.6097

��=0.3903
GA 37194.36 96.50 (12.27%) 10.06 44496 (18.75%) 32520.38 (7.23%) 4.20
BTOA-
MA 34344.33 98.16 (10.76%) 9.88 45764 (16.44%) 27034.35 (22.88%) 3.49

115

Actual 35400.54 75 12.70 40806.77 31258.50 6.29
��=0.5662

��=0.4338
GA 33394.02 68.37 (8.84%) 13.96 35680 (12.56%) 31642.82 (-1.22%) 6.37
BTOA-
MA 30952.17 68 (9.33%) 14.04 35396 (13.26%) 27547.25 (11.87%) 5.54

29

Actual 37600.13 118 8.69 80173 24558.50 4.17
��=0.7655

��=0.2345
GA 34697.07 107.67 (8.75%) 9.61 69696 (13.07%) 23975.70 (2.37%) 4.07
BTOA-
MA 32431.89 109.70 (7.03%) 9.43 71758 (10.50%) 20385.05 (17.00%) 3.46

38

Actual 30987.45 80 11.78 38984 25712.00 5.73
��=0.6025

��=0.3975
GA 26401.18 69.80 (12.75%) 13.67 31882 (18.22%) 22784.96 (11.38%) 5.08
BTOA-
MA 24243.89 70.13 (12.34%) 13.60 32114 (17.62%) 19051.30 (25.91%) 4.25

Table 4: Experimental results of BTOA-MA, GA, and the actual timetable for the downward direction.

Lines Fitness No. of times Interval
(min)

Capability
(metric O)

Total waiting time
(min)

Waiting time
(min) Weights

18

Actual 40381.47 109 8.34 60885 30209.50 4.43
��=0.6684

��=0.3316
GA 33955.45 93.83 (13.91%) 9.86 48137 (20.94%) 26919.97 (10.89%) 3.95
BTOA-
MA 31617.16 95 (12.84%) 9.74 49057 (19.43%) 22965.22 (23.79%) 3.37

115

Actual 34043.51 72 13.00 43864 27815.00 6.16
��=0.6119

��=0.3881
GA 31801.57 67.27 (6.57%) 14.05 39902 (9.03%) 26663.62 (4.14%) 5.91
BTOA-
MA 29676.40 68.16 (5.33%) 13.85 40656 (7.32%) 22712.82 (18.34%) 5.03

29

Actual 35201.71 116 8.74 86246 22112.00 4.35
��=0.7959

��=0.2041
GA 31657.98 108.90 (6.12%) 9.46 78155 (9.38%) 19734.23 (10.75%) 3.88
BTOA-
MA 29640.19 110.73 (4.54%) 9.30 79987 (7.26%) 16729.42 (24.34%) 3.29

38

Actual 33520.62 84 11.45 48957 25483.00 6.55
��=0.6576

��=0.3424
GA 27258.69 73.03 (13.06%) 13.27 40652 (16.96%) 20284.88 (20.40) 5.22
BTOA-
MA 25040.89 75.70 (9.88%) 12.79 42672 (12.84%) 15860.82 (37.76%) 4.08

O by 7.26-19.43%. Metric O represents the matching degree of
actual passengers’ flow. Smaller values of metric O mean better
matching of actual passengers’ flow. It indicates that the
timetables (solutions) found by BTOA-MA can save operation
cost, i.e., have smaller number of departure times than the actual
timetables. We can observe that the average numbers of departure
times in the timetables obtained by BTOA-MA are smaller than
those of actual timetables.

Solutions(timetables) obtained by BTOA-MA shorten the
average passengers’ waiting time by 11.87-37.76% compared to
the actual timetables.Note that the reduction of waiting time is not
achieved by increasing the departing times. Instead, the number of

departure times in the obtained solutions is slightly smaller than
that of actual timetables.

Solutions produced by BTOA-MA and GA have the similar
values of metric O (the similar number of departure times), but
solutions found by BTOA-MA have much shorter waiting time
than that of GA. The passengers’ waiting time of BTOA-MA is
12.90-17.36% shorter than that of GA. With similar average
number of departure times in timetables, the average waiting time
of BTOA-MA is 0.5-1.2 minutes shorter than that of GA.

Evolutionary curves of 30 runs of BTOA-MA and GA for bus
line 18 are shown in Figure 5. BTOA-MA converges more
quickly and obtains smaller fitness function values than GA. In
addition, each run of BTOA-MA achieves similar fitness function
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values, which means the performance of BTOA-MA is quite
stable.

The bus line 18 is chosen to illustrate the matching of carrying
capability of the optimized timetable on passenger’s flow. Figure
6 shows carrying capability of the timetable obtained by BTOA-
MA and the actual need of carrying capability. Compared to
carrying capability of the actual timetable (shown in Figure 2),
carrying capability of the optimized timetable more matches the
actual need. It means that the optimized timetable can use less
departure times (lower bus frequency) to meet passengers’
requirement, thereby reducing the operation cost. Metric O
reflects the difference between carrying capability of a bus
timetable and the needed carrying capability. Metric O of the
optimized timetable is 47918.65, smaller than that of actual bus
timetable (54764.47).

Figure 5: Evolutionary curves of BTOA-MA and GA

Figure 6: Actual need of passengers on carrying capability vs.
carrying capability provided by the optimized timetable of
upward direction of bus line 18.

Note that BTOA-MA does not find solutions (timetables) with
zero values of metric O (it means that the carrying capability
matches the actual need exactly). This is because another

objective (passengers’ waiting time) is also optimized. The
decrease of metric O will lead to less number of departure times in
the timetable (save the operation cost) but will increase the
waiting time of passengers, which reflects the quality of service.
Zero values of metric O would greatly prolong the waiting time,
which is unacceptable from the respective of service quality. For
example, even there is only one passenger at a station, it is not
allowed to let the passenger wait for one hour to take a bus.
Metric O and waiting time are two conflict objectives, such that
we combine them together to balance the operation cost and the
service quality.

6  CONCLUSIONS
In this paper, we propose a memetic algorithm to optimize the bus
timetable with unequal time intervals. The memetic algorithm
consists of a genetic algorithm and a local search with a reverse
operator. A repair method is proposed to deal with infeasible
solutions. A new metric reflecting the carrying capability of a bus
timetable is introduced to evaluate a solution (timetable). This
metric together with the metric of passengers’ waiting time are
used to balance the operation cost and quality of service.
The proposed approach is applied to four real-world bus lines.

Experiments show that the approach is able to generate bus
timetables with less departure times (less operation cost) and
smaller passengers’ waiting time compared to the actually used
timetables.
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