
Evolutionary and Swarm-Intelligence Algorithms through
Monadic Composition

Gary Pamparà
Department of Industrial Engineering
Stellenbosh University, South Africa

gpampara@gmail.com

Andries P. Engelbrecht
Department of Industrial Engineering, and Computer

Science Division
Stellenbosh University, South Africa

engel@sun.ac.za

ABSTRACT
Reproducible experimental work is a vital part of the scienti�c
method. It is a concern that is often, however, overlooked in mod-
ern computational intelligence research. Scienti�c research within
the areas of programming language theory and mathematics have
made advances that are directly applicable to the research areas
of evolutionary and swarm intelligence. Through the use of func-
tional programming and the established abstractions that functional
programming provides, it is possible to de�ne the elements of evolu-
tionary and swarm intelligence algorithms as compositional compu-
tations. These compositional blocks then compose together to allow
the declarations of an algorithm, whilst considering the declaration
as a “sub-program”. These sub-programs may then be executed at
a later time and provide the blueprints of the computation. Storing
experimental results within a robust data-set �le format, which is
widely supported by analysis tools, provides additional �exibility
and allows di�erent analysis tools to access datasets in the same ef-
�cient manner. This paper presents an open-source software library
for evolutionary and swarm-intelligence algorithms which allows
the type-safe, compositional, monadic and functional declaration
of algorithms while tracking and managing e�ects (e.g. usage of a
random number generator) that directly in�uences the execution
of an algorithm.

CCS CONCEPTS
• Computing methodologies→Heuristic function construc-
tion; Continuous space search; Model veri�cation and vali-
dation; • Software and its engineering → Software libraries
and repositories;

KEYWORDS
Functional programming,Monadic composition, Reproducible, Open-
source, Evolutionary algorithm, Swarm-intelligence

ACM Reference Format:
Gary Pamparà and Andries P. Engelbrecht. 2019. Evolutionary and Swarm-
Intelligence Algorithms through Monadic Composition. In Genetic and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326845

Evolutionary Computation Conference Companion (GECCO ’19 Companion),
July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3319619.3326845

1 INTRODUCTION
New algorithms and techniques are prodcued as research and the ap-
plication of computational intelligence (CI) continues. The modern
umbrella term CI includes di�erent algorithmic families. Algorith-
mic families, i.e. neural networks, evolutionary algorithms, swarm
intelligence, fuzzy systems, and arti�cal immune systems [10].
Other research areas of computer science, especially programming
language theory, are allowing for a more expressive representa-
tion of logic which is veri�able by the language compiler. This
expressiveness also incorporates concepts from the �eld of mathe-
matics and are directly applicable to the �eld of CI. Incorporating
the improvements from other research areas may potentially allow
for more succinct problem representations as well as tools which
reduce currently identi�ed complexity.

The current research process within CI can best be described as
a “one-shot” culture with experimentation and investigation being
performed solely for the purposes of publication. Once published,
the work to produce the research output is often forgotten unless
it is explicitly required for a subsequent publication. Researchers
hope that the work which produced a publication is archived in
some form, so that it may be retrieved when required. Investigating
the work for a publication may provide answers to questions about
unclear descriptions within a publication or questions about the
process to achieve the reported results. Replication of published
results is a critical part of the scienti�cmethod and serves to con�rm
or debunk presented results. The current research process may be
outlined generally as:

• create and design a new process (algorithm or technique)
that addresses a problem,

• test the proposed process by evaluating the process e�ective-
ness on a set of benchmark problems and with competing
algorithms and techniques that are accepted by the �eld as
representative, and

• analyze the obtained results and present them to the research
community through a publication.

Unfortunately, reproducing a set of results requires a large time
investment and is usually challenging when considering the �eld of
CI. The algorithms and techniques often rely on random e�ects in
order to drive the optimization process in order to obtain a solution
to an optimization problem. These random e�ects introduce non-
determinism into operators and functions. Although the random

1382

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Gary Pamparà and Andries P. Engelbrecht

e�ects allow for algorithms to achieve performance goals, they si-
multaneously create unintended complexity, e�ectively preventing
result duplication. As a result, any unintended omissions within a
publication’s algorithm description precludes the comparison of
the original algorithm, even when non-determinism is ignored.

Removing the burden to recreate the design work of a publica-
tion in an attempt to reproduce its results is very attractive. The
time investment would reduce and allow for more interesting work
instead of re-implementing the work of other publications. Pre-
viously, frameworks and libraries aiming to reduce this burden
for researchers have been made available for use, often as open-
source software. These open-source projects cannot remove all
re-implementation complexity, but can make the process far sim-
pler. Unfortunately, the open-source software usually focuses on
speeding up the process of algorithm de�nition, allowing for a faster
result production. The improved speed of result production does
not necessarily allow for result replication. Without the repeatable
reproduction of results, the fundamental problem with the research
process in CI remains unchanged.

2 RESULT REPRODUCIBILITY OF
COMPUTATIONAL INTELLIGENCE

The reproduction of a study may be seen as more than just the
reproduction of the initial data set. The reproduction should be
possible for the data set as well as the publication itself. The publi-
cation manipulates the data set in order to create summary statistics
represented in tables. Alternatively, the data may be represented
as part of a �gure or plot. Fortunately, solutions already exist that
allow for the reproduction of a publication based on a given set of
data. These solutions include literate programming [17] documents
where the data manipulation processes are included in the docu-
ment sources. When creating the �nal publication document the
embedded logic within the publication sources are executed and
the results are embedded into the publication document either as
tables, �gures, plots or as formatted output from the process itself.
Common tools that achieve this behavior include:

• LATEX documents with embedded Sweave [36] code blocks
• Markdown or LATEX documents with embedded R [36] code
blocks, pre-processed with a tool like knitr [45–47]

• org-mode [8, 37, 38] documents with embedded code blocks
from di�erent languages and tools

Although literate programming documents ful�ll the require-
ment to have the publication itself reproduced, the larger and more
important concern is the replication of the data set itself and the
container format which stores the data set.

2.1 Data set formats
The importance of the data set itself cannot be overstated. Another
equally important concern is the structure that represents the data
set itself. In this case, the referred structure is the �le format of
the data set. The most common formats for a data set are textual.
For example, representing a data set as a comma separated value
(CSV) text �le or have the data encoded using JavaScript Object
Notation (JSON). Although such data representations are valid,
the disadvantages associated with the formats negatively impact

the tools that consume the data to produce derived value. The
disadvantages for such formats include:

• File size: To represent data within textual formats, all data
types are converted into strings. The textual representation
results in �les that can be large without an external applica-
tion applying compression to the �le contents. A format such
as JSON only compounds this e�ect as all data requires a
repeated key value to identify the purpose of another value.

• Data orientation and ine�cient querying:The data items
for textual formats is orientated row-wise. Each data record
is written to the �le as a contiguous block of text. For ex-
ample, extracting the n-th column from a CSV �le requires
reading and / or passing over all n − 1 preceding columns.
During the analysis of data, columns are often considered
in isolation to calculate derived values such as summary
statistics.

• Absence of schema: Textual formats may only represent
a textual type of data. The implication is that during data
processing, the data within the �le must be interrogated in
order to determine the types of data that the textual items
represent. The interrogation process usually requires a parser
program which attempts to guess the correct data type for
a piece of data. Parsing is a slow process which requires a
percentage of the data �le to be processed (at a minimum) in
order to assign data types to the data. Alternatively, a user
may explicitly tell the parser what data types are expected.
This explicit process has the drawback that the user should
instead interrogate the data in some manner to determine
the expected data types.

Extensions to the textual data formats have been developed
to try alleviate the need to assign data types after the fact. For
example, the speci�cation for JSON-Schema [2] attempts to add a
schema de�nition to JSON data, requiring a query of the schema
to determine the expected data types. The de�ned schema is far
smaller in size than the actual data, reducing the interrogation
process time dramatically. Although a schema does remove the
data type assignment problem, the data items are still stored in a
row-orientated manner, resulting in wasted processing time when
a single column value is required. To improve the data access speed,
the data set may be stored in memory but may still prove to be too
large, necessitating “on the �y” compression. Dynamic compression
techniques may provide to be e�ective but as the size of the data
set increases, the techniques fail to scale e�ciently.

Columnar storage data formats achieve solutions to most of
the previously mentioned disadvantages to row-orientated data
formats. Columnar formats allow for e�cient retrieval of a given
column of data values and may also allow for compression of the
columnar data. Columnar data �les are akin to a table within a
database:

• Data values may be accessed directly
• Columns of data types may be compressed, using a compres-
sion that is suitable to the data type

• Data can be more e�ciently stored using binary schemes
instead of text

• File sizes are reduced due to the use of binary and compres-
sion

1383

Monadic Evolutionary and Swarm-Intelligence Algorithms GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

• The schema for the data is implicitly available without addi-
tional processing

As data sets grow and becomemore common place with machine
learning algorithms becoming more popular, several proposals for
binary, columnar data formats have been made. Importantly, the
data �le format should be an open-source format to allow for better
integration with analysis tools. The current recommended format is
the parquet [1, 26] �le format. Parquet �les are already accepted by
most data analysis systems and due to the comparably small size of
the data �les, the format is recommended as the container for exper-
imental results. Providing an open-source data �le format allows
for simpli�ed access to the data without necessitating specialized
software tools as part of the process to generate a publication docu-
ment. Furthermore, the use of open-source should not be restricted
to only data �le formats, but also to any tool or software used to
produce data for a publication. Open-source software allows for
simpler review and inspection of the logic used to produce a data
set.

2.2 Computational Intelligence Software
Current tools for Computational Intelligence vary from individual
software packages loaded into environments like R and Matlab to
software libraries and frameworks for speci�c programming lan-
guages. Standalone command line interface (CLI) and graphical
user interface (GUI) applications [15] for CI are also available to
users and researchers. As highlighted in section 2.1, an open-source
tool is far more desirable than a commercial closed-source equiva-
lent. Open-source tools allow for complete transparency, allowing
anyone to inspect or review the logic for a given algorithm or a
single function.

A CI software library should adhere to the following principles,
derived from the requirements for reproducible publication docu-
ments and data �le formats:

• Correctness: Algorithm implementations should always be
correct and correctness should be preferred over any per-
formance optimization. The intent of a piece of logic should
also not be opaque with clear and concise implementations
being preferred. The open-source nature of the software
should allow for code review at any time and should fa-
cilitate discussion in order to resolve problems. A suite of
property-based tests [5, 16] to validate implementations and
to prove invariants, should also be present in the software
repository. Additionally, all data values should be immutable
and modi�cations to data result in new data being created.

• Type safety: Usage of a strong type system is advantageous
in preventing the usage of the wrong “shape” of data. An
incorrect shape of data could be using an integer value when
the data type restricts the valid set of values to only positive
integers, or an additional piece of data in a record. A strong
type system has the additional bene�t of presenting such
errors at the compile-time of the software and not to the
execution runtime. Additionally, the usage of types within a
programming language can prevent the creation of invalid
data, allowing data to be validated as it is created. This pre-
vention of invalid data creation removes invalid states from

implementations resulting in more robust logic de�nitions
and simpler testing of implementations.

• Managed e�ects: The global state available to a program by
the underlying platform, upon which the program executes,
could be altered by a user-de�ned program. Modi�cation of
this shared data should always be avoided as erroneously
adjusting a shared data value may have dire consequences.
Ideally, the e�ects of mutation (or value change) should be re-
moved altogether but that would result in a correct program
without much value. The value of a program is ultimately
due to a mutation occurring as a result of the computation
process. It is highly desirable to have experimental results
from a simulation written to a �le so that they may be ana-
lyzed later.
Instead of preventing mutations, it would be bene�cial to
control and manage mutations. E�ect management is not
about removing the ability to do something, but rather re-
moving the ability to do something in an unstructured way.
For example, an e�ect requiring such management would be
the random number generator in an optimization algorithm.
By allowing e�ect management, the data �ow through the
logic of an algorithm is formalized, allowing for the same
outputs for a given set of inputs, such as the same random
number generator state.

• Citations for software: Software should have citation in-
formation available, allowing the reader to locate the exact
software used in the generation of a data set. Speci�cally, a
document object identi�er (DOI) should be available for the
software reference citation, with the DOI explicitly referring
to a hash which is uniquely derived from the software source
code.

3 MATHEMATICS AND FUNCTIONAL
PROGRAMMING

The �eld of mathematics, particularly the sub-�elds of topology and
category theory, have direct application to programming language
theory in computer science. Category theory focuses on the rela-
tions (called morphisms) between sets of objects (called categories).
Importantly, category theory de�nes processes and procedures that
are structure preserving between categories of objects.

Functional programming (FP) is a style of programming where
the underlying axiomatic foundation is based on the Lambda Cal-
culus [4]. The Lambda calculus is a current research topic within
category theory. The Lambda calculus describes simple semantics
for computation based on functions, where functions accept inputs
and return an output. Functions may be composed (or combined)
together to create new functions. Functions are also pure: they are
only allowed to operate on the arguments provided to the func-
tion and result in a new value based on the provided arguments.
Pure functions also allow for referential transparency in FP where a
function invocation may be replaced entirely with the result of the
function computation, without changing the overall behavior of a
program.

Category theory [34] builds upon the axioms based on objects
and morphisms to create abstractions. The abstractions from cate-
gory theory translate directly into programming theory allowing

1384

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Gary Pamparà and Andries P. Engelbrecht

the use of abstractions that have strict laws de�ned. The laws are
especially useful, enabling the ability to reason about programs as if
they were simple equations. The reasoning process is subsequently
known as equational reasoning. From the available abstractions
within category theory, the most applicable abstractions to FP and
computation [34] generally are:

• Semigroup [6, 14]
• Monoid [48]
• Functor [25]
• Applicative Functor [25]
• Monad [43, 44]

The Haskell [23] programming language introduced the monad
in order to track e�ects within the language. Haskell is a lazily-
evaluated, pure FP language and exploited the sequencing ability
of monads to sequence e�ects in the language. The lazy-evaluated
nature of Haskell allows for any order of execution as the �nal result
is guaranteed to be the same. Monads and monadic actions de�ne
a set of laws to ensure that a monad is well-behaved, allowing for
the composition of e�ects and enables the declaration of branching
e�ect logic.

Monads are pure values within a programming language. Only
once a monad is evaluated by the runtime system do any e�ects
actually materialize. Because the monad is a conceptual abstraction,
the application of monads is not limited solely to Haskell. The
in�uence of moands in Haskell has resulted in the language having
a succinct syntax to work with monads.

4 CILIB
From the experience gained in previous attempts to describe CI
computation in software [7, 9, 30–33], a principled, type-safe, purely
functional and compositional library has been developed to describe
and focus on reproducible evolutionary and swarm intelligence al-
gorithms. The sections that follow describe the individual building
blocks of the library from which algorithms and algorithmic op-
erators are built upon. The library uses the Scala programming
language [28] because the developers are familiar and comfort-
able with the Java virtual machine (JVM) platform. At the time of
project redesign, Scala was the only available language on the JVM
that allowed the representation of the category theory abstractions
mentioned in section 3, which requires the language compiler to
understand and represent higher-kinded types (HKTs) [35]. Addi-
tionally, data is always immutable and new data value is created
when modifying a value instead of mutating the data in place. It
should be noted that the current version of the library is drastically
di�erent from the original Java-based version and that the scope of
the library is on evolutionary and swarm-intelligence algorithms.

The sections that follow describe the formulation of required
building blocks to allow for the declarative description of a popula-
tion based algorithm. Population based algorithms describe algo-
rithms that ful�ll the properties common to both evolutionary and
swarm intelligence algorithms.

4.1 Design
The sections that follow discuss the design of CIlib by focusing on
the foundational building blocks that enable the monadic composi-
tion used by the library. Data structures representing the candidate

solutions within an optimization problem search space are �rst
discussed before describing the monadic structures from which the
compositional algorithmic parts are created. Finally, the data stru-
cutures are combined in order to produce a declarative algorithm
de�nition which may be executed.

4.1.1 Position. The Position type describes a location within
the optimization problem search space. Position is an algebraic
data type (ADT) and de�nes a closed set of possible operations. A
Position may be one of two possible cases:

• Point, which is an optimization problem candidate solu-
tion which is located within the problem space, but has
not yet been quanti�ed. The candidate solution is a multi-
dimensional vector which is representative of the optimiza-
tion problem.

• Solution: When the quality of a Position is evaluated, the
resulting quanti�cation value is combined with the current
Point to create a Solution.

When evaluating a Position that already has a value for the
solution quality, the evaluation process does not re-evaluate the
Position. The algebra of operations de�ned for Position vectors
allows for the addition, subtraction and scaling of the Position
values. These operations create new Position values using the
Point data constructor as any movement of the candidate solution
invalidates the solution quality because the candidate solution rep-
resents a di�erent location within the optimization problem search
space.

4.1.2 Entity. Evolutionary and swarm intelligence algorithms
locate new candidate solutions as they execute. Literature for algo-
rithms assigns a name, based on some metaphor, to each of these
algorithm participants which the algorithm is maintaining within
its population. For example, particles are used in a particle swarm
optimization (PSO) swarm and individuals in a genetic algorithm
(GA) population. Ignoring the metaphor for each algorithm, the
algorithm participants may collectively be referred to as entities
and groups of entities are simply referred to as a collection.

An Entity builds upon the Position by associating algorithmic
speci�c memory and behaviors for an entity. An example of an
entity is the entity used within a PSO which maintains additional
vectors for the current velocity and the previous best position. Al-
lowing for a general structure that can maintain any amount of
extra state information creates the Entity, represented as:

final case class Entity[S, A](
state: S,
position: Position[A]

)

where S and A are type parameters allowing the Entity to maintain
any type of value for the state type S and any type for dimensions
of the optimization problem.

4.1.3 RVar. The most important e�ect to manage within an
optimization algorithm is the use of the random number generator.
Most platforms provide a default global random number generator
but it can be argued that this practice is frought with errors with de-
fault generators often failing randomness tests such as TestU01 [18]
(also known as the “Crush” tests) and the DieHard [24] tests. The

1385

Monadic Evolutionary and Swarm-Intelligence Algorithms GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

test suites determine if a random number generator is statistically
random for the number of state bits the generator maintains. The
system wide platform random number generator may not provide
su�cient quality for scienti�c work.

As the tracking of the randomness e�ect is crucial to allow for
reproducible experimental work, an abstraction to represent values
with randomness applied was required. The resulting abstraction
is a data structure known as RVar and is implemented as a state
monad [43, 44], specialized to manage the state of the random
number generator.

The monadic structure of RVar allows for a declarative descrip-
tion of applying randomness to a value without actually performing
the action immediately. The state monad ensures that the state of
the random number generator is correctly threaded through all
composed computations. RVar values are pure until they are ex-
ecuted by providing a seeded random number generator to the
RVar instance, upon which the e�ect is observed. Executing a RVar
results in a single value that has randomness applied, together with
the modi�ed subsequent state of the random number generator.

4.1.4 Step. Most operators within an optimization algorithm
make use of the following components:

• The source of random numbers
• A function that quanti�es candidate solutions
• The strategy for the optimization (minimization or maxi-
mization) of the objective function

Although operators need not make use of all algorithm compo-
nents, the components should be available. Building on the RVar
monad allows for the de�nition of the Step abstraction. Algorithms
are conceptually a sequence of steps and the Step abstraction pro-
vides the structure to allow for the composition of algorithm logic
to build up a complete algorithm de�nition.

Evaluation of the quality of a candidate solution depends on the
de�ned objective function of the optimization problem. An interface
known as Eval provides a generalized view to the optimization
problem’s objective function. The optimization strategy is another
algorithm con�guration value, represented by the Opt algebraic
type. The Step abstraction is a function which accepts an Eval and
an Opt value, as the environment for the algorithm execution, and
produces an RVar:

final case class Environment[A](
opt: Opt,
eval: Eval[NonEmptyList,A]

)

final case class Step[F[_],A,B](
run: Environment[A] => RVar[B]

)

where A and B de�ne type parameters which specify the type of the
optimization problem dimensions and the result of the evaluation
process. F[_] is a kind that takes another type as a parameter to
create a type. For example, programming languages with “generics”
allow specifying what the elements in a list of elements may be,
i.e. a list of doubles. Such types are known as higher-kinded types
(HKTs) [35] and the syntax generalizes over all HKTs that accept a

single type parameter. Examples of parameteric types which “�t”
into F[_] include:

• List
• Set
• RVar

Step has an instance of monad and is also a monad transformer
[19] which stacks on top of RVar. Instances of RVar may be “lifted”
into the Step transformer stack.

4.1.5 StepS. As part of algorithm execution, some algorithms
necessitate the maintenance of additional algorithm speci�c state
during execution. Examples of such algorithms are the guaranteed
convergence PSO (GCPSO) [39] which maintains a dynamic bound-
ing box around the best entity in the collection and multi-objective
optimization algorithms where an archive of non-dominated solu-
tions (the Pareto optimal set) are maintained as the �nal solution
to the multi-objective optimization problem.

StepS is a monad transformer (much like Step) that allows for
the persistence of an addition state value across the monad trans-
former stack. This algorithmic state is de�ned using a type param-
eter on StepS, allowing any user-de�ned value to be used as the
state for the algorithm.

4.1.6 Iteration schemes. Evolutionary and swarm-intelligence
algorithms are de�ned as processes that replace a target entity in
the collection with a new entity. The replacement is new data and
is immutable. As a result, an algorithm is regarded as a function
from the current entity collection and target entity, to a new entity
within a Step:

NonEmptyList[Entity[S,A]] =>
Entity[S,A] => Step[B, Entity[S,A]]

The algorithm formulation above speci�es the process to produce
a single new entity. Thanks to Step having an instance of monad,
several monadic combinators are available which allow for the ap-
plication of the algorithm function on the entire entity collection.
Consequently, the algorithm formulation allows for isolated en-
tity collections which exist in parallel before the new collection
replaces the current collection in subsequent algorithm iterations.
Measurements between the entity collections is much simpler than
in the situation where the entity collection was altered in place.

Algorithm iteration may be:

• Synchronous: Traversing the current entity collection and
applying the algorithm to each individual entity builds up
the new entity collection. The entity collection remains un-
changed in the algorithm usage with the new entity col-
lection used in the following iterations. The synchronous
iteration scheme is also known as the “generational” replace-
ment scheme.

• Asynchronous: The new entity collection is built up using
the union of the already replaced entities and the remaining
entities of the current entity collection. As the traversal of the
entities proceeds, the entity collection which the algorithm
may reference changes as well. The asynchronous iteration
may also be referred to as the “steady-state” replacement
scheme.

1386

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Gary Pamparà and Andries P. Engelbrecht

Based on the description of how the algorithm execution occurs,
it should be noted that the asynchronous iteration is dependent on
the currently built up entity collection, whereas the synchronous
version does not have this dependence. Opportunities to add paral-
lelism to the traversal process within an iteration is only possible
for the synchronous scheme because the same value for the entity
collection is used.

The iteration scheme for an algorithm is not restricted to a sin-
gle choice either. It is possible to create a heterogeneous iteration
scheme where the basic iteration schemes are mixed. An example
might be to run a synchronous iteration scheme for n iterations,
followed by an asynchronous iteration form iterations, all repeated
z times.

4.2 Current Status
CIlib [29] currently supports the following algorithmic families:

• GA
• Di�erential evolution (DE)
• PSO
• Estimation of distribution (EDA)
• Multi-objective optimization (MOO)
• Hyper-heuristics
• Constraint handling
• Static and Dynamic optimization problems and algorithms

In addition to the necessary work to declare the above mentioned
algorithms, a data output library (which uses parquet �les), and an
algorithm execution framework (intended to only demonstrate how
to execute algorithms) are also available. Current users, however,
do report that the execution framework is good enough for the
majority of the use-cases that exist.

A sister library, benchmarks [12], also exists, providing a large
collection of the most popular benchmark functions to test algo-
rithms on. The benchmarks project relies on the core data structures
(such as RVar) for the benchmark implementations. The available
benchmark functions include both dynamic and static optimization
problems and constrained problems.

Another project, FLA [13], is also derived from the core data
structures of the library and allows the measurement of �tness
landscape analysis [20–22, 40–42] metrics on the search space of
an optimization problem.

4.3 Example Usage
To demonstrate the bene�ts of algorithmic declaration usingmonadic
composition, listings 2 and 3 show the Scala code required to declare
the GCPSO and an algorithm pipeline which alternates between
PSO and DE to iterate an entity collection. The program code sam-
ples have had all module imports excluded for brevity, but are
available as examples in the project repository.

As mentioned in section 4.1.5, the GCPSO algorithm maintains
state during the algorithm execution and requires the usage of the
StepSmonad transformer. Listing 1 describes the full experimental
de�nition for the G24 [27] set of dynamic constrained optimiza-
tion problems. Listing 2 de�nes the GCPSO implementation with
monadic actions de�ned in Step lifted into StepS through the
StepS.pointS function.

Listing 3 demonstrates the composition of PSO and DE into a
single algorithm. The pre-condition is that the Entity should ful�ll
all the constraints for the functions to allow the program to compile.
Exploiting the Scala language feature whereby the compiler can
provide implicit evidence, the library uses the type-class pattern
and lenses [11] to prevent invalid usage by forcing a compilation
error when a usage constraint is not met. The state maintained by
the Entitymust provide the ability to extract a previous Position
and velocity in order to be used within functions designed for PSO
usage, whereas DE functions ignore the Entity state. This behavior
is useful with hyper-heuristic [3] algorithms where di�erent heuris-
tics are combined or swapped in and out as algorithm execution
proceeds.

5 CONCLUSION
This paper described an open-source software library allowing for
the compositional, type-safe and purely functional declaration of
algorithms. The library focuses on enabling reproducible results by
modeling algorithms as units of computations that behave like pure
functions where the same output will always result from the same
inputs. The library addresses the concerns for computational intel-
ligence (CI) software by ensuring a transparent and open code-base
for anyone to inspect and/or critique. The library implementation
uses techniques a�orded by a strongly typed functional program-
ming language to manage and track e�ects which alter the behavior
of a CI algorithm during its execution (such as the source of ran-
domness) and to validate and prove implementation correctness.

Data from the algorithm execution may be captured using an
e�cient open-source data �le format that easily integrates with
existing analysis tools. These analysis tools then integrate into
work�ows to construct research outputs for publication. Repro-
duction of results is further simpli�ed by versioning the software
library with DOI references which ensures that the same base soft-
ware is always available. By focusing on the reproduction of results,
it is hoped that this software library will start to change how ex-
perimental work is presented and reported within publications.

Future work includes the expansion of the library and suite of
benchmarks. Planned additions to the open-source software library
include the incorporation of additional algorithmic families such
as more complex multi-objective optimization, niching algorithms,
evolutionary strategies (ES), and genetic programming (GP) and
decomposition-based algorithms.

REFERENCES
[1] 2013. Apache Parquet. https://parquet.apache.org/. Accessed: 2019-01-21.
[2] 2018. JSON Schema. https://json-schema.org/. Accessed: 2019-02-11.
[3] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela

Ochoa, Ender Özcan, and Rong Qu. 2013. Hyper-heuristics: a survey of the
state of the art. Journal of the Operational Research Society 64, 12 (01 Dec 2013),
1695–1724. https://doi.org/10.1057/jors.2013.71

[4] Alonzo Church. 1932. A Set of Postulates for the Foundation of Logic. Annals of
Mathematics 33, 2 (1932), 346–366. http://www.jstor.org/stable/1968337

[5] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. SIGPLAN Not. 35, 9 (Sept. 2000), 268–279.
https://doi.org/10.1145/357766.351266

[6] A.H. Cli�ord and G.B. Preston. 1961. The Algebraic Theory of Semigroups. Number
pt. 1 in Mathematical Surveys and Monographs. American Mathematical Society.
https://books.google.co.za/books?id=4vXG2rjCUmUC

[7] T. Cloete, A.P. Engelbrecht, and G. Pampara. 2008. CIlib: A collaborative frame-
work for Computational Intelligence algorithms - Part II. In Proceedings of the IEEE

1387

Monadic Evolutionary and Swarm-Intelligence Algorithms GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

object ExperimentsG24 {
val envChange = Env.frequency(100)

val problems =
List(
G24DCOPs.instance01(envChange, 0.25, 20.0),
G24DCOPs.instance02(envChange, 0.25, 20.0),
G24DCOPs.instance03(envChange, 0.25, 20.0),
G24DCOPs.instance04(envChange, 0.25, 20.0),
G24DCOPs.instance05(envChange, 0.25, 20.0),
G24DCOPs.instance06(envChange, 0.25, 20.0),
G24DCOPs.instance07(envChange, 0.25, 20.0),
G24DCOPs.instance08(envChange, 0.25, 20.0),
G24DCOPs.instance09(envChange, 0.25, 20.0),
G24DCOPs.instance10(envChange, 0.25, 20.0),
G24DCOPs.instance11(envChange, 0.25, 20.0),
G24DCOPs.instance12(envChange, 1.0, 20.0),
G24DCOPs.instance13(envChange, 1.0, 20.0),
G24DCOPs.instance14(envChange, 1.0, 20.0),
G24DCOPs.instance15(envChange, 1.0, 20.0),
G24DCOPs.instance16(envChange, 0.25, 20.0),
G24DCOPs.instance17(envChange, 0.25, 20.0),
G24DCOPs.instance18(envChange, 0.25, 20.0)

)

val collection =
Position.createCollection(x => Entity((), x))(
G24DCOPs.domain, 40)

val algs = List(
Runner.staticAlgorithm("RIGA",
RIGA.riga(
bounds = G24DCOPs.domain,
p_m = 0.3,
p_c = 0.1,
p_im = 0.3

)))

val comparison = Comparison.quality(Min)
val rngs: List[RNG] = RNG.initN(50, 123456789L)
def constFst(

x: NonEmptyList[Entity[Unit,Double]],
y: cilib.Eval[scalaz.NonEmptyList,Double]) = RVar.pure(x)

final case class Measurements(
globalMax: Option[Double],
bestFitness: Double,
rawError: Option[Double],
cumulativeMeanError: Option[Double],
bestErrorBeforeChange: Option[Double],
bestErrorAfterChange: Option[Double],
meanDiversity: Double,
medianDiversity: Double)

def main(args: Array[String]): Unit = {
val process =
for {
a <- Process.emitAll(algs)
p <- Process.emitAll(problems)
r <- Process.emitAll(rngs)

} yield
Runner.foldStep(comparison, r, collection, a, p, constFst)
.pipe(Runner.measure(measurementFunc))
.take(1000)

merge.mergeN(4)(process) // Parallelism
.to(parquetSink(new java.io.File("riga-test.parquet")))
.run.unsafePerformSync

}

Listing 1: Dynamic constrained function experiment de�ni-
tion

International Joint Conference on Neural Networks (IEEE World Congress on Com-
putational Intelligence). 1764–1773. https://doi.org/10.1109/IJCNN.2008.4634037

[8] Carsten Dominik. 2010. The Org-Mode 7 Reference Manual: Organize Your Life
with GNU Emacs. Network Theory, UK. with contributions by David O’Toole,
Bastien Guerry, Philip Rooke, Dan Davison, Eric Schulte, and Thomas Dye.

[9] Juan J. Durillo and Antonio J. Nebro. 2011. jMetal: A Java Framework for Multi-
objective Optimization. Adv. Eng. Softw. 42, 10 (Oct. 2011), 760–771. https:
//doi.org/10.1016/j.advengsoft.2011.05.014

[10] A.P. Engelbrecht. 2007. Computational Intelligence: An Introduction (second ed.).
Wiley & Sons.

[11] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt. 2005. Combinators for Bi-directional Tree Transformations:
A Linguistic Approach to the View Update Problem. SIGPLAN Not. 40, 1 (Jan.
2005), 233–246. https://doi.org/10.1145/1047659.1040325

[12] R. Garden and G. Pamparà. 2017. A collection of n-dimensional functions. Re-
trieved March 2, 2019 from https://github.com/cirg-up/benchmarks

[13] R. Garden and G. Pamparà. 2017. A collection of traversal algorithms and function
metrics used in Fitness Landscape Analysis. Retrieved March 2, 2019 from
https://github.com/cirg-up/�a

[14] P.A. Grillet. 1995. Semigroups: An Introduction to the Structure Theory. Taylor &
Francis. https://books.google.co.za/books?id=yM544W1N2UUC

[15] Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. 2009. The WEKA Data Mining Software: An Update. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 10–18. https://doi.org/10.1145/1656274.1656278

[16] John Hughes. 2010. Software Testing with QuickCheck. In Proceedings of the
Third Summer School Conference on Central European Functional Programming
School (CEFP’09). Springer-Verlag, Berlin, Heidelberg, 183–223. http://dl.acm.
org/citation.cfm?id=1939128.1939134

[17] D. E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984),
97–111. https://doi.org/10.1093/comjnl/27.2.97 arXiv:http://comjnl.oxfordjour-
nals.org/content/27/2/97.full.pdf+html

[18] Pierre L’Ecuyer and Richard Simard. 2007. TestU01: A C Library for Empirical
Testing of Random Number Generators. ACM Trans. Math. Softw. 33, 4, Article
22 (Aug. 2007), 40 pages. https://doi.org/10.1145/1268776.1268777

[19] Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers and
Modular Interpreters. In Proceedings of the 22Nd ACM Symposium on Principles
of Programming Languages (POPL ’95). ACM, New York, NY, USA, 333–343.
https://doi.org/10.1145/199448.199528

[20] K.M. Malan and A.P. Engelbrecht. 2014. Characterising the Searchability of
Continuous Optimisation Problems for PSO. Swarm Intelligence 8, 4 (01 Dec
2014), 275–302. https://doi.org/10.1007/s11721-014-0099-x

[21] K.M. Malan and I. Moser. 2018. Constraint Handling Guided by Landscape
Analysis in Combinatorial and Continuous Search Spaces. (03 2018), 1–23.

[22] K. M. Malan, J. F. Oberholzer, and A. P. Engelbrecht. 2015. Characterising con-
strained continuous optimisation problems. In Proceedings of the IEEE Congress on
Evolutionary Computation. 1351–1358. https://doi.org/10.1109/CEC.2015.7257045

[23] S. Marlow. [n. d.]. Haskell 2010 Language Report. https://www.haskell.org/
de�nition/haskell2010.pdf.

[24] G. Marsaglia. 1985. The Marsaglia Random Number CDROM, with The Diehard
Battery of Tests of Randomness. produced at Florida State University under
a grant from The National Science Foundation, 1985. Access available at http:
//www.stat.fsu.edu/pub/diehard.

[25] Conor McBride and Ross Paterson. 2008. Applicative Programming with E�ects.
Journal of Functional Programming 18 (01 2008), 1–13. https://doi.org/10.1017/
S0956796807006326

[26] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geo�rey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analysis
of Web-Scale Datasets. In Proc. of the 36th Int’l Conf on Very Large Data Bases.
330–339. http://www.vldb2010.org/accept.htm

[27] T.T. Nguyen and X. Yao. 2012. Continuous Dynamic Constrained Optimization -
The Challenges. IEEE Transactions on Evolutionary Computation 16, 6 (Dec 2012),
769–786. https://doi.org/10.1109/TEVC.2011.2180533

[28] Martin Odersky and al. 2004. An Overview of the Scala Programming Language.
Technical Report IC/2004/64. EPFL, Lausanne, Switzerland.

[29] Gary Pamparà. 2007. CIlib: Typesafe, purely functional Computational Intelli-
gence. Retrieved March 2, 2019 from https://github.com/cirg-up/cilib

[30] G. Pampara, A.P. Engelbrecht, and T. Cloete. 2008. CIlib: A collaborative frame-
work for Computational Intelligence algorithms - Part I. In Proceedings of the IEEE
International Joint Conference on Neural Networks (IEEE World Congress on Com-
putational Intelligence). 1750–1757. https://doi.org/10.1109/IJCNN.2008.4634035

[31] G. Pamparà, F. Nepomuceno, and B. Leonard. 2014. CIlib. https://doi.org/10.
5281/zenodo.12371

[32] E.S. Peer. 2005. A Serendipitous Software Framework for Facilitating Collaboration
in Computational Intelligence. Master’s thesis. University of Pretoria.

[33] E.S. Peer, A.P. Engelbrecht, G. Pampara, and B.S. Masiye. 2005. CiClops: com-
putational intelligence collaborative laboratory of pantological software. In
Proceedings of the IEEE Swarm Intelligence Symposium, 2005. 130–137. https:
//doi.org/10.1109/SIS.2005.1501612

[34] B.C. Pierce, B. C, B.C. Pierce, M.R. Garey, and A. Meyer. 1991. Basic Category
Theory for Computer Scientists. MIT Press. https://books.google.co.za/books?

1388

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Gary Pamparà and Andries P. Engelbrecht

def gcpso[S](w: Double, c1: Double, c2: Double, cognitive: Guide[S, Double])(
implicit M: HasMemory[S, Double],

V: HasVelocity[S, Double],
S: MonadState[StepS[Double, GCParams, ?], GCParams])

: NonEmptyList[Particle[S, Double]] => Particle[S, Double] =>
StepS[Double, GCParams, Particle[S, Double]] =

collection =>
x => {
val g = Guide.gbest[S]
for {
gbest <- StepS.pointS(g(collection, x))
cog <- StepS.pointS(cognitive(collection, x))
isBest <- StepS.pointS(Step.pure[Double, Boolean](x.pos eq gbest))
s <- S.get
v <- StepS.pointS(

if (isBest) gcVelocity(x, gbest, w, s)
else stdVelocity(x, gbest, cog, w, c1, c2))

p <- StepS.pointS(stdPosition(x, v))
p2 <- StepS.pointS(evalParticle(p))
p3 <- StepS.pointS(updateVelocity(p2, v))
updated <- StepS.pointS(updatePBest(p3))
failure <- StepS.pointS(

Step.withCompare[Double, Boolean](
Comparison.compare(x.pos, updated.pos).andThen(_ eq x.pos)))

_ <- S.modify(params =>
if (isBest) {
params.copy(

p =
if (params.successes > params.e_s) 2.0 * params.p
else if (params.failures > params.e_f) 0.5 * params.p
else params.p,

failures = if (failure) params.failures + 1 else 0,
successes = if (!failure) params.successes + 1 else 0

)
} else params)

} yield updated
}

Listing 2: GCPSO algorithm de�nition

object Mixed extends SafeApp {
val bounds = Interval(-5.12, 5.12) ^ 30
val env = Environment(
cmp = Comparison.dominance(Min),
eval = Eval.unconstrained((x: NonEmptyList[Double]) => Feasible(spherical(x))))

// Define the DE
val de = DE.de(0.5, 0.5, DE.randSelection[Mem[Double], Double], 1, DE.bin[Position, Double])

// Define a standard gBest-PSO
val cognitive = Guide.pbest[Mem[Double], Double]
val social = Guide.gbest[Mem[Double]]
val gbestPSO = pso.Defaults.gbest(0.729844, 1.496180, 1.496180, cognitive, social)

// The entity collection is the maximal set of features needed for the state.
// In the case of DE and PSO, the particle state requires management
val swarm =
Position.createCollection(

PSO.createParticle(x => Entity(Mem(x, x.zeroed), x)))(bounds, 20)

val combinedAlg: NonEmptyList[Entity[Mem[Double], Double]] =>
Entity[Mem[Double], Double] =>
Step[Double, Entity[Mem[Double], Double]] =

collection =>
x =>
for {
a <- gbestPSO(collection)(x)
b <- de(collection)(a)
// Position change: current pbest is no longer valid
c <- pso.PSO.updatePBest(b)

} yield c

val alg = Iteration.sync(combinedAlg)

override val runc: IO[Unit] =
putStrLn(Runner.repeat(1000, alg, swarm).run(env).run(RNG.fromTime).toString)

}

Listing 3: Pipeline of gbestPSO and DE for hyper-heuristics

1389

Monadic Evolutionary and Swarm-Intelligence Algorithms GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

id=ezdeaHfpYPwC
[35] Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT

Press.
[36] R Core Team. 2013. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.
org/

[37] E. Schulte and D. Davison. 2011. Active Documents with Org-Mode. Computing
in Science Engineering 13, 3 (may-june 2011), 66 –73. https://doi.org/10.1109/
MCSE.2011.41

[38] Eric Schulte, Dan Davison, Thomas Dye, and Carsten Dominik. 2012. A Multi-
Language Computing Environment for Literate Programming and Reproducible
Research. Journal of Statistical Software 46, 3 (25 1 2012), 1–24. http://www.
jstatsoft.org/v46/i03

[39] Frans van den Bergh and AP Engelbrecht. 2002. A new locally convergent particle
swarm optimizer. In Proceedings of the IEEE international conference on systems,
man, and cybernetics, Vol. 7. 6–9.

[40] V.K. Vassilev. 2000. Fitness Landscapes and Search in the Evolutionary Design of
Digital Circuits. Ph.D. Dissertation. Napier University.

[41] V. K. Vassilev, T. C. Fogarty, and J. F. Miller. 2000. Information Characteristics
and the Structure of Landscapes. Evol. Comput. 8, 1 (March 2000), 31–60. https:
//doi.org/10.1162/106365600568095

[42] V. K. Vassilev, T. C. Fogarty, and J. F. Miller. 2003. Smoothness, Ruggedness and
Neutrality of Fitness Landscapes: from Theory to Application. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 3–44. https://doi.org/10.1007/978-3-642-18965-4_1

[43] Philip Wadler. 1990. Comprehending Monads. In Proceedings of the ACM Confer-
ence on LISP and Functional Programming (LFP ’90). ACM, New York, NY, USA,
61–78. https://doi.org/10.1145/91556.91592

[44] Philip Wadler. 1995. Monads for Functional Programming. In Advanced Func-
tional Programming, First International Spring School on Advanced Functional
Programming Techniques-Tutorial Text. Springer-Verlag, London, UK, UK, 24–52.
http://dl.acm.org/citation.cfm?id=647698.734146

[45] Yihui Xie. 2014. knitr: A Comprehensive Tool for Reproducible Research in R. In
Implementing Reproducible Computational Research, Victoria Stodden, Friedrich
Leisch, and Roger D. Peng (Eds.). Chapman and Hall/CRC. http://www.crcpress.
com/product/isbn/9781466561595 ISBN 978-1466561595.

[46] Yihui Xie. 2015. Dynamic Documents with R and knitr (2nd ed.). Chapman and
Hall/CRC, Boca Raton, Florida. https://yihui.name/knitr/ ISBN 978-1498716963.

[47] Yihui Xie. 2018. knitr: A General-Purpose Package for Dynamic Report Generation
in R. https://yihui.name/knitr/ R package version 1.20.

[48] Brent A. Yorgey. 2012. Monoids: Theme and Variations (Functional Pearl). In
Proceedings of the 2012 Haskell Symposium (Haskell ’12). ACM, New York, NY,
USA, 105–116. https://doi.org/10.1145/2364506.2364520

1390

