
Evolutionary Discovery of Coresets for Classification
Pietro Barbiero

Politecnico di Torino
Torino, Italy

pietro.barbiero@studenti.polito.it

Giovanni Squillero
Politecnico di Torino

Torino, Italy
giovanni.squillero@polito.it

Alberto Tonda
INRA, Université Paris-Saclay
Thiverval-Grignon, France

alberto.tonda@inra.fr

ABSTRACT
When a machine learning algorithm is able to obtain the same
performance given a complete training set, and a small subset of
samples from the same training set, the subset is termed coreset. As
using a coreset improves training speed and allows human experts
to gain a better understanding of the data, by reducing the number
of samples to be examined, coreset discovery is an active line of
research. Often in literature the problem of coreset discovery is
framed as i. single-objective, attempting to find the candidate coreset
that best represents the training set, and ii. independent from the
machine learning algorithm used. In this work, an approach to evo-
lutionary coreset discovery is presented. Building on preliminary
results, the proposed approach uses a multi-objective evolutionary
algorithm to find compromises between two conflicting objectives,
i. minimizing the number of samples in a candidate coreset, and
ii. maximizing the accuracy of a target classifier, trained with the
coreset, on the whole original training set. Experimental results
on popular classification benchmarks show that the proposed ap-
proach is able to identify candidate coresets with better accuracy
and generality than state-of-the-art coreset discovery algorithms
found in literature.

CCS CONCEPTS
•Computingmethodologies→ Supervised learning;Genetic
algorithms;

KEYWORDS
Classification; Coreset discovery; Evolutionary algorithms; Explain
AI; Machine learning; Multi-objective

ACM Reference format:
Pietro Barbiero, Giovanni Squillero, and Alberto Tonda. 2019. Evolutionary
Discovery of Coresets for Classification. In Proceedings of the Genetic and
Evolutionary Computation Conference 2019, Prague, Czech Republic, July
13–17, 2019 (GECCO ’19), 8 pages.
https://doi.org/10.1145/3319619.3326846

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326846

1 INTRODUCTION
The field of machine learning (ML) redefined the concept of coreset,
originally stemming from computational geometry, as the subset
of input samples of minimal size, for which a ML algorithm can
obtain a good approximation of its original behavior on the whole
set of input samples. In other terms, a coreset can be seen as a
fundamental subset of a target training set that is sufficient for a
given algorithm to deliver good results, or even the same results it
would have if trained on the training set [2]. While this definition
might appear generic, it must be noted that it encompasses signif-
icantly different tasks, ranging from classification, to regression,
to clustering, whose performance is measured in entirely different
ways. Practical applications of coresets include: obtaining a better
understanding of the data, drastically reducing the number of data
points a human expert has to analyze; and considerably speeding
up training time of ML algorithms.

Coreset discovery is an active research line, and specialized ML
literature reports a substantial number of approaches: Greedy Iter-
ative Geodesic Ascent (GIGA) [9], Frank-Wolfe (FW) [10], Forward
Stagewise (FSW) [19], Least-angle regression (LAR) [13][4], Match-
ing Pursuit (MP) [20], and Orthogonal Matching Pursuit (OMP) [21].
Often such algorithms require the user to specify the number N
of desired points in the coreset; or assume, for simplicity, that a
coreset is independent from the task and/or the algorithm selected
for that task. It is important to notice, however, that the problem of
finding a coreset can be intuitively framed as multi-objective, as the
quality of the results is likely dependent on the number of points
included in the coreset; and minimizing the number of selected
points is probably detrimental to minimizing error. As ML algo-
rithms employ different techniques to accomplish the same goals,
it is also reasonable to assume that they would need coresets of
different size and shape to operate at the best of their possibilities.

Starting from these two assumptions, and building on previ-
ous works [3], an evolutionary approach to coreset discovery for
classification tasks is proposed. Starting from a training set, a state-
of-the-art multi-objective evolutionary algorithm, NSGA-II [12], is
set to find the coresets representing the best trade-offs between
amount of points (to be minimized) and classifier error (to be mini-
mized), for a specific classification algorithm. The resulting Pareto
front includes different coresets, each one representing an optimal
compromise between the objectives. A human expert would then be
able to not only select the coreset more suited for their needs, but
also obtain extra information on the ML algorithm’s behavior, by
observing its degradation in performance as the number of coreset
points in Pareto-optimal candidate solutions decreases. Alterna-
tively, a candidate coreset on the Pareto front can be automatically
selected depending on its performance with respect to an unseen
validation set.

1747

https://doi.org/10.1145/3319619.3326846
https://doi.org/10.1145/3319619.3326846

GECCO ’19, July 13–17, 2019, Prague, Czech Republic P. Barbiero et al.

Experimental results on classification benchmarks show that the
proposed approach is able to best several state-of-the-art coreset
discovery algorithms in literature, obtaining results that also allow
the classifier to generalize better on an unseen test set of the same
benchmark. A meta-analysis of the results on different classifiers
shows that, while some of the data points selected are common to
different algorithms, the choice of points in the coreset is heavily
dependent on the classifier selected for the classification task.

2 BACKGROUND
The basic concepts of machine learning, coreset discovery, and
multi-objective evolutionary algorithms, necessary to introduce
the scope of this work, are briefly recalled in this section.

2.1 Machine learning and classification
ML algorithms are able to improve their performance on a given
task over time through experience [23]. Such techniques automati-
cally create models that, once trained on user-provided (training)
data, can then provide predictions on unseen (test) data. In essence,
ML consists in framing a learning task as an optimization task
and finding a near-optimal solution for the optimization problem,
exploiting the training data. Popular ML algorithms range from
decision trees [7], to logistic regression [11], to artificial neural
networks [16].

Classification, a classic ML task, consists in associating a single
instance of measurements of several features, called sample, to one
(or more) pre-defined classes, representing different groups. ML al-
gorithms can position hyperplanes (often called decision boundaries)
in the feature space, and later use them to decide the group a given
sample belongs to. The placement of decision boundaries is set to
maximize technique-specific metrics, whose values depend on the
efficacy of the boundary with respect to the (labeled) training data.
Decision boundaries inside a classifier can be represented explicitly,
for example as a linear or non-linear combination of the features,
or implicitly, for example as the outcome of a group of decision
trees or other weak classifiers.

2.2 Coreset discovery
In computational geometry, coresets are defined as a small set of
points that approximates the shape of a larger point set. The concept
of coreset in ML is extended to intend a subset of the (training)
input samples, such that a good approximation to the original input
can be obtained by solving the optimization problem directly on the
coreset, rather than on the whole original set of input samples [2].

Finding coresets for ML problems is an active line of research,
with applications ranging from speeding up training of algorithms
on large datasets [25] to gaining a better understanding of the
algorithm’s behavior. Unsurprisingly, a considerable number of
approaches to coreset discovery can be found in the specialized
literature. In the following, a few of the main algorithms in the field,
that will be used as a reference during the experiments, are briefly
summarized: Frank-Wolfe (FW) [10], Greedy Iterative Geodesic
Ascent (GIGA) [9], Forward Stagewise (FSW) [19], Least-angle re-
gression (LAR) [13][4], Matching Pursuit (MP) [20] and Orthogonal
Matching Pursuit (OMP) [21].

The original FW algorithm applies in the context of maximizing
a concave function within a feasible polytope by means of a local
linear approximation. In Section 4, we refer to the Bayesian imple-
mentation of the FW algorithm designed for core set discovery. This
technique, described in [8], aims to find a linear combination of
approximated likelihoods (which depends on the core set samples)
that is similar to the full likelihood as much as possible.

GIGA is a greedy algorithm that further improves FW. In [9],
the authors show that computing the residual error between the
full and the approximated likelihoods by using a geodesic align-
ment guarantees a lower upper bound to the error at the same
computational cost.

FSW [19], LAR [13][4], MP [20] and OMP [21] were all originally
devised as greedy algorithms for dimensionality reduction, but
have been later applied to coreset discovery, as this last problem
represents the transpose of feature selection, choosing samples
instead of features. The simplest of the group is FSW, which projects
high-dimensional data in a lower dimensional space by selecting,
one at a time, the features whose inclusion in the model gives the
most statistically significant improvement. MP, on the other hand,
includes features having the highest inner product with a target
signal, while its improved version OMP at each step carries an
orthogonal projection out. Similarly, LAR increases the weight of
each feature in the direction equiangular to its correlations with
the target signal.

Often these algorithms start from the assumption that the coreset
for a given dataset will be independent from the ML pipeline used,
but this premise might not always be correct. For example, the
optimization problem underlying a classification task might vary
considerably depending on the ML algorithm used. Moreover, most
of the coreset discovery solutions proposed in literature provide
a unique result, representing the best coreset candidate. However,
the problem of finding the coreset, given a specific dataset and
an application, can be naturally expressed as multi-objective: on
the one hand, the user wishes to identify a set of core points as
small as possible; but on the other hand, the performance of the
algorithm trained on the coreset should not differ from its starting
performance, when trained on the original dataset. For this reason,
multi-objective optimization algorithms could be well-suited to this
task.

2.3 Multi-objective evolutionary algorithms
Optimization problems with contrasting objectives have no single
optimal solution. Each candidate represents a different compro-
mise between the multiple conflicting aims. Yet, it is still possible
to search for optimal trade-offs, for which an objective cannot be
improved without degrading the others. The set of such optimal
compromises is called Pareto front. Multi-objective evolutionary
algorithms (MOEA) currently represent the state of the art for prob-
lems with contradictory objectives, and are able to obtain good
approximations of the true Pareto front in a reasonable amount
of time. One of the most known MOEAs is the Non-Sorting Ge-
netic Algorithm II (NSGA-II) [12], that makes use of a crowding
mechanism to spread candidate solutions on the Pareto front as
evenly as possible, with considerable efficiency for problems with
2-3 objectives.

1748

Evolutionary Discovery of Coresets for Classification GECCO ’19, July 13–17, 2019, Prague, Czech Republic

3 PROPOSED APPROACH
Starting from the intuition that coreset discovery can be framed as a
multi-objective problem, and that the results could be dependant on
the target ML algorithm, a novel evolutionary approach to coreset
discovery for classification is proposed, building on preliminary
results presented in [1]. Given a training set Tr and a ML classifier,
a candidate solution in the framework represents a coreset, a sub-
set of the original training set. Candidate solutions are internally
represented as bit strings, of length equal to the size of the training
set, where a 1 in position i means that the corresponding sample si
is retained in the coreset, while a 0 means that the sample is not
considered. The classifier is then trained on the candidate coreset,
and then an evaluation is performed on two conflicting objectives:
number of samples in the coreset (to be minimized), and resulting
error of the classifier on the original training set (to be minimized).
NSGA-II is then set to optimize the coreset, finding a suitable Pareto
front consisting of the best compromises with respect to the two
objectives. In case the user wishes to obtain a single solution, the
original training set Tr can be split into a training set to be used
internally Tr’ and a validation set V. At the end of the evolutionary
optimization, each candidate coreset on the Pareto front is evalu-
ated on the validation setV (unseen by the evolutionary procedure),
to find the compromise with the best generality. A scheme of the
proposed approach is presented in Figure 1.

When compared to the preliminary methodology presented
in [1], the effectiveness of the approach has been considerably im-
proved. In particular, the addition of the validation setV nowmakes
it possible to obtain a fairer comparison with existing algorithms in
literature. Furthermore, population size and activation probabilities
of the evolutionary operators have been tuned to deliver a better
performance on a wider variety of case studies.

From a probabilistic point of view, the algorithm can be summa-
rized as follows. Given sample si = (®x i ,yi), where ®x i corresponds
to the value of the features and yi to the known class of si , respec-
tively, the objective is to estimate the probability that it belongs
to the core set Cj , given the information contained in the training
data Dt = {(®x it ,y

i
t)} and the classifier parameters θ :

p((®x i ,yi) ∈ Cj |Dt ,θ) (1)

The current estimate of the core set Ĉ = {(®x i ,yi) ∈ Cj } is then
used to fit the classifier parameters θ :

p(θ |Ĉ) (2)

Finally, the trained classifier is used to make inferences on the
training set:

p(yit | ®x
i
t ,θ (Ĉ)) (3)

The proposed approach makes it possible to evolve several solutions
Cj approximating the core set problem, reducing both the set size
and the classification error:

argmin
Cj

{
|Cj |

L(θ (Cj),Dt)
(4)

At the end of the evolution, the validation set Dv is used in order
to evaluate the final solutions along the Pareto front. The maximum
likelihood estimation for the evolved solutions is given by the core

set providing the minimal error on the validation set:

ĈMLE = argmin
Cj

L(θ (Cj),Dv) (5)

Finally, ĈMLE is used to train the classifier:

p(θ |ĈMLE) (6)

to make inferences on an unseen test set Du :

p(yiu | ®x
i
u ,θ (Ĉ

MLE)) (7)

and to compute the accuracy of the model:

L(θ (ĈMLE),Du) (8)

4 EXPERIMENTAL RESULTS
All the experiments presented in this section exploit four ML algo-
rithms, representative of both classifiers with explicit hyperplanes
(Ridge [24], SVC Support Vector Machines [17]) and ensemble, tree-
based classifiers (Bagging [5], RandomForest [6]). All classifiers
are implemented in the scikit-learn1 [22] Python module and
use default parameters. For the sake of comparison, it is important
that the classifiers will follow the same training steps, albeit under
different conditions. For this reason, a fixed seed has been set for all
algorithms that exploit pseudo-random elements in their training
process.

All the necessary code for the experiments has been implemented
in Python, relying upon the inspyred module2 [15]. The code is
freely available in a BitBucket public repository3. NSGA-II uses
default parameters of the inspyred module, with the exception of
µ = 200, λ = 400, stop condition 200 generations, and evolutionary
operators bit-flip (probability pbf = 0.5) and 1-point crossover
(probability pc = 0.5). Parameter values have been defined after a
set of preliminary runs.

The experiments are performed on well-known data sets pub-
licly available in the scikit-learnmodule: i. Blobs, three isotropic
gaussian blobs (3 classes, 400 samples, 2 features); ii. Circles, a large
circle containing a smaller one (2 classes, 400 samples, 2 features);
iii. Moons, two interleaving half circles (2 classes, 400 samples, 2
features); iv. Iris [14] (3 classes, 150 samples, 4 features). For each
case study, samples are randomly split between the original training
set Tr (66%) and test set (33%). While all coreset discovery algo-
rithms evaluated in the following exploit only Tr in their training
procedure, it must be noted that the proposed approach further
randomly splits Tr into Tr’ (66% of Tr, 44% of the original dataset)
and V (33% of Tr, 22% of the original dataset), to automatically se-
lect a single candidate solution on the Pareto front at the end of the
evolutionary process. Features of the datasets are normalized using
a normalization learned on the training set Tr, then eventually
applied to the test set.

The results obtained by the proposed approach are then com-
pared against the state-of-the-art coreset discovery algorithms
GIGA [9], FW [10], MP [21], OMP [21], LAR [13][4], and FS [19],

1scikit-learn: Machine Learning in Python, http://scikit-learn.org/stable/
2inspyred: Bio-inspired Algorithms in Python, https://pythonhosted.org/inspyred/
3Evolutionary Discovery of Coresets, https://bitbucket.org/evomlteam/
evolutionary-core-sets/src/master/

1749

http://scikit-learn.org/stable/
https://pythonhosted.org/inspyred/
https://bitbucket.org/evomlteam/evolutionary-core-sets/src/master/
https://bitbucket.org/evomlteam/evolutionary-core-sets/src/master/

GECCO ’19, July 13–17, 2019, Prague, Czech Republic P. Barbiero et al.

Class A
Class B

Final evaluationClassifier

Best individual

Training

Selection

Original test set (Ts)

Proposed Approach

Selection, evolutionary operators, slaughtering

F1: # of samples
(minimize)

Initial population

F2: error (minimize)

Training set
(Tr’)

Error

ClassifierTraining

Population at gen i

Individuals

s0 s1 s2 … sn

0 1 0 … 1

1 0 0 … 1

0 1 1 … 0

… … … … …

Training set (Tr’), 66% Tr

Validation set (V), 33% Tr

Multi-objective
optimization

Class A
Class B

Original training set (Tr)

F1

F2

Pareto front

Figure 1: Scheme of the proposed approach. The original training set (Tr) is divided into a training set Tr’ and a validation
set V. The evolutionary approach creates candidates coresets, that are then evaluated on number of samples and error on the
training set Tr’ (both to beminimized). Once the evolution is over, a single candidate on the Pareto front is selected, evaluating
its error on the validation set V. Finally, the best solution is evaluated on an unseen test set Ts, to evaluate its generality.

described in more detail in subsection 2.2. The comparison is per-
formed on three metrics: i. coreset size (lower is better); ii. classifi-
cation accuracy on the test set (higher is better); iii. running time
of the algorithm (lower is better). Results of the comparison are
presented in Tables 1, 2, 3, and 4, where the proposed approach is
labeled EvoCore. Text in bold highlights the highest accuracy for
each classifier on the test set.

With regards to test accuracy, the evolutionary approach not
only outperforms by far the other techniques, but is often able
to increase the performance obtained by training the same clas-
sifier with all the training samples available. This means that the
decision boundaries generated using the evolved coresets may gen-
eralize even better than those generated using the whole training
set. Figure 3 shows the decision boundaries obtained using the
whole training set (left column) or the best candidate coreset (right
column) to train classifiers, on different datasets. Among all the
solutions provided by NSGA-II, the one having the smaller valida-
tion error has been selected, and, in case of the same validation
error, the one having the smaller coreset. These results suggest that
the performance of ML classifiers would not be a function of the
size of the training set (as Big Data and Deep Learning often claim)

but a function of the mutual position of the training samples in the
feature space.

Figure 2 reports a meta-analysis of all the Pareto-optimal candi-
date coresets found by the proposed approach, divided by dataset,
considering all classifiers. A few samples clearly appear very often
among all candidate coresets, while others almost never do, but
overall there is a considerable number of samples that are included
with low but non-negligible frequency, indicating that different
classifiers indeed exploit coresets of different shape.

A final experiment on the MNIST dataset [18], consisting in
70,000 images of handwritten digits, is performed to visually analyze
the characteristics of the samples included in the coresets. The
experiment uses the same settings as the previous ones, and it is
carried out using the classifier Ridge. The results are summarized
in Table 5. The best candidate coreset on the Pareto front features
about 9,600 images, 20% of the original training set. The candidate
coreset is manually inspected, and some of the more significant
results are illustrated in Figure 4. In particular, points in the coreset
for class 8 includes points that are still classified as ’8’, but they look
similar to other classes (for example, 0, 2, or 6), and are thus likely
positioned near the corresponding decision boundaries separating
the classes in the feature space. This evidence supports the claim

1750

Evolutionary Discovery of Coresets for Classification GECCO ’19, July 13–17, 2019, Prague, Czech Republic

0 25 50 75 100 125 150 175
sample id

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

y

blobs

class 0 class 1 class 2

0 25 50 75 100 125 150 175
sample id

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

y

circles

class 0 class 1

0 25 50 75 100 125 150 175
sample id

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

y

moons

class 0 class 1

0 10 20 30 40 50 60
sample id

0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

y

iris4

class 0 class 1 class 2

Figure 2: Frequency of appearance of samples in the Pareto front solutions of all the classifiers.

that the proposed approach is able to select meaningful samples
to help the classification algorithm to correctly place its decision
hyperplanes.

The main drawback of the evolutionary technique is represented
by the computational time, which is typically 10 to 1,000 times
the order of magnitude of other coreset discovery algorithms in
literature, depending on the classifier. However, it can be argued
that: i. this problem can be mitigated by parallelizing evaluations
(experiments have been run on a consumer-end laptop4 and it is
still not parallelized); ii. the current performance is not an insur-
mountable obstacle, as usually coresets are computed once, off-line,
and then used multiple times; iii. for datasets containing millions or
billions of samples, a random subsampling could be used to extract
a reduced dataset, to be later exploited during the evolution.

5 CONCLUSIONS
Coreset discovery is a problem of utmost practical importance
for machine learning techniques. Most of the coreset discovery

4Intel® Core™ i7-8750H 2.20 GHz, 16 GB RAM.

algorithms in literature either ask the user to specify the number
of samples to be retained in the coreset, or assume the shape of the
coreset to be independent from the task and the algorithm it is going
to be used for. Starting from the intuition that coreset discovery
is an inherently multi-objective problem, and that the structure
of a coreset is likely to be dependent on the machine learning
technique used for a specific task, an evolutionary approach to
coreset discovery is proposed. The presented framework proves to
be more efficient than comparable techniques, on several classical
benchmarks.

Future works will extend the proposed approach to regression
problems, where the aim is to obtain the approximate model of an
unknown function, and clustering, where the objective is to obtain
high-quality groups of data points, with no pre-existing information
on the number or qualities of the groups.

REFERENCES
[1] An author. 2018. A publication. In A conference. 1–10.
[2] Olivier Bachem, Mario Lucic, and Andreas Krause. 2017. Practical coreset con-

structions for machine learning. arXiv preprint arXiv:1703.06476 (2017).

1751

GECCO ’19, July 13–17, 2019, Prague, Czech Republic P. Barbiero et al.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4

BaggingClassifier - acc. 0.8963

train

test

errors

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4

BaggingClassifier - acc. 0.9407

test

core set

errors

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

RandomForestClassifier - acc. 0.9552

train

test

errors

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

RandomForestClassifier - acc. 0.9627

test

core set

errors

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

SVC - acc. 0.9179

train

test

errors

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

SVC - acc. 0.9403

test

core set

errors

−2 −1 0 1 2 3

−2

−1

0

1

2

3
RidgeClassifier - acc. 0.8824

train

test

errors

−2 −1 0 1 2 3

−2

−1

0

1

2

3
RidgeClassifier - acc. 0.9412

test

core set

errors

Figure 3: Decision boundaries using all the samples in the training set (Left) and only the coreset (Right) for training the
classifier. Train samples are represented by squares, test samples by crosses, coresets by diamonds and test errors by ’x’-shapes.
The represented datasets are Blobs (first row), Circles (second row), and Moons (third row), and Iris (fourth row, principal
component space), respectively.

1752

Evolutionary Discovery of Coresets for Classification GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Table 1: Blobs dataset. Coreset size, accuracy on test set and running time (seconds) of the considered classifiers and coreset
algorithms.

RandomForest Bagging SVC Ridge
algorithm size accuracy avg time size accuracy avg time size accuracy avg time size accuracy avg time
all samples 265 0.9185 - 265 0.8963 - 265 0.9407 - 265 0.8963 -
EvoCore 47 0.9333 518.1 s 94 0.9407 554.3 s 3 0.9111 232.8 s 3 0.9185 236.2 s
GIGA 3 0.6296 0.01 s 3 0.8889 0.01 s 3 0.8889 0.01 s 3 0.8519 0.01 s
FW 4 0.5185 3.2 s 4 0.6593 3.2 s 4 0.5852 3.2 s 4 0.8815 3.2 s
MP 5 0.4047 4.9 s 5 0.6296 4.9 s 5 0.3333 4.9 s 5 0.5778 4.9 s
FS 5 0.7481 4.6 s 5 0.7481 4.6 s 5 0.3333 4.6 s 5 0.6296 4.6 s
OP 4 0.4074 0.01 s 4 0.6148 0.01 s 4 0.3333 0.01 s 4 0.5852 0.01 s
LAR 3 0.8074 0.01 s 3 0.8074 0.01 s 3 0.5185 0.01 s 3 0.5185 0.01 s

Table 2: Circles dataset. Coreset size, accuracy on test set and running time (seconds) of the considered classifiers and coreset
algorithms.

RandomForest Bagging SVC Ridge
algorithm size accuracy avg time size accuracy avg time size accuracy avg time size accuracy avg time
all samples 266 0.9552 - 266 0.9478 - 266 0.9851 - 266 0.5000 -
EvoCore 26 0.9627 1,040.3 s 13 0.9552 878.8 s 6 0.9776 278.5 s 2 0.6343 355.7 s
GIGA 2 0.5970 0.01 s 2 0.5746 0.01 s 2 0.6343 0.01 s 2 0.6364 0.01 s
FW 5 0.5597 3.8 s 5 0.5000 3.8 s 5 0.5000 3.8 s 5 0.5000 3.8 s
MP 3 0.5000 4.1 s 3 0.5224 4.1 s 3 0.5000 4.1 s 3 0.6567 4.1 s
FS 4 0.6567 4.4 s 4 0.6194 4.4 s 4 0.6119 4.4 s 4 0.6269 4.4 s
OP 3 0.5000 0.01 s 3 0.4851 0.01 s 3 0.6418 0.01 s 3 0.5448 0.01 s
LAR 2 0.5522 0.01 s 2 0.6194 0.01 s 2 0.5970 0.01 s 2 0.5970 0.01 s

Table 3: Moons dataset. Coreset size, accuracy on test set and running time (seconds) of the considered classifiers and coreset
algorithms.

RandomForest Bagging SVC Ridge
algorithm size accuracy avg time size accuracy avg time size accuracy avg time size accuracy avg time
all samples 266 0.9328 - 2661 0.9254 - 266 0.9179 - 266 0.8134 -
EvoCore 10 0.9403 440.2 s 30 0.9478 415.9 s 24 0.9403 126.6 s 2 0.8209 139.8 s
GIGA 2 0.4254 0.01 s 2 0.2463 0.01 s 2 0.4701 0.01 s 2 0.4701 0.01 s
FW 6 0.6493 3.6 s 6 0.6493 3.6 s 6 0.5299 3.6 s 6 0.6866 3.6 s
MP 3 0.5149 4.6 s 3 0.5821 4.6 s 3 0.5896 4.6 s 3 0.6642 4.6 s
FS 2 0.5149 4.3 s 2 0.2313 4.3 s 2 0.6119 4.3 s 2 0.6119 4.3 s
OP 2 0.5149 0.01 s 2 0.2463 0.01 s 2 0.6493 0.01 s 2 0.6493 0.01 s
LAR 3 0.5149 24.2 s 3 0.2388 24.2 s 3 0.5224 24.2 s 3 0.5896 24.2 s

Table 4: Iris dataset. Coreset size, accuracy on test set and running time (seconds) of the considered classifiers and coreset
algorithms.

RandomForest Bagging SVC Ridge
algorithm size accuracy avg time size accuracy avg time size accuracy avg time size accuracy avg time
all samples 266 0.9328 - 2661 0.9254 - 266 0.9179 - 266 0.8134 -
EvoCore 15 0.9412 288.3 s 14 0.9608 303.7 s 5 0.9412 92.5 s 10 0.9412 90.9 s
GIGA 7 0.9216 0.7 s 7 0.6667 0.7 s 7 0.9804 0.7 s 7 0.8431 0.7 s
FW 15 0.8824 3.2 s 15 0.8627 3.2 s 15 0.9412 3.2 s 15 0.8235 3.2 s
MP 14 0.9412 4.5 s 14 0.8627 4.5 s 14 0.9216 4.5 s 14 0.7255 4.5 s
FS 7 0.6667 4.2 s 7 0.7059 4.2 s 7 0.6471 4.2 s 7 0.6275 4.2 s
OP 5 0.7059 0.1 s 5 0.5294 0.1 s 5 0.7843 0.1 s 5 0.8235 0.1 s
LAR 4 0.5294 22.2 s 4 0.6863 22.2 s 4 0.6471 22.2 s 4 0.7059 22.2 s

[3] Pietro Barbiero and Alberto Tonda. 2019. Fundamental Flowers: Finding Core
Sets for Classification using Evolutionary Computation. In EvoApplications 2019.

[4] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. 2013. Near-optimal
Coresets For Least-Squares Regression. Technical Report. arXiv:1202.3505v2

1753

http://arxiv.org/abs/1202.3505v2

GECCO ’19, July 13–17, 2019, Prague, Czech Republic P. Barbiero et al.

Figure 4: A few samples belonging to the best EvoCore candidate coreset for class 8. Visually, the selected samples appear to
be ideal to separate class 8 from (left to right) 0, 1, 2, 7, and 6, respectively.

Table 5: MNIST dataset. Reporting coreset size, accuracy
on test set and running time (seconds) of the coreset algo-
rithms.

Ridge
algorithm size accuracy avg time
all samples 46664 0.9447 -
EvoCore 9638 0.8466 11,915.3 s
GIGA 6134 0.8099 442.1 s
FW 7144 0.8187 2,609.1 s
MP 6585 0.8177 2,368.3 s
FS 583 0.4337 2,354.4 s
OP 98 0.5653 30.2 s
LAR 703 0.4743 532.6 s

https://arxiv.org/pdf/1202.3505.pdf
[5] Leo Breiman. 1999. Pasting small votes for classification in large databases and

on-line. Machine Learning 36, 1-2 (1999), 85–103.
[6] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[7] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984.

Classification and regression trees. CRC press.
[8] Trevor Campbell and Tamara Broderick. 2017. Automated Scalable Bayesian

Inference via Hilbert Coresets. (2017). arXiv:1710.05053 http://arxiv.org/abs/1710.
05053

[9] Trevor Campbell and Tamara Broderick. 2018. Bayesian Coreset Construction
via Greedy Iterative Geodesic Ascent. In International Conference on Machine
Learning (ICML). arXiv:arXiv:1802.01737v2 https://arxiv.org/pdf/1802.01737.pdf

[10] Kenneth L Clarkson. 2010. Coresets, Sparse Greedy Approximation, and the
Frank-Wolfe Algorithm. In ACM Transactions on Algorithms. http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.145.9299

[11] David R Cox. 1958. The regression analysis of binary sequences. Journal of the
Royal Statistical Society. Series B (Methodological) (1958), 215–242.

[12] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[13] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. 2004. Least
Angle Regression. The Annals of Statistics 32, 2 (2004), 407–451. https://doi.org/
10.1214/009053604000000067

[14] Ronald A Fisher. 1936. The use of multiple measurements in taxonomic problems.
Annals of eugenics 7, 2 (1936), 179–188.

[15] Aaron Garrett. 2012. inspyred (Version 1.0.1) Inspired Intelligence. https://github.
com/aarongarrett/inspyred. (2012).

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning (mit
press ed.). arXiv:arXiv:1312.6184v5

[17] Marti A. Hearst, Susan T Dumais, Edgar Osman, John Platt, and Bernhard
Scholkopf. 1998. Support vector machines. IEEE Intelligent Systems and their
Applications 13, 4 (1998), 18–28.

[18] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. (2010). http://yann.lecun.com/exdb/mnist/

[19] Efroymson M. A. 1960. Multiple Regression Analysis. Mathematical Methods for
Digital Computers (1960).

[20] StÃľphane Mallat and Zhifeng Zhang. 1993. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on Signal Processing 42, 12 (1993),
3397âĂŞ3415.

[21] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad. 1993. Orthogonal matching pursuit:
recursive function approximation with applications to wavelet decomposition.
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers (1993),
40–44. https://doi.org/10.1109/ACSSC.1993.342465 arXiv:1108.3326

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[23] Arthur L Samuel. 1959. Some studies in machine learning using the game of
checkers. IBM Journal of research and development 3, 3 (1959), 210–229.

[24] Andrey Nikolayevich Tikhonov. 1943. On the stability of inverse problems. In
Dokl. Akad. Nauk SSSR, Vol. 39. 195–198.

[25] Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. 2005. Core vector machines:
Fast SVM training on very large data sets. Journal of Machine Learning Research
6, Apr (2005), 363–392.

1754

https://arxiv.org/pdf/1202.3505.pdf
http://arxiv.org/abs/1710.05053
http://arxiv.org/abs/1710.05053
http://arxiv.org/abs/1710.05053
http://arxiv.org/abs/arXiv:1802.01737v2
https://arxiv.org/pdf/1802.01737.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.9299
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.9299
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
https://github.com/aarongarrett/inspyred
https://github.com/aarongarrett/inspyred
http://arxiv.org/abs/arXiv:1312.6184v5
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/ACSSC.1993.342465
http://arxiv.org/abs/1108.3326

	Abstract
	1 Introduction
	2 Background
	2.1 Machine learning and classification
	2.2 Coreset discovery
	2.3 Multi-objective evolutionary algorithms

	3 Proposed approach
	4 Experimental results
	5 Conclusions
	References

