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ABSTRACT

Connected vehicles are revolutionizing the way in which transport

and mobility are conceived. The main technology behind is the so-

called Vehicular Ad-Hoc Networks (VANETs), which are communi-

cation networks that connect vehicles and facilitate various services.

Usually, these services require a centralized architecture where the

main server collects and disseminates information from/to vehicles.

In this paper, we focus on improving the downlink information

dissemination in VANETs with this centralized architecture. With

this aim, we model the problem as a Vertex Covering optimiza-

tion problem and we propose four new nature-inspired methods to

solve it: Bat Algorithm (BA), Fire"y Algorithm (FA), Particle Swarm

Optimization (PSO), and Cuckoo Search (CS). The new methods

are tested over data from a real scenario. Results show that these

metaheuristics, especially BA, FA and PSO, can be considered as

powerful solvers for this optimization problem.
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1 INTRODUCTION

Transport and mobility are immersed in a major transformation

nowadays thanks to the con"uence of several innovations: au-

tonomous driving, shared mobility, electric vehicle, and connected

vehicle. Regarding this last aspect, the main technology behind is

the so-called Vehicular Ad-Hoc Networks (VANETs), which are com-

munication networks in which the nodes are vehicles [21]. Depend-

ing on which element is the transmitter and the receptor in each

extreme of the communication, either Infrastructure (e.g Road Side

Units, a central server, etc.) or a Vehicle, VANETs can be categorized

into Infrastructure-to-Infrastructure (I2I), Infrastructure-to-Vehicle

(I2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V).

These communication con#gurations can enable di%erent services

related to security, leisure and entertainment, tra&c management

and driving assistance [33].

Many of the aforementioned services require a centralized ar-

chitecture in which a central server collects and disseminates data

from/to vehicles [5] (e.g. to acquire information about the instant

position, speed and heading of all vehicles on a region or to warn

vehicles closed to a potentially dangerous situation). Within this

scenario, in this paper, we focus on the so-called downlink com-

munication in which a central server disseminates information to

vehicles. Di%erent aspects make this task challenging in VANETs

[21]. One of the most promising approaches proposed so far to ad-

dress this challenge is the use of Virtual Infrastructure (VI) [11, 38],

wherein vehicles are also used as infrastructure to increase the area

of application and to reduce the deployment cost. The VI is com-

posed of three phases: 1) some vehicles are selected as cluster-head

(CH) to cover the broadcast area, 2) CH vehicles receive information

from a central server through I2V, and 3) CH vehicles disseminate

this information to nearby vehicles using V2V communications.

The process of deciding how many and what vehicles should be

used as VI in each instant plays a pivotal role in this type of systems,

since it can avoid the necessity of #xed infrastructure (as Road Side

Units), reduce the network overload, or a%ect the communication

quality [38]. Many of the services envisioned for VANETs require

the dissemination of some messages to all or as much as possible

vehicles in a speci#c geographical area. In this context, the priority

of the VI selection phase must be to choose the minimum number

of CH vehicles that can broadcast the information to the maximum
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number of vehicles in the target area, taking into account all the

requirements imposed by the corresponding standard [5].

Based on the communication architecture for VANETs presented

in [11] and called NAVI (Neighbor-Aware Virtual Infrastructure), in

a previous work, Masegosa et. al [23] proposed a new approach to

address the VI selection process, modelling it as the optimization of

a Covering Location Problem (CLP)[12, 14]. Concretely, they mod-

elled those vehicles that must receive the information as demand

nodes, and those vehicles that play the role of VI as potential facility

locations. Using a Genetic Algorithm (GA, [13]) as optimization

method, they were able to outperform an ad-hoc state-of-the-art

methodology designed for the same purpose.

In this paper, our objective is to continue deepening the research

line proposed in [23] through the development of better optimiza-

tion methods based on nature-inspired metaheuristics. Speci#cally,

we propose and compare four nature-inspired metaheuristics to

improve the performance of this approach for information dissem-

ination in VANETs. The algorithms considered for such purpose

are: Bat Algorithm (BA, [43]), Fire"y Algorithm (FA, [42]), Particle

Swarm Optimization (PSO, [18]), and Cuckoo Search (CS, [44]). The

main rationale behind the use of these nature-inspired metaheuris-

tics relies on their reputed e&ciency for solving covering location

problems [9, 15, 35, 39] and other combinatorial optimization prob-

lems [26, 28, 30, 31] along recent years. The good acceptance of

these previous studies has led us to the hypothesis that these meth-

ods may be promising also for the problem approached in this work.

Furthermore, we also use a newmodelling framework, shifting from

a CLP to a Vertex Cover Problem (VCP), which is more appropriate

to the features of the underlying optimization problem. To assess

and compare the performance of the new methods and the new

modelling approach, we use a real scenario consisting of 45 vehi-

cles moving around in the downtown area of the city of Malaga in

Spain. Apart from this, the proposed optimization algorithms are

compared against two baseline algorithms, the GA proposed in [23]

and the state-of-the-art approach for information dissemination

presented in [11].

The rest of this paper is structured as follows. Section 2 gives

background about information dissemination in VANETs and VCPs.

The new modelling approach is presented and described in Section

3. Then, Section 5 is devoted to detail the experimental framework

used to test our proposal. After that, in Section 6 we analyze the re-

sults of the comparison of the proposed metaheuristics and the two

baseline methods. Finally, Section 7 presents the main conclusions

of the work as well as the future research lines.

2 RELATEDWORK

2.1 Information Dissemination in VANETs

Due to the interest of deploying cooperative services and appli-

cations for vehicles, information dissemination in VANETs has

been extensively researched [5, 32]. The aim of a VANET is to be

an infrastructure-less self-organizing tra&c information system.

Therefore, the vast majority of proposed methods for information

dissemination are based on a decentralized architecture wherein

the organization of the network is managed by vehicles creating

dynamic clusters of vehicles, which is enabled by short-range com-

munication technologies.

The creation and management of the cluster imply the periodical

communication of status information [16], which in high density

scenarios can lead to the exchange of a high number of messages

to organize the network, an in turn to the consumption of many

resources for network management. Other approaches try to re-

duce this overhead deploying infrastructure nodes at preferential

locations, but they usually lack "exibility and the dissemination

covered region is #xed [32]. Few works in the literature propose to

use vehicles as mobile infrastructure. Camara et al. [8] present the

virtual RSU (vRSU) concept where nodes receive and cache mes-

sages from other vRSU, or access points that are located in areas

with no coverage from conventional RSUs.

Recently, heterogeneous architectures have been proposed to

exploit both the wide range low latency communications of cel-

lular technologies - Long-Term Evolution (LTE) communication

(commercially known as 4G network) - and the low cost of IEEE

802.11p - similar to common WiFi networks. Some works use the

heterogeneous architecture to improve the e&ciency of clustering

[11, 36]. In [36], Remy et al. use a heterogeneous centralized archi-

tecture to reduce the clustering overhead. An interesting proposal

can be found in [11] where D’Orey et al. presented the approach

Neighbor-Aware Virtual Infrastructure (NAVI), for information dis-

semination using vehicles as mobile Virtual Infrastructure (VI) that

were selected from a central entity called GeoServer. NAVI pre-

sented many advantages as an appropriate uplink performance,

reduced use of #xed infrastructure and better use of individual

technologies. More recently, in [23], A.D. Masegosa et al. using this

VANET architecture, they modelled the selection of vehicles used

as VI by means of a CLP whose objective consists on maximizing

the covering (vehicles that receive the message), while minimizing

the number of vehicles used as VI. They also proposed a Genetic

Algorithm to solve the optimization problem, and they show that

this new methodology outperformed the VI selection used in [11].

As mentioned in the introduction, in this paper, we aim at ex-

tending the research done in [23]. Therefore, we will use the same

VANET architecture based on NAVI that will be further described

in Section 3.1. However, we will model the selection of the vehicles

used as VI, as a VCP instead of a CLP. In the next section, we de#ne

CLPs formally and review some literature about them.

2.2 Vertex Cover Problems

Given an undirected graph G = (V ,E), the Vertex Cover Problem

(VCP) [7] consists on #nding a subsetC ∈ V such that each edge in

E has at least one end point inC , and the cardinality ofC is limited

by a constant k (|C | < k). Some applications of the VCP can be

found in dynamic detection of potential data races inmulti-threaded

programs[25], network monitoring [4], or telecommunications [24].

In the next part of this section, we describe and formulate two

of the most important generalizations of the VCP: the Minimum

Vertex Cover and the Maximum Partial Vertex Cover.

The Minimum Vertex Cover Problem (MVCP). The MVCP is

an extension of the VCP and consists of #nding the minimum subset

C that covers all the edges in E [19]. It is formulated as:

• V - set of vertices in the undirected graph G

• E - set of edges in the undirected graph G (E ∈ V ×V ). An

edge between vertices i and j is denoted as the duple (i, j) ∈ E
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• C - the cover set, C ⊆ V

• Ni - {j ∈ V |(i, j) ∈ E}, the set of vertices adjacent to i .

• x j - boolean variable set to 1 if a vertex j ∈ C , 0 otherwise.

Minimize: Z =
∑

j ∈V

x j (1)

Subject to: ∑

j ∈Ni

x j > 1 ∀i ∈ V (2)

x j = {0, 1} ∀j ∈ V (3)

The objective function given in Equation 1minimizes the number

of vertices in the cover setC . Equation 2 ensures that each vertex i is

covered by at least one vertex inC , and #nally, Equation 3 enforces

the binary restriction on the decision variable.

TheWeightedMaximumPartial Vertex Cover (WMVC). Un-

like the MVC, in the WMVCP the cardinality of the cover set C is

bounded at a value equal or lower than p [1]. The objective of the

MVC consists on #nding a subsetC , such that |C | <= p, which max-

imizes the number of edges covered, that is, the number of edges in

G with at least one endpoint in C . The mathematical formulation

of the MVCP is as follows:

• V - set of vertices in the undirected graph G

• E - set of edges in the undirected graph G (E ∈ V ×V ). An

edge between vertices i and j is denoted as the duple (i, j) ∈ E

• wi - weight associated to vertex i

• C - the cover set, C ⊆ V

• Ni - {j ∈ V |(i, j) ∈ E}, the set of vertices adjacent to i .

• x j - boolean variable set to 1 if a vertex j ∈ C , 0 otherwise.

• yi - represent the coverage of vertex i . Its value is 1 if vertex

i is covered (∃j ∈ V |x j = 1 ∧ j ∈ Ni ), and 0 otherwise.

• p - the maximum allowed cardinality for the cover set C .

Maximize Z =
∑

i ∈V

wiyi (4)

Subject to: ∑

j ∈Ni

x j > yi ∀i ∈ V (5)

∑

j ∈V

x j ≤ p (6)

x j = {0, 1} ∀j ∈ V , yi = {0, 1} ∀i ∈ V (7)

Equation 4 refers to the objective function that maximizes the

weighted sum of the vertex covered. Equation 5 is analogous to

Equation 2. Equation 6 limits the cardinality of C to p. Finally,

Equation 7 restricts variables xi and yi to binary values.

3 APPROACH FOR INFORMATION

DISSEMINATION IN VANETS

This section is devoted to describing the approach for information

dissemination used in this paper. Asmentioned above, this approach

was #rst proposed in [23] that in turn was based on NAVI’s network

architecture [11], but with a procedure for selecting vehicles as VI

based on the optimization of a CLP through a Genetic Algorithm.

As we also pointed out in Section 1 and explained in Section 2, in

this paper we reformulate the optimization model as a VCP instead

VI

Central 

Server
Geo 

Server

LTE

Antenna
LTE

Antenna

LTE LTE

Service

Request

IEEE 

802.11p

VI

IEEE 

802.11p

Figure 1: Scheme of the general architecture of NAVI

of a CLP because it is more consistent with the real underlying

optimization problem. The main reason behind this shift is the na-

ture of the communications that do not depend only on a distant

radius but in more complex factors. Given that VANETs can be seen

as a graph where vertices correspond to vehicles and edges link

vehicles that can communicate between each other, VCP #ts better

in this scenarios than CLP, although they are analogous problems.

To facilitate the understanding of modelling process used, we #rst

introduce NAVI’s network architecture; then, we give the formal de-

scription of the VCP-based model for selecting the vehicles used as

VI; and #nally, the novel nature-inspired metaheuristics presented

in this work to solve the optimization problem are presented.

3.1 NAVI’s Network Architecture

For the sake of simplicity and due to limitatied space, in this section,

we will only give a quick overview of the NAVI’s network archi-

tecture. The interested reader may refer to [23] or [11] for further

details. Having said this, NAVI’s architecture was designed for an

e&cient collection and dissemination of information in VANETs

through the selection of mobile infrastructure nodes (vehicles) in a

scenario with multiple technologies [11]. Figure 1 shows a scheme

of the general architecture of the system. The system comprises

of a heterogeneous network architecture consisting of short-range

communication networks, as IEEE 802.11p, and long-range commu-

nication networks, as LTE. Vehicles can be categorized into three

main classes in terms of network equipment: i) short-range com-

munication only, ii) long-range communication only and iii) short

and long-range communication. The working of the system can be

divided into three main stages: a) data collection, b) virtual infras-

tructure selection and c) data dissemination strategy execution.

In the data collection phase, the periodic broadcast single-hop

CAMs are used to establish when two vehicles can communicate

between them. Concretely, if a vehicle A receives a CAM message

from another vehicle B, it means that they can transfer informa-

tion among them. In this case, we establish that B is a neighbour

of A. Each vehicle has it own Neighbourhood Table (NT) with an

entry for each neighbour. The NTs are aggregated and transmitted

periodically to the Geoserver by a subset of nodes in the Region of
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Interest (ROI). The VI selection phase updates the VI periodically

from the information provided by the aggregated NTs, with a pre-

#xed period length t . The selection of the VI is made centrally by

Geoserver. The Geoserver launches this process each time it re-

ceives a dissemination request from the service provider. In the last

phase, data dissemination strategy execution, the vehicles selected

in the previous step perform the corresponding action: broadcast,

relaying, and store-and-forward.

3.2 Virtual Infrastructure Selection Model

based on Vertex Covering

In this section, we describe the reformulation of the model proposed

for the VI selection process. Its objective consists of the e&cient

transfer of information from a central entity to the vehicles us-

ing a proper VI con#guration. Concretely, it aims to balance the

amount of data transferred through long-range communication

(e.g. standard LTE) and short-range communication networks (e.g.

IEEE 802.11p), in such a way that minimizes the use of long-range

networks while maximizing the coverage area. As explained in [11],

although data o*oading to short-range communication networks

increases its overhead, it results in gains for the use of cellular

networks that usually have a pay-per-use system.

The formulation used to model this optimization process is based

on the VCP. The model can be divided into three main components:

vehicles, scenario and network systems. Vehicles have access to

network infrastructure resources and move on a given scenario S ,

which is partitioned in zones s such that s ∈ S . The properties of the

scenario impact vehicle mobility and the communication reliability

between vehicles, but we assume that during the period between

the creation of the NTs and the dissemination of information, they

remain unaltered. Taking into account that the length of this period

is usually lower than 200ms, this assumption can be considered re-

alistic. The vehicles located in the scenario at the instant in which a

dissemination request is received by the GeoServer it is represented

by the set V . During the observation period, additional vehicles

may join or leave the scenario depending on demand or routes, but

as mentioned before, given the short length of the period, these

changes are irrelevant. The objective of the underlying optimiza-

tion process is to #nd the minimum subset C ⊆ V that maximizes

the number of zones covered in the scenario S . More formally, the

model is de#ned as follows:

• S - set of zones to cover in the region. Each zone s ∈ S has

at least one vehicle located in it.

• V - set of vehicles that must be covered.

• VV I - subset of vehicles from V (VV I ⊆ V ) that can be

potentially used as VI, that is, those equipped with short and

long range communication capabilities.

• CAMi j - boolean variable whose value is 1 if vehicle i ∈ V

has received a CAM message from vehicle j ∈ V .

• NVi - {j ∈ VV I |CAMi j = 1}, the set of neighbours of vehicle

i ∈ V (adjacent vertices).

• ZVi - zone s ∈ S in which vehicle i ∈ V is located.

• V s - {i ∈ V |ZVi = s}, set of vehicles located in zone s ∈ S .

• Ns - {i ∈ VV I |(i ∈ Vs ) ∨ (∃j ∈ Vs s .t . j ∈ NVj )}, the set of

vehicles that can cover zone s (those vehicle from VV I that

can communicate with at least one vehicle in zone s).

• x j - boolean variable set to 1 if vehicle j ∈ VV I is selected as

VI, 0 otherwise.

• ys - represent the coverage of zone s ∈ S . Its value is 1 if

zone s is covered and 0 otherwise.

• p - maximum number of vehicles that can be used as VI.

Maximize Z = (1 − F1) · F2 (8)

where:

F1 =
1

|VV I |

∑

j ∈VV I

x j (9)

F2 =
1

|S |

∑

s ∈S

ys +
1

|S | |V |
(−1 +

∑

s ∈S

ys |V
s |) (10)

Subject to: ∑

j ∈Ns

x j > ys ∀s ∈ S (11)

∑

j ∈VV I

x j ≤ p (12)

x j = {0, 1} ∀j ∈ V , yi = {0, 1} ∀i ∈ V (13)

Equation 8 corresponds to the objective functionwhich combines

the two objectives, maximizing the zones covered while minimizing

the number of vehicles used as VI. Equation 9 de#nes the proportion

of vehicles considered as VI. In Equation 10, the #rst term of the

expression corresponds to the ratio of zones covered, whereas the

second one to the proportion of vehicles covered divided by |S |.

Note that the values of this second term range in the interval [0, 1

|S |
].

In this way, a solution is considered better if it covers more zones

or at the same number of zones if it covers more vehicles. The

constraint formulated in Equation 11 establishes that a zone s is

covered only when at least one vehicle in the VI has, as neighbour,

one of the vehicles located at s . Equation 12 ensures that the number

of vehicles used as VI is at most p. Finally, Equation 13 restricts

variables x j and ys to binary values.

To avoid dealing with feasible and unfeasible solutions, we used

the penalization scheme show in Equation 14, wherep′ =
∑
j ∈VV I x j

and c is a parameter weights the magnitude of the penalization.

Z (x) =




(1 − F1(x)) · F2(x) if p′ ≤ p

(1 − F1(x)) · F2(x) − c(p′ − p) otherwise

(14)

4 PROPOSED NATURE-INSPIRED SOLVERS

In this section, we describe the four nature-inspired metaheuristics

that we have developed in order to solve the optimization problem

detailed in 3.2, and therefore, to select the vehicles used as VI.

Before the description of each deemed method, some important

design issues are detailed in what follows, related to the codi#cation

strategy, the metric used for measuring the di%erence between two

individuals, and the modelled movements operators.

Being one of the crucial aspects in the heuristic development, it

is interesting to highlight that the binary representation has been

adopted as encoding strategy. Thus, each potential solution is rep-

resented as a vector x = [x1,x2, . . . ,xn ] of n binary values [0, 1],

where n depicts the cardinality of the subsetVV I , that is, n = |VV I |

and it refers to the number of vehicles that can be potentially used

as VI. Additionally, x j is analogous to the same symbol de#ned in
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3.2, and represents the selection or not of the vehicle j ∈ VV I as VI

or not (e.g. x j = 1 if vehicle j ∈ VV I is selected as VI, 0 otherwise).

Given that we are dealing with boolean problems, we intro-

duced an appropriate distance metric and two movement operators.

Regarding the distance metric employed for assessing the simi-

larity between two solutions, the well-known Hamming Distance

(H (·, ·)) has been used. Several previous studies in the recent lit-

erature have utilized this same function for similar purposes [27],

verifying its adequacy for solving combinatorial optimization prob-

lems, such as the one addressed in the present work. Speci#cally,

H (·, ·) is computed as the number of non-corresponding elements

between two solutions. For instance, and assuming two individ-

uals x = [1, 0, 1, 1, 0, 1, 1, 1, 0, 1] and x‘ = [1, 0, 0, 1, 1, 1, 1, 1, 0, 0],

their Hamming Distance DH (x, x′) would equal 3. It should be

highlighted that this distance metric is the basis of the movement

strategies inherent to each of the proposed techniques

Lastly, two movements operators have been considered for evolv-

ing the solutions along the search process. The #rst one is the

commonly used Uniform Crossover (UCp (x ,y) [40]), in which two

di%erent individuals share their genes probabilistically for produc-

ing a new hybrid solution. For this study, a probability p=50% has

been used for each gene, which means that every gene ci has the

same probability of being inherited by x or y. The second operator

used is the swapping SW (x , c) operator, in which c genes are ran-

domly chosen from solution x for reversing their value, from 1 to 0,

or from 0 to 1. In this speci#c research, c=2 value has been #xed.

Below we de#ned the four nature-inspired metaheuristics pro-

posed for the optimization problem described in Section 3.2.

Bat Algorithm (BA). The BA, introduced by Xin-She Yang in

[43], is a nature-inspired method based on the echolocation be-

haviour of microbats, which can #nd their prey and discriminate

di%erent kinds of insects even in complete darkness. Despite it was

#rstly proposed for solving continuous optimization problems, it

has been adapted several times before [30, 37, 46] for solving dis-

crete problems. Following the same philosophy, an adaptation has

been made in the present research. In our proposal, each bat repre-

sents a solution, and concepts of loudnessAi and pulse emissions ri
have been considered identically to the canonical BA. On the other

hand, frequency fi parameter has not been deemed for the sake

of simpli#cation. Additionally, velocity vi value has been adapted

taking the H (·, ·) as reference similarity function. This way, the ve-

locity is calculated following the formula vti = rand[1,DH (xi, x∗)].

In other words, the vi of a bat i at time step t is a random number

following a discrete uniform distribution between 1 and the dif-

ference between i and the leading bat. Regarding the movement

criterion, each bat xi moves towards the best individual x∗ at each

generation t ∈ {1, . . . ,T } following the formula:

xi(t+1)=Ψ
(
xi(t),min

{
V ,vti

})
, (15)

where Ψ(x,Z ) ∈ {UC0.5(xi ,x∗), SW (x , c)}, each one parametrized

by the amount of times Z this operator is executed to x. Then, the

best movement carried out on x is chosen as output. To properly

select the movement operator, and with the aim of enhancing the

exploration capacity of the method, the inclination mechanism re-

cently proposed in works, such as [26, 28, 30], is also used consider-

ingUCp (x ,y) as wide movement and SW (x , c) as short movement.

Firefly Algorithm (FA). FA is another method introduced by

Xin-She Yang in 2010 [42] that tries to emulate "ashing behaviour

of #re"ies, which act as a signal system to attract other colleagues.

Some modi#cations have been performed also in this case for adapt-

ing the FA to the discrete problem tackled in this research. As

in the previous case, each #re"y of the swarm represents a pos-

sible solution to the problem. Besides that, the concept of light

absorption γ is considered, being essential for adjusting #re"ies’

movement. The distance between two individuals is calculated em-

ploying the Hamming Distance DH (·, ·) functions. Additionally, the

movement criterion adopted by an individual x is also de#ned by

the Expression (15). This way, each time x is about to move towards

a counterpart x ′, it analyzes the related DH (x, x′). Following also

the inclination mechanism above mentioned, if DH (x, x′)>V /2r , a

wide movements is carried out throughUC0.5(x ,x
′). Otherwise, a

short move is conducted using SW (x , 2).

Cuckoo Search (CS). The CS was introduced by Yang and Deb

in 2009 [44] for solving continuous optimization problems. One

of its main advantages is its easy parameterization, which along

with its e&ciency has lead the CS to have a great success recently

[3, 20, 22]. In this work, the well-known adaptation proposed in [31]

for the Traveling Salesman Problem has been embraced as a base,

using similar mechanisms and parameters. Speci#cally, for the cuck-

oos movement, the same UCp (x ,y) and SW (x , c) operators have

been employed. Additionally, the movement of each cuckoo is con-

ducted using the same logic depicted in Expression (15), considering

DH (·, ·) as similarity function, and best individual as reference.

Particle Swarm Optimization (PSO). PSO has been adapted

to discrete problems multiple times before [6, 45]. Taking as a base

some of these interesting works, each particle in our developed PSO

also represents a possible solution for the problem at hand. Addi-

tionally, velocity parametervi has been considered in the same way

as done in BA case. Furthermore, both inclination mechanism and

UCp (x ,y), SW (x , c) movement strategies have also been deemed

for the PSO, as well as the movement criterion shown in Expression

(15). Finally, DH (·, ·) has been used as similarity measurement.

5 EXPERIMENTAL FRAMEWORK

This part of the chapter is devoted to describing the experimental

framework used in this study. Concretely, in Section 5.1 we give

the details of the realistic simulation scenario employed in the ex-

perimentation. Then, in Section 5.2 we describe the two methods

taken as a baseline to compare it versus the four nature-inspired

metaheuristics proposed in this paper. After that, we list the perfor-

mance measures used in the experimentation and #nally, Section

5.4 points out the details of the implementations carried out.

5.1 VANET simulation scenario

The simulation scenario used is the same employed in [11]. The

VANET simulation was done using GPS traces publicly available

in NS-2 format1, which were taken as input in the network sim-

ulation platform. The tool SUMO (Simulation of Urban Mobility)

was then used to generate the mobility traces using realistic input

data, including road network, vehicles routes or tra&c lights among

1http://neo.lcc.uma.es/sta%/jamal/vanet/?q=node/11
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Table 1: Main Simulation Parameters

Type Parameter Value

Neighbor CAM Frequency 1 Hz

Information Neighbor Table Timeout 5 s

Server update Frequency 1 Hz

Dissemination Frequency 1 Hz

Request Dissemination area 0.44 km2

Scenario Type Urban

Number of Vehicles 45

Simulation Duration 180 s

Vehicle Speed 10-50 km/h

Vehicle Density 113 veh/km2

Maximum VI size [2,4,6,8,10] nodes

802.11p Bit Rate 6 Mbps

Network Bandwidth 10 Mhz

Frequency band 5.9 GHz

Maximum Tx Power [16, 21, 23] dBm

LTE eNodeB Tx Power 30 dBm

Network UE Tx Power 10 dBm

Propagation Model Friis Tx Eq

others. The location of the simulation scenario is a rectangular area

of 600m × 700m in the downtown of the city of Malaga, Spain.

The simulation period is 180s and the maximum vehicle speed is

50km\h. Table 1 contains the details of the simulation parameters.

For further details, the interested reader is referred to [41]. Finally,

we have considered three di%erent maximum transmission pow-

ers for the short-range network (IEEE 802.11p), 16dBm, 21dBm

and 23dBm, and #ve di%erent maximum VI sizes (2, 4, 6, 8 and 10

nodes). The transmission power controls the communication range

of the vehicles and therefore the neighbourhood awareness levels: a

higher transmission power implies a higher communication range

that, in turn, entails a higher number of neighbours per vehicle, but

also a higher consumption of energy. In the VCP models, the trans-

mission power can be seen as a factor that modi#es the number of

vertices adjacent to each vertex. Regarding the maximum VI size,

represented by the parameter p in the model described in Section

3.2, it limits the resource consumption in terms of LTE connections.

5.2 Baseline algorithms

The methods used to compare the performance of the four nature-

inspired methods proposed in this paper are, on the one hand,

the algorithm proposed in the original paper of NAVI architecture

[11] and on the other hand, the Genetic Algorithm proposed by

Masegosa et. al in [23]. We will refer to these methods as to which

we will refer to as NAVI_Alg and NAVI_GA, respectively.

RegardingNAVI_Alg, the authors applied aMin-Max formulation

to model the optimization problem and an ad-hoc greedy algorithm

as a solver. The objective consisted of maximizing the number of

zones covered while minimizing the number of vehicles used as VI,

using at most p vehicles. The general idea of the greedy algorithm

is that, at each step, it selects as VI that vehicle that covers the

maximum number of zones that has not been covered yet. The

method stops when the VI size is equal to p or when all zones

are covered. The interested reader is referred to [11] for further

details. As forNAVI_GA, it is a generational GAwith binary codi#ca-

tion and elitism. Regarding the genetic operators, the method used

tournament selection with size q, uniform crossover and uniform

mutation. Further details can be found in [23].

5.3 Performance measures

The performance metrics used to compare the algorithms consid-

ered are given below:

• Covered Area (Maximize): percentage of zones covered, which

corresponds with those regions that have at least one vehicle

that would receive the dissemination message.

• VI size (Minimize): number of vehicles selected as VI. In this

way, we measure the resource consumption of the solution.

5.4 Implementation details

To #nish with the description of the experimental framework, we

give here the details of the implementation done and the parameter

settings used for all the four proposed nature-inspired metaheuris-

tics. First of all, the population size has been #xed in 100 for each

approach. For the FA,γ=0.95. Furthermore, forBAα=β=0.98,A0
i =1.0

and r0i =0.1. Besides that, for CS pa = 0.2. Finally, PSO have been

con#gured as described in Section 4. For the development and pa-

rameterization of these methods, the guidelines given in [27, 29–31]

have been followed. Regarding GA_NAVI, the population size was

also 100, the tournament size was set to 5, the crossover rate to 0.5

and the mutation rate to 0.015. The stopping criteria for FA, BA, CS,

PSO and GA_NAVI was 100 iterations/generations. In the objective

function, the penalization coe&cient c was empirically set to 0.2.

As for the simulation scenario, the region of interest was divided

into 100 rectangular zones, all of them with the same width and

height. The number of vehicles to be covered was 45, and we as-

sume that all of them are equipped with both short and long range

communication capabilities, that is, all of them can be used as VI.

The positions of the vehicles were sampled every second. Given

that the simulation time for the data was 180s, in this way, we

have a total of 180 instances of the problem. Taking into account

that we considered three di%erent transmission powers and #ve

di%erent maximum VI size, this experimentation counts with a total

of 180 × 3 × 5 = 2700 instance con#gurations. For each of these

instance con#gurations, our proposal was run 10 times and the

mean covered area and VI size were registered.

The implementation was done in Java 8, and the experiments

were run on a computer with Ubuntu 16.08, 42GB RAM and 2 CPUs

Intel Xeon Silver 4114 2,2GHz 13.75MB Cache 10 Cores. The results

of the NAVI method were provided by its authors.

6 RESULT ANALYSIS

The objective of the experimentation done in this paper is two-fold:

• Assess the performance of the proposed nature-inspired meta-

heuristics in a real scenario. Concretely, our aim is to test on

a real scenario the four methods presented in this paper to

get insights about their performance and check under what

circumstances one method is preferred over the others.

• Compare the performance of the proposed nature-inspired

metaheuristics versus two baseline algorithms. To assess the
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Figure 2: Boxplot for the covered area results. The Y axis rep-

resents the covered area, the X axis the MVIS, the panels the

MTxP and the series the methods compared.

competitiveness of our proposal, we will compare it against

the two baseline algorithms described in Section 5.2.

To make this analysis, we show the results obtained by the four

considered nature-inspired metaheuristics (BA,FA,CS and PSO) and

the two baseline algorithms (NAVI_GA and NAVI_Alg) in Figures

2 and 3. These #gures show boxplots with information about the

distribution of the results obtained over the 180 instances by each

method. The Y axis represents the covered area and VI size, re-

spectively, the X axis includes the #ve Maximum VI Sizes (MVISs)

and the three panels depict the Maximum Transmission Powers

(MTxPs) considered. Each series correspond to a di%erent method:

orange, green, turquoise and purple for BA, CS, FA and PSO, re-

spectively; whereas red and blue for NAVI_Alg and NAVI_GA, in

that order. In the boxes, the central horizontal line indicates the

median, the hinges of the boxes the #rst and third quartiles, and the

whiskers the value 1.5 · IQR, where IQR is the interquartile range.

The dots refer to outlier values. The graphics were generated using

R programming language and the ggplot2 package2.

2http://ggplot2.org/

Beginning with the covered area, we can observe in Figure 2 that,

as expected, for a speci#c MTxP, the higher the MVIS the higher

the percentage of zones covered, and vice versa, for a speci#c MVIS,

the higher the MTxP the higher the covering. A similar rule can be

established for the complexity of the problem which is negatively

correlated with both MTxP and MVIS. The lower the MTxP or the

MVIS, the worse the performance of the methods. Comparing the

four proposed methods among them, we can see that the di%erence

in performances varies with the MVIS, but not with the MTxP.

When MVIS is equal to two, for the three MTxP values considered,

CS is the best performing method, whereas BA, FA and PSO obtain

pretty similar results. However, when MVIS is equal to four and

MTxP to 16 dBm, BAworks slightly worse than the other three ones

that show very similar performance, again. In the rest of cases, no

di%erences in the percentage of covered zones can be appreciated.

If the comparison is made w.r.t the baseline algorithms, the four

proposed methods outperform NAVI_Alg and obtain better or equal

results than NAVI_GA, which proves the good performance of the

nature-inspired metaheuristics proposed in this paper.

Regarding the VI size, displayed in Figure 3, it is interesting to

see that the relative performance of BA, CS, FA and PSO varies

signi#cantly w.r.t when the covered area was considered. In this

case, we can observe that CS is actually the worse method, event

for "easy" instances, as those with MVIS set to two. The second

worse performing method was the PSO algorithm, especially if we

look at the results with ten as MVIS, but very close to the best

performing methods, which are BA and FA. The comparison w.r.t

the baseline algorithms is quite similar to what we see above when

BA, FA and PSO are considered, that is, they outperform NAVI_Alg

and they obtain better results than NAVI_GA in almost all cases.

The exception here is the CS algorithm, which performs even worse

than NAVI when the MVIS has a value of two, and similar or worse

than NAVI_GA for 21 and 23 dBm as MTxP. The only cases when

we can observe a better performance of the CS w.r.t NAVI_GA are

in those scenarios with 16 dBm as MTxP and 8 and 10 as MVIS

values, respectively.

To assesswhether the di%erences in performance observed among

the di%erent analyzed methods are signi#cant or not, we made use

of non-parametric statistical tests. Two statistical tests have been

applied, following the guidelines proposed in [10], for the two

measures considered: the covered area and the VI size. First, the

Friedman’s test for multiple comparisons has been applied to check

whether there are signi#cant di%erences among the studied meth-

ods. The samples correspond with the mean performance of the

algorithm for a pair MTxP-MVIS, that is, for each method, there are

15 samples. Given that the p-value returned by this test for both

measures was 0.0, the null hypothesis can be rejected in all cases.

The mean ranking returned by this test for the covered area and

the VI size is displayed in Table 2. According to this ranking, BA

and FA are the best performing methods for the two considered

measures, respectively. Holm post-hoc test has also been applied

using the best rank method in each case (highlighted in bold). In

order to highlight signi#cant di%erences, those p-values lower than

0.05 are marked with an asterisk (*). For the covered zones, BA is

signi#cantly better than the two baseline algorithms. Regarding

the VI size, in addition to the two baseline algorithms, FA improv-

ing signi#cantly CS. To sum up, this analysis con#rms the better
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Figure 3: Boxplot for the VI size results. The Y axis repre-

sents the covered area, the X axis the MVIS, the panels the

MTxP and the series the methods compared.

performance of the proposed nature-inspired metaheuristics w.r.t.

the baseline methods, particularly BA and FA.

7 CONCLUSIONS

In this work, we have aimed at improving information dissemina-

tion in VANETs deepening into the approach presented byMasegosa

et al. in [23], which is based on the optimization of a Covering Loca-

tion Problem by means of a Genetic Algorithm. Concretely, we have

presented and compare four new nature-inspired metaheuristics to

address this optimization problem: BA, CS, FA y PSO. Furthermore,

we have shifted the model to Vertex Cover because its abstraction

is more close to the real optimization problem addressed.

The methods presented here were tested on a real scenario con-

sisting of 45 vehicles moving on a rectangular area of 600m × 700m

in the downtown of the city of Malaga, Spain. Besides, we consid-

ered three di%erent maximum transmission powers for the 802.11p

network and #ve di%erent maximum VI sizes. The performance of

the solutions was measured in terms of covered area and number

of vehicles used as VI (VI size). The objective of the experimenta-

tion done over this real scenario was two-fold: on the one hand, to

Table 2: Ranking provided by Friedman’s non-parametric

test for both Covered Area and VI Size

Method Ranking Covered Area Ranking VI Size

NAVI_Alg 5.33* 5.20*

NAVI_GA 4.47* 4.13*

BA 2.53 2.17

CS 2.83 4.47*

FA 2.67 2.03

PSO 3.17 3.00

analyze and compare the performance of the four proposed meta-

heuristics, and on the other hand, to assess the competitiveness of

the four methods comparing it with the NAVI’s original algorithm

for selecting the VI and the Genetic Algorithm proposed in [23].

The analysis of the obtained results showed that in terms of cov-

ered area, BA was the best of the four algorithms, followed by FA,

CS and PSO, in that order although with no signi#cant di%erences

among them. However, when the VI size was considered as a perfor-

mance measure, FA was the best algorithm but with no signi#cant

di%erences w.r.t BA and PSO. CS was signi#cantly worse than FA.

Regarding the comparison w.r.t the baseline algorithms, BA, FA and

PSO improve the performance of NAVI_Alg and NAVI_GA both in

terms of covered area and VI size being signi#cantly improved by

BA and FA in terms of covered area VI size, respectively.

In conclusion, we have shown that nature-inspired metaheuris-

tics, especially BA, FA and PSO can be considered as powerful

solvers that can contribute to improving the information dissemi-

nation approach for VANETs discussed in this paper.

Several research lines will be tackled in the near future. In the

short-term, additional nature-inspired and evolutionary methods

[2, 17, 34] are planned to be included in the benchmark to assess

whether they are able to obtain better results. In addition, we intend

to solve the same problem using bigger scenarios, with a wider area

and composed by a higher number of vehicles. Finally, given the

characteristics of the problem addressed here, we would also plan

to model it as a dynamic optimization problem and as robust over

time optimization problem.
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