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ABSTRACT

Learning Classifier Systems (LCSs) are a unique machine learn-
ing paradigm. The probably most well-known and investigated in-
stance of these is XCS. LCSs, and with them, XCS, have developed
in parallel to mathematically more rigorously founded paradigms
such as today’s reinforcement learning. This is probably the rea-
son why XCS was initially defined without a formal basis. Nev-
ertheless, the pursuit of a formal understanding of XCS has been
one of the primary goals since its invention. Over the years, this
led to a large and seemingly underestimated body of formal anal-
ysis of it. We present our try at a comprehensive overview of the
various angles from which XCS was regarded formally. With this
paper, we aim at (1) mitigating the misconception we sometimes
observed that research on XCS contains some sort of ‘formal the-
ory gap’, (2) supporting researchers interested in formal advances
regarding XCS and (3) identifying future research directions.
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1 INTRODUCTION

Learning Classifier Systems (LCSs) look back on more than 40 years
of research since their invention by Holland; their first literature
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occurrence was in 1976 [35]. As an at that time entirely new and
intriguing concept, Holland’s ideas were adopted quickly which
led to the emersion of a whole new research direction.

Two decades later, Wilson revolutionized the field by devising
the XCS classifier system [68] which grew to be the most well-
known and investigated LCS today [44, 57, 65]. Initially, XCS was
merely defined algorithmically without a formal basis [23, 68]. Nev-
ertheless, there has been an effort of furthering a formal under-
standing of this algorithm from the very start. This resulted in a
large number of publications using formal theory to analyse differ-
ent aspects of the system.

1.1 Goal and approach
With this paper, we pursue three main contributions: We want to

(1) show that there is a lot of formal theory on XCS and thus
mitigate a misconception we observed, namely, that there
exists some ominous ‘formal theory gap’ in LCS research in
general and in XCS research in particular,

(2) provide a starting point for researchers new to the field that
are interested in formal advances in the domain of XCS, as
well as

(3) identify future research directions.

In order to achieve these goals, we present our attempt at a com-
prehensive overview of publications containing some sort of for-
mal analysis of XCS or its parts. We deliberately restrict ourselves
on research regarding XCS, since that system forms the basis for sev-
eral derivatives which have achieved competitive state-of-the-art
results in several application domains such as biomedical engineer-
ing [cf. e. g. 36, 66] and general supervised learning tasks [cf. e. g.
3, 52]. Because of our focus on formal work, we exclude various
equally important extensions to the original system that were de-
veloped in a less or entirely non-formal way (i. e. heavily relying
on empirical results, not using formal reasoning etc.).

Through its structure, our work is meant to facilitate a more
precise identification of aspects that should be investigated further
in the future or where a combination of existing facets is possible
as well as to help to uncover any actually existing gaps.

1.2 Structure of this paper

To increase its usefulness, our overview is not merely structured
chronologically but into sections with different topics. To accom-
plish this, we sorted publications dealing with similar concepts
into groups; some publications are part of several such groups as
these groups, to some extent, build upon each other. This segmen-
tation into groups is reflected by the sections succeeding Section 2,
where we give an overview of other literature reviews on LCSs.
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Note that at several places we provide more than one reference;
this is not to artificially blow up the bibliography but rather to
reach our goal of being truly comprehensive and to refer the reader
to other sources extending the content or looking at it from a dif-
ferent angle. This happens especially if a result was first presented
at a workshop or conference and later reiterated as part of a more
extensive book, book chapter or journal article.

2 FORMAL THEORY IN LCS LITERATURE
REVIEWS

Before starting out with our own literature review on formal XCS
theory, we want to appreciate existing literature reviews as well as
more holistic surveys on LCSs in general. The overall number of
review contributions is reasonable and each is coming with its own
specific perspective on looking at achievements and historical de-
velopments of LCS research. Note that we do not restrict ourselves
to XCS surveys in this particular section.

One of the first reviews was written by Wilson and Goldberg
in 1989 [72]. Besides numerous suggestions regarding algorithmic
details, the authors take a critical look at the preceding decade of
LCS research. They summarize the progress made from the incep-
tion of classifier systems! in 1971 up to the late 1980s. Although
certain aspects that need a deeper understanding are discussed,
this work barely mentions insights based on formal analysis ex-
cept for a somewhat unremarkable derivation of bids made by so-
called default and exception classifiers in the formation of default
hierarchies.

Ten years later, Lanzi and Riolo [45] published a follow-up. Once
more, the authors outline the preceding decade up to 1999 and elab-
orate on the main achievements as well as the main research direc-
tions that became apparent throughout that time. They include a
section on advanced topics where they summarize the first formal
advances on generalization, scalability and successful maintenance
of long action chains.

Shortly after, Wilson gave an overview of advances more spe-
cific to XCS [71]. In this publication, he emphasizes the relation be-
tween XCS and the mathematically well-grounded RL framework
(especially, Q-learning). Additionally, he points out the research on
generalization and population optimality available at the time and
sketches a ‘very tentative’ theory for the learning time complexity
of XCS.

In 2005, a book titled Foundations on Learning Classifier Systems
was released [10]; acknowledging that the interaction of genetic
algorithms (GAs) and reinforcement learning (RL) lacked under-
standing severely, its goal was to ‘bring together current work
aimed at understanding LCS in the hope that it will serve as a cat-
alyst to a concerted effort to produce such understanding’. Several
of the book’s chapters are reviewed in the remainder of this paper.
Also, its introduction chapter provides an overview of earlier re-
search on the foundations of LCS. However, the authors do not dis-
cern between formal and non-formal theoretical work and, since
they review literature on understanding LCS in general, XCS only
plays a secondary role. Furthermore, said book was published over
a decade ago; since then, many new insights have been gained.

! According to Bull [9] the prefix learning was used not until Goldberg’s work in
1985 [34].
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Two years later, in 2007, Sigaud and Wilson issued a survey ar-
ticle that focused on the notion of LCSs as generalizing systems
that solve multi-step? problems and can be brought in line with
the common RL notion [57]. Following a short historical outline,
the major systems that constitute milestones in RL-related LCS de-
velopment are presented: The Zeroth-level Classifier System (ZCS),
XCS and the Anticipatory Classifier System (ACS). Besides relating
LCSs to RL, this survey does not provide a dedicated section about
formal theoretical advances.

Only one year later, Lanzi published another review article [44].
This article can be seen as the second follow-up to Wilson and
Goldberg’s initial review as it once again recapitulates the preced-
ing decade of LCS research. After giving a brief retrospect, Lanzi
elaborates on the general characteristics that underlie all LCSs. The
section called ‘Is there any theory?’ is especially interesting for
the present paper as it briefly mentions a number of formal accom-
plishments. However, that section gets lost a little bit in the shuffle
of the many more topics covered.

The only other review we found (and that we are aware of)
about LCSs that directly gives an overview of formal advances is
another 2008 article by Bacardit et al. [1]. However since their goal
is to look at the whole LCS field including the Pittsburgh-style sys-
tems, the part on formal work understandably plays a minor role
and does not include everything there was at the time.

In the following year, Urbanowicz and Moore wrote another re-
view article on LCSs [65]. One distinguishing aspect of this work
is that it comprehensively lists descendants of the LCS family that
were developed since its foundation in the mid 1970s. Additionally,
it presents a so-called component roadmap that provides a generic
LCS, a system abstracted from more specific (Michigan-style) LCS
variants. Whereas LCS derivatives that have been explicitly cre-
ated to facilitate theoretical analysis are mentioned, this review
does not handle formal analysis of XCS as a central topic.

Another article that needs to be considered here is the review
paper Bull published in 2015 [9]. It gives an overview of the his-
torical development of LCSs from the initial Cognitive System One
(CS-1) up to XCS and more recent derivatives such as XCS for func-
tion approximation (XCSF) or XACS. A family tree showing which
system influenced which is included as well as schematics for the
most influential ones. In each of the corresponding sections, the
author also briefly refers to formal investigations.

The most recent work we want to refer to is the introductory
book on LCSs released by Urbanowicz and Browne in 2017 [64].
This book constitutes a short but comprehensive introduction to
the basics behind modern LCSs and contains several sections men-
tioning formal insights and their implications.

3 EARLY CONSIDERATIONS

After Wilson had laid out the foundations for XCS with his work
on it as an LCS whose genetic search is guided by rule accuracy
instead of strength [68], it did not take long until there was at least
a minimum of analytical considerations. While some of these were
not strictly formal, they altogether can be said to have paved the

2 Another term for this is sequential; however, multi-step is more commonly used in
LCS research.
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way for later, more formal, work. This early analytical work, in
parts formal, in parts not, is presented in the following sections.

3.1 The two hypotheses

In the very first paper about XCS, Wilson proposes what he calls
the generalization hypothesis which states that the combination of
the evolutionary pressures in XCS pushes towards more accurate
and maximally general classifiers at the same time [68]. While Wil-
son does not corroborate his hypothesis formally, his reasoning
about it is conclusive and can be said to have been the motivation
if not have formed the basis for much of the later formal work on
the evolutionary pressures in XCS (see Section 3.3). The same publi-
cation also contains a first—again, informal—attempt at an analogy
with Q-learning.

Besides classifier accuracy and maximal generality, a third im-
portant property of classifier populations exists: optimality, that is,
in addition to fulfilling the other two properties, using the small-
est possible set of classifiers. Kovacs’s optimality hypothesis states
that XCS is able to achieve this reliably as well under certain con-
ditions [37, 38]. Just like Wilson’s generalization hypothesis, this
hypothesis was not proven formally either; Kovacs derived it from
a number of observations and experiments.

3.2 Overgeneralization

In the years directly after XCS’s invention, there had been little
to no formal work as to why an accuracy-based LCS like XCS of-
ten times works so much better in practice than earlier strength-
based LCS. This changed with Kovacs’s work on comparing the
two directly [39]: He recounts (and restructures) several already
known or suspected disadvantages and advantages of XCS regard-
ing strength-based LCSs. In doing so, he loosely defines the prob-
lem of overgeneral classifiers that strength-based LCSs suffer from
and explains why it does not occur in XCS. Although this is not
done formally either, he makes a very strong point.

In a later work, Kovacs builds upon this by defining overgeneral
classifiers formally as well for both strength-based and accuracy-
based LCSs [40]. Based on this definition, he evaluates the fitness
landscapes generated by the combination of the reward function
and the chosen fitness scheme and proves a number of theorems
about it.

3.3 Evolutionary pressures

A large part of the existing formal analysis of XCS is—directly
or indirectly—based on analysing evolutionary pressures. Inspired
from GA theory, this research direction is often called facet-wise
approach since XCS’s parts (e. g. the RL component or the GA) are
first analysed each on its own in order to gain insights into the
system as a whole [11, 12]. Butz and Pelikan were the first who
went in this direction: In their seminal publication they distinguish
and investigate five different evolutionary pressures that drive XCS
(i. e. fitness, set, mutation, deletion and subsumption pressure) and
reason why their interaction results in XCS evolving accurate but
maximally general classifiers [20, 21]. The main tool they introduce
to do so is a formal analysis of the changes in classifier specificity
which they apply to the set, deletion and mutation pressure.
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Somewhat more detail and more elaborate explanations are also
provided by parts of other publications [17, 19]. Also, Butz’s disser-
tation [11] and the corresponding book [12] encompass and sum-
marize most if not all of the earlier theory on evolutionary pres-
sures in XCS.

4 ANALYSIS OF THE GA IN XCS

Since one of the unique charasteristics of LCSs in general and XCS
in particular is the GA used to optimize rule structure, it is not
surprising that this mechanism has been the focus of several pub-
lications trying to analyse XCS formally.

A first step in this direction was made by Bull, who developed
a Markov model of the GA and used it to show formally that an
accuracy-based GA is more stable than its strength-based counter-
part on single-step tasks [4, 6].

He also provides an analysis of the multi-step setting—albeit
with a different focus [5, 6]: The main result there is that if which
behaviour is optimal in one niche is dependant on the chosen be-
haviour in another niche the selection pressure can become very
unstable.

In the course of extending XCS with capabilities for integer- and
continuous-valued input, several interval-based representations for
the classifiers’ conditions have been proposed. In 2003, Stone and
Bull investigated the two, at that time, most prominent of these
with regard to whether they lead to a bias in the GA and thus to
overall performance differences [61, 62]. They conclude that this is
the case with both and introduce another representation that does
not suffer from this problem—the unordered bound representation.

Orriols-Puig et al. compare proportionate and tournament selec-
tion regimes in XCS’s GA [54]. They perform a takeover time anal-
ysis (a technique from GA theory) and derive that both in theory
and in practice the tournament selection regime can be expected
to be the more robust of the two.

Whereas early LCSs mostly relied on a panmitic GA, XCS and
other newer LCSs employ a niche GA which is usually thought
to be superior in learning tasks. As a starting point to proving—
or at least analysing—this superiority, Kovacs and Tindale derive
a classifier’s selection probability for both variants and manage to
formally quantify both the fitness bonus resulting from higher rule
generality as well as the fitness penalty resulting from rule overlap
in niche GAs. [42]

5 HYPERPARAMETER DERIVATION

XCS stars several hyperparameters (which we just call parame-
ters in the following): The algorithmic description [23], which only
deals with the most basic, binary string input, defines 20 already—
more elaborate derivatives capable of dealing with vectors of real
input add even more on top of that [70]. A number of these param-
eters have to be configured correctly; otherwise XCS may learn
only slowly or even fail to learn at all (e. g. due to a cover-delete
cycle [e.g. 16, 19]). Since XCS’s behaviour is so very dependent
on a good configuration, several questions arise: Are there bounds
on these parameters whose violation results in bad performance?
Is it possible to derive correct parameter settings from properties
of or assumptions about the task to solve and XCS’s algorithmic
structure? There has been put quite some effort into investigating
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these and related questions formally; the resulting publications are
presented in the upcoming sections.

5.1 Learning challenges

The first direction that formal research into XCS’s parameters took
was what Butz initially called learning challenges [11-13, 18, 19]
from which then parameter bounds were derived (see the next sec-
tion). Most of the theory on challenges and bounds is based directly
on the analysis of the evolutionary pressures in XCS which was al-
ready mentioned in Section 3.3. Note that in later publications, the
term challenge is hardly used any more; instead, discussions only
revolve around bounds [e. g. 58].

Challenges are preconditions that need to be fulfilled for XCS to
even have a chance to reliably solve a learning problem. Before fo-
cus shifted towards the bound-oriented view, two such challenges
were defined and investigated [11-13, 18, 19]:

o The covering challenge is met by an instance of XCS for a
certain learning task if any possible incoming input is cov-
ered by at least one classifier in a random population this
XCS instance could generate. Failing to fulfil this precondi-
tion results in a cover-delete cycle inhibiting the GA which
makes learning practically impossible.

The schema challenge is about XCS reliably generating clas-
sifiers that are part of a population that is a decent solution
candidate. Not solving this challenge means that XCS tends
to get stuck in a local optimum regarding rule structure.

5.2 Parameter bounds

Based on classifier specificity analysis (see Section 3.3) and the
learning challenges mentioned in the previous section, a number of
parameter bounds were derived. Most of these relate the parameter
for the maximum population size N to a learning task’s difficulty
(i. e. in terms of dimensionality or niche characteristics); however,
by transposing the resulting equations or by combining them with
others, bounds for some of the other parameters or for properties
of the learning problem can be derived as well.

The covering challenge already contains a bound for N which
is why itself is often simply called covering bound in later work [11,
12]. In addition to that, three more bounds have been derived:

e The schema bound for N (sometimes called representative
bound) ensures that classifiers with a high enough speci-
ficity are generated [11-13, 16, 17]. This also entails a bound
for the mutation rate parameter y given a learning task’s dif-
ficulty and some temporal threshold at which a certain rule
structure should be present in the population.

o The reproductive opportunity bound for N guarantees that
accurate classifiers get a chance to reproduce before being
deleted [11-13, 16, 17].

o The niche support bound for N ensures that XCS does not
forget what it has learned [11, 12, 15, 16, 22].

This concludes what we consider to be the seminal work on the
theory of learning challenges and bounds. The remainder of this
section shortly summarizes extensions for certain cases as well as
applications to specific XCS derivatives.
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Orriols-Puig et al. regard XCS’s performance on learning tasks
with class (or niche) imbalances; in the process, they analyse learn-
ing challenges and bounds [49, 51, 55]. For example, they derive a
bound for N [51, 55] as well as an upper bound on the imbalance ra-
tio between the different classes which in theory ensures learnabil-
ity [49]. They also extend their approach to XCS with real-valued
inputs (usually called XCSR) [53].

Another derivative of XCS is XCSF, a real-valued function ap-
proximator used for supervised learning (i. e. regression). Because
of its design, it is possible to derive the optimal value of N for XCSF
(if rules are required to be non-overlapping), which is what Stalph
et al. did [59]. They also transfer parts of the aforementioned chal-
lenges and bounds defined for the original XCS setting to XCSF
and elaborate on three aspects that have a significant impact on
learning performance, i. e. the representational power of the rules,
the learning problem’s complexity as well as the learning capac-
ity in terms of the population size and the number of training in-
stances [58, 60].

Debie and Shafi use techniques similar to the challenges and
bounds developed by Butz et al. to reason about sampling if the
input space is high-dimensional and thus the curse of dimensional-
ity impedes learning [24]. While they do not regard XCS itself but
its derivative for supervised learning, the Supervised Learning Clas-
sifier System (UCS), their findings seem to be applicable to either
system.

5.3 Parameter selection and online parameter
adaptation

Whereas the previous section looked at bounds on parameters, this
section lists several, more practically oriented publications that
give formally grounded guidelines for actually selecting certain pa-
rameters. Often, online parameter adaptation schemes have been
derived from such guidelines which shall find mention here as well.

Orriols-Puig et al. derive optimal values for the learning rate
p and the GA threshold ga in the face of class imbalance [49-
51]. They also develop an online adaptation mechanism for the
reproduction probabilities to account for such imbalances.

Nakata et al. establish a theory for deriving optimal parameter
values for XCS’s learning rate f, the target error ¢y as well as the
the GA threshold 0G4 [48]. The main assumptions made by them
are that, for the task to solve, the true accuracy of the best inac-
curate classifier has to be determinable and that a binary reward
scheme is applied.

Subsequently, they continued their work and investigated the
number of offspring classifiers produced by the GA [47]. Their re-
sults allow for extending XCS with means to reliably identify inac-
curate classifiers in the population; these classifiers can be deleted
without the risk of detrimental forgetting. This enables a scheme
for dynamically adjusting the number of offspring classifiers that
the GA creates via reproduction.

6 MODELS OF XCS

As mentioned before, XCS’s first description by Wilson did not pro-
vide a formal model; instead a more verbal form was chosen for its
definition [68]. Several years later, Butz and Wilson published an
algorithmic description of the system [23] that is often seen as a
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second official definition offering more details. While such an algo-
rithmic description is—mostly—unambiguous, it is not suited well
for formal analysis [56]. Because of that, there have been several ef-
forts to model XCS (or a simplified version of it) formally and then
analyse that model instead of the original XCS algorithm directly.
These are presented in the following sections.

6.1 Simplified models

Bull created YCS, a simplified version of XCS [7]. The main differ-
ence is that YCS sports a panmitic GA instead of XCS’s niche GA
leading to worse generalization capabilities. However, due to this
deviation, the author is able to create an infinite population model
of the resulting LCS.

In a later work, Bull compares YCS with the Minimal Classifier
System (MCS) (the corresponding ZCS analogue) and extends it
with a niche GA thus closing the gap to XCS [8]. For the analysis
of the resulting LCS he relies on Butz’s pressure theory that was
already presented in Section 3.3.

Another approach using a simplified model is the one by Wada
et al. who aim at transfering existing insights into the convergence
of the well-known Q-learning algorithm to XCS and ZCS (both
without a GA) [67]. They try to transform the update rules of these
LCS and Q-learning (which they augment with function approx-
imation capabilities) to a common representation. For XCS, this
does not pan out and they conclude that XCS is inconsistent with
the Q-learning derivative they consider—an implication that is not
undisputed [25].

6.2 Full models and formalizations

An early achievement in terms of creating a complete formal model
of LCSs is the work by Lanzi the result of which shows a high sim-
ilarity to XCS [43]. He replaces the Q-table of the Q-learning algo-
rithm with a population of LCS classifiers and then gradually devel-
ops a general LCS by adding generalization facilities; for those, he
considers both concept learning as well as GAs. He discusses the
advantages and drawbacks of these generalization methods and
identifies GAs as being more general and presumably more effi-
cient in practice.

Another holistic approach is the one pursued by Drugowitsch
and Barry who intent to formalize LCSs in a machine learning—
centric manner. First, they formalize the function approximation
done by LCSs [27, 31]. The resulting model is restricted to function
approximation (e. g. in the RL context, single-step value functions)
and a fixed number of classifiers. Since their model utilizes an ab-
stract feature vector, their formalization is more general than XCS
(it also encompasses XCSF as well as other derivatives). In this first,
slightly simplified setting, they are able to show that an alternative
update method based on Kalman filters is superior to the ones em-
ployed by XCS and XCSF. The second part of their work consists
of an investigation of the relationship and interaction between RL
and their earlier function approximation framework [28]. It con-
nects their formalization to dynamic programming methods (e. g.
value iteration) and temporal difference learning methods (e. g. Q-
learning) in a natural way. Another topic considered in the pro-
cess are general techniques for mixing local models to a global
one [30]; this work includes a formal examination of the mixing
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method of XCS. Together with Loiacono et al., the authors also
examine the error estimation of XCSF based on their function ap-
proximation model [46]. While Drugowitsch and Barry had ini-
tially planned to formalize classifier replacement as well—which
would have completed their model—this endeavour proved to be
unsuccessful since there could not be found a formal definition of
an optimal set of classifiers leaving the optimization process of clas-
sifier replacement without a target [25, 26]. Because of that, Dru-
gowitsch switched to a probabilistic, model-centred view which
was the topic of his dissertation [25] and the corresponding book
publication [26] and which is presented next.

Drugowitsch starts out with a formal description of the relevant
types of learning problems and, based on that, defines an LCS’s
model as a probabilistic set of classifiers. This model can be trained
using common methods from adaptive filter theory and statistical
machine learning. The target of LCS training should be an optimal
model, that is, an optimal set of classifiers which he defines based
on Bayesian model selection; to be able to perform that selection,
he augments his LCS model with priors resulting in a Bayesian
model that can be trained using variational Bayesian inference.
In order to be able to solve multi-step tasks, this in turn is com-
bined with RL. While the resulting learning method is very general
(more general than XCS, i.e. it also encompasses XCSF, for exam-
ple), neither of the two exemplary algorithmic implementations
Drugowitsch eventually proposes in his work is a Michigan-style
LCS like XCS; instead, he shows how to realize his learning method
using a Pittsburgh-style LCS as well as Markov Chain Monte Carlo
methods—leaving the more challenging Michigan-style realization
for future work. 25, 26]

Drugowitsch’s revised approach is applied to UCS by Edakunni
et al. [32, 33]. The result is a working probabilistic system model
based on the mixture of experts paradigm.

A more recent project with the goal of formalizing XCS relies on
an algebraic model which was created using functional program-
ming [56]. While this work is still in its infancy, the authors’ pro-
claimed goal is to close the gap between the aforementioned theory
created by Drugowitsch and Barry and the renowned algorithmic
description of XCS by Butz and Wilson.

7 LEARNING PROBLEM ANALYSIS

Another direction that XCS research took was analysing learning
problems. The overall idea of this is that by studying learning prob-
lems and whether XCS is able to solve them reliably, insights about
its behaviour can be gained. The larger part of the existing research
on this topic is not formal but mainly empirical; this is why even
though we present the more formal publications of this direction,
these are probably the least formal ones we are considering in our
review.

A very early discussion of the complexity of certain tasks (i.e.
multiplexer problems) can be found in a paper by Wilson [69].
He speculates conclusively that their difficulty is polynomial in
the number of accurate, maximally general classifiers; however, he
bases his suspicion mainly on a number of empirical observations
and defers a more in-depth analysis of it to future work.

The paper introducing the abovementioned challenges (see Sec-
tion 5.1) identified two properties of the reward functions of a class
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of learning tasks that inherently solve these challenges: layered
payoff and biased generality [18].

Kovacs and Kerber identify and compare several measures for
the difficulty of single-step problems in binary representation [41].
Their findings result in the proposition of a small test suite that
challenges XCS with learning tasks of different difficulty.

According to Tharakunnel et al., early benchmark tasks for XCS
could have been solved using a mutating GA without crossover
operator [63]. Based on two properties of learning problems, they
show why these learning tasks do not really challenge XCS’s gen-
eralization capabilities and devise simple alternatives that XCS can
barely solve because of them being accuracy-misleading (i.e. con-
catenated multiplexer problems). They conclude that the accuracy
definition has to be changed in order to be able to reliably and scal-
ably solve these tasks.

Bernadd-Mansilla and Ho develop a methodology to character-
ize the complexity of classification problems using a set of geomet-
rical descriptors [2]. They apply the result to several real-world
classification problems and find correlations between XCS’s per-
formance and certain properties of the learning task. Besides that,
they are able to identify learning problem characteristics which
make XCS advantageous over other, more traditional classification
schemes (e. g. nearest neighbour methods and decision trees).

The abovementioned work by Stone and Bull also discusses the
real multiplexer problem with regard to its suitability as a bench-
mark problem [61, 62]. They conclude that it is inappropriate be-
cause there seem to be unwanted interdependencies with the in-
terval representation (especially with the centre-spread represen-
tation) resulting in a positive sampling bias which ‘relieve[s] the
other mechanisms of XCS from much of the burden of solving the
real multiplexer problem because the solution to the problem hap-
pens to match the nature of the classifiers being generated’ [61, 62].

In the course of their analysis of XCS’s performance on learning
tasks with class imbalances, Orriols-Puig et al. develop two bench-
mark problems that enable an easy control of the complexity intro-
duced by the imbalance ratio [51, 55].

8 CONVERGENCE AND TIME BOUNDS

An important question that has to be answered for RL methods is
whether they converge and, if they do so, to the desired value. For
XCS, this question has not been answered conclusively—arguably
mainly due to the complexity introduced by the combination of RL
and the GA.

Butz et al. use a domino convergence model to derive a bound
on the time until maximally accurate classifiers are found; their re-
sults indicate that XCS scales in a machine learning competitive
way [11, 12, 14]. This work is built upon later when the same au-
thors prove that XCS can PAC-learn k-DNF problems [11, 12, 16].

In their aforementioned work, Wada et al. conclude that the RL
process of ZCS and an enhanced Q-learning with function approx-
imation capabilities is equivalent (as long as ZCS’s rule discovery
process is suppressed or during the periods between rule discov-
ery events) [67]. Although they try, they fail to prove something
similar for XCS and argue that XCS is therefore ‘inconsistent’ with
their Q-learning derivative (note that they do not, however, imply
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that this means that XCS does not converge). As mentioned before
though, this is a controversial result [25].

Based on their earlier work [28], Drugowitsch and Barry prove
convergence of their (then still slightly simplified) version of LCS
if the mixing weights of the classifiers are fixed [29]. They also out-
line a proof for the case that the mixing weights depend on clas-
sifier accuracy (which is the case in XCS) but defer that to future
work.

In his dissertation, Drugowitsch performs a convergence anal-
ysis of his already mentioned revised (and complete) formaliza-
tion [25, 26]. However, he does not come to a final conclusion.

9 DISCUSSION

In this section we want to briefly discuss the state of formal theory
on XCS and what we think should be the next steps.

We have shown with our work that there has happened a de-
cent amount of formal theory research on XCS in the past. How-
ever, the larger part of that happened before 2010; since then, only
few publications were made—despite there being still many open
questions.

9.1 Models

In our opinion, some of the models that were presented in Section 6
are, although in parts unfinished, very promising. Drugowitsch’s
work [25, 26] is by far the most advanced of these—in its extent, in
its generality and also in its prospect. Because of its sophistication
it is definitely a candidate for more formal analysis; perhaps even
for more proofs that finally lead towards stronger convergence as-
surances. Moreover, for identifying future research directions we
recommend his well-written discussion of his results and their con-
sequences for XCS and XCSF as well as the possible future research
directions he presents—this goes for both future research built on
his work directly and formal research on XCS in general.

9.2 Theory for real-valued learning problems

Large parts of the formal work on XCS is based on Butz’s evolu-
tionary pressures, challenges and bounds. The central assumption
of those is that the learning problem is binary encoded; this sim-
plification allows specific constructs (e. g. binomial distributions)
or methods (e. g. Markov chain analysis) to be used. Unfortunately,
these techniques are not available in the more general, real-valued
setting (i.e. XCSR or XCSF)—at least not without prior work, see
for example Stalph et al’s transfer of some of the formal analysis
of XCS to XCSF [58, 60].

To the best of our knowledge, up to now, only Orriols-Puig et al.,
Stalph et al., Loiacono et al. and Drugowitsch et al. have considered
analysing XCS with real-valued input or output [e. g. 25-28, 30, 31,
46, 53, 58-60]. However, to be able to solve relevant—and thus real-
world—learning tasks this feature is a must; its analysis is therefore
badly needed and should be catched up on.

9.3 Multi-step tasks

The third major topic that has to be dealt with formally more in-
depth are multi-step tasks since most of the formal research on
XCS assumes a single-step setting. While there are some excep-
tions [e. g. 5, 6, 11, 12, 25, 26, 28], XCS’s behaviour on the complete
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RL setting has not yet been formally examined in full and there is
still no conclusive answer (beyond empirical results) as to whether
the original XCS is a stable multi-step RL learner.

9.4 Hyperparameter selection and elimination

In order to really compete with (and perhaps outdo) other well-
known RL or ML methods such as Deep Q-learning, there also has
to be more work on hyperparameter selection: In practice, there is
still some arcane feeling to getting the hyperparameters right for a
certain learning task since only a small number of them were anal-
ysed formally. Moreover, with all that we already know, it might
be possible to eliminate some of the hyperparameters; for exam-
ple, some parts of the work Nakata et al. recently provided can be
understood that way [48].

10 SUMMARY AND FUTURE WORK

With this paper, we aimed at mitigating the misconception that
XCS is not backed by formal theory. We found many XCS-related
publications that conduct formal analysis but we also came upon
several vital open questions; nevertheless our goal of attenuating
that argument was hopefully still achieved. In the process, we pro-
vided researchers with a comprehensive survey on the most no-
table works regarding formal theory on XCS; to make the result us-
able as a reference text, we used—in our opinion—sensible section-
ing. Our research also enabled us to identify four major research
directions that deserve more attention in the future.

Our plans include to take another step towards a more thorough
and more detailed review of the formal advances in the field of LCS
research. We want to find a unifying notation that frames all (or
most) of the formally backed artifacts, that is, definitions, proved
propositions and formulated conjectures, into a tangible form.
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