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ABSTRACT
In this work we analyze, from a qualitative point-of-view, the struc-
ture of the connections among the local optima in the fitness land-
scapes of the Quadratic Assignment Problem (QAP). In particular,
we are interested in determining which search moves, intended as
pairwise exchanges of permutation items, are beneficial for mov-
ing from one optimum to another. Novel algebraic methods are
introduced for determining, and measuring the effectiveness, of the
exchange moves connecting two given optima. The analysis con-
siders real-like QAP instances whose local optima networks are
clustered in communities. The results of the conducted experimen-
tation shows the presence of few preferred search moves that look
more effective for moving across intra-community optima, while the
same is not so apparent when the optima are taken from different
communities.
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1 INTRODUCTION
Hard combinatorial optimization problems can often be efficiently
solved by using metaheuristic approaches, if one is ready to give up
strict global optimality. The solutions of these problems can often be
naturally represented by permutations of objects such as graph ver-
tices, jobs to be scheduled on given machines, colors of graph nodes,
and many others. As a consequence, metaheuristics often manipulate
problem solutions represented as permutations and thus it becomes
important to investigate the relationships between operations on
permutations and their effectiveness in searching a given problem
instance solution space. In this study, we use the Local Optima
Networks (LONs) [21] in order to have a compact representation
of a given problem instance fitness landscape. LONs are weighted
networks in which vertices represent the local optima of the fitness
landscape and the arcs represent probabilities of transitions between
optima through their respective basins of attraction. Using the Qua-
dratic Assignment Problem (QAP) as an example, we first generate
a number of LONs from the corresponding problem instances and
then we partition the LONs, which are complex networks, into the
corresponding communities of optima. These communities are used
later to determine efficient search moves in the permutation space.

Indeed, the main goal of this work is to verify the existence of
– and determine the – preferred search moves that allow to move
across different basins of attractions. In particular, we are interested
to the landscapes of the QAP using pairwise exchange of items as
search moves.

In order to perform such analysis, we start from the algebraic
interpretation of combinatorial search spaces first introduced in [26–
28] and further investigated in [2, 4, 7, 25]. Here, we extend this
algebraic framework by proposing a method for computing the pairs
of items – and not only their positions (as previously done in [2]) –
to be exchanged in order to move from one permutation to another
by using a minimal number of exchange moves. A concise, and
quick to compute, representation of such a set of pairs of items is
introduced together with a numeric computation of their importance
in moving between two given permutations.

These algebraic tools are then applied to the local optima belong-
ing to the considered LONs. By exploiting the clustered structure of
the LONs, both an intra-community and an inter-community analy-
ses have been designed. The former aims to detect the emergence of
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preferred search moves that allow to traverse the basins of the op-
tima belonging to a given community of the LON, while the latter is
intended to analyze the connections in the pairs of optima belonging
to different communities.

The results of the conducted experimentation show the presence
of more effective search moves connecting intra-community op-
tima, while the same observation is much less evident in the inter-
community analysis.

The paper is structured as follows. In the next section, we describe
the LON concept and the partition of LONs graphs into communi-
ties of optima. Section 3 briefly describes the Quadratic Assignment
Problem. Next, we present the algebraic representation of the per-
mutation space and the way in which search moves are computed.
Section 5 describes the conducted experimentation and the main
results obtained. Finally, Section 6 concludes the paper by also
drawing future lines of research.

2 LOCAL OPTIMA NETWORKS
The local optima network (LON) model for combinatorial land-
scapes was first proposed in [21], with follow up work appearing
in [23, 32]. In this network-based model, vertices correspond to
solutions that are optima of the associated combinatorial problem,
and edges correspond to weighted transitions among them. As a
first benchmark, the well studied family of abstract landscapes, the
Kauffman’s NK model, was investigated [16]. In this model the
ruggedness, and hence the difficulty of the landscape, can be tuned
from easy to hard by increasing the K parameter from 1 to N − 1.
Later work considered NK models incorporating neutrality,i.e., ex-
tended regions of equal or quasi-equal fitness [34]. When neutrality
is present, the single-solution local optima are replaced by the local
optima plateaus to capture the relevant structure of the search space.
Subsequently, more complex and realistic search spaces were stud-
ied: the quadratic assignment problem, the flow-shop problem, the
number partition problem, and the Euclidean TSP. Initially, weighted
edges represented an approximation to the probability of transition
between the basins associated to the edges’ ends in a given direction.
This definition, although informative, produced densely connected
networks and required exhaustive sampling of the basins of attrac-
tion. A second version, escape edges was proposed in [33], which
does not require a full computation of the basins. Instead, these
edges account for the chances of escaping a local optimum after a
controlled mutation (e.g. 1 or 2 bit-flips in binary space) followed
by hill-climbing (see below).

Let us now define LONs more formally starting from the well
known concept of a fitness landscape. A fitness landscape [8, 24]
is a triplet (X ,N , f ) where X is a finite set of feasible solutions i.e. a
search space; N : X −→ 2X , a neighborhood structure, is a function
that assigns to every x ∈ X a set of neighbors N (x), and f : X −→ R
is a fitness function that assigns a real value to the corresponding
solutions.

The present study considers search spaces in which feasible solu-
tions can be represented as permutations, e.g., as those generated by
QAP instances. For this case, a basic neighborhood structure is the
pairwise exchange operation which exchanges any two positions in
a permutation, thus transforming it into another permutation. This

gives a neighborhood size of n(n − 1)/2, where n is the problem in-
stance size. Here is how the LON graph for a given problem instance
is constructed.

The nodes in the network are local optima (LO) in the search
space. For a maximization problem, a solution x ∈ X is a local
optimum iff ∀x ′ ∈ N (x) f (x ′) ⩽ f (x). For a minimization problem
such as QAP, the inequality is reversed. Notice that in this work
we do not target specifically neutral fitness landscape with large
plateaus. However, this definition of local optima is still relevant
for small amounts of neutrality. For fitness landscape with high
levels of neutrality, please refer to the definitions of previous work
[34] where the nodes are local optima plateaus. LO are extracted
using a best-improvement hill-climber (hc), as given in Algorithm 1.
Thereby, when selecting the fittest neighbor (line 4), ties are broken
at random.

Algorithm 1 Best-improvement hill-climbing (maximization)

1: procedure HILLCLIMBING

2: x ← random initial solution
3: while x , Local Optimum do
4: set x ′ ∈ N (x), s.t. f (x ′) =maxy∈N (x ) f (y)
5: if f (x) < f (x ′) then
6: x ← x ′

7: end if
8: end while
9: end procedure

The escape edges in the network are defined according to a dis-
tance function dist and a positive integer D > 0. The distance func-
tion represents the minimal number of moves between two solutions
by a given search (mutation) operator. There is an edge ei j between
LOi and LO j if a solution x exists such that dist(x ,LOi ) ⩽ D and
hc(x) = LO j . In other words, if LO j can be reached after mutating
LOi and running hill-climbing from the mutated solution. The weight
w̃i j of this edge is w̃i j = ♯{x ∈ X | dist(x ,LOi ) ⩽ D and hc(x) =
LO j }. That is, the number of LOi mutations that reach LO j after
hill-climbing. This weight can be normalized by the total number of
solutions, ♯{x ∈ X | dist(x ,LOi ) ⩽ D}, within reach at distance D:
wi j = w̃i j/

∑
j w̃i j .

The weighted local optima network Gw = (N ,E) is the graph
where the nodes ni ∈ N are the local optima, and there is an edge
ei j ∈ E, with weight wi j , between two nodes ni and nj if wi j > 0.
Any operation that does not result in a transition to a neighboring
basin of attraction contributes to the weight wii , i.e., it introduces a
self-loop representing the probability that a move causes the search
to remain into the basin of the original local optimum. We thus have
wi j +wii = 1, ∀j ∈ N (i) for normalized weights.

According to the definition of weights, wi j may be different
from w ji . Thus, two weights are needed in general, and we have a
weighted, oriented transition graph Gw .

2.1 Communities of Optima in LONs
LONs are graphs with a possibly complex structure and, as such,
they can be studied with the methods of network science, see e.g., [9].
This is what was done in, e.g., [21, 23, 32, 34]. Among other impor-
tant features, complex networks usually show a clustered structure;
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in other words, one can distinguish in them groups of nodes that
are more strongly interconnected between them than with the rest
of the network. Those clusters are also called communities and
are a very important feature of real-world networks such as social
networks. It has been often assumed that optima in combinatorial
fitness landscapes are either uniformly distributed [14], or they con-
figure what is called a “massif central” or “big valley”, that is, the
optima are mainly clustered together in a single complex struc-
ture [10, 16]. However, recent research has shown that this need not
be the case [22]. Actually, in many cases the optima form clusters of
different sizes and the size of the clusters, as well as the fitness of the
respective optima have important consequences for the performance
of local search based metaheuristic [13, 15, 29]. In the present study
we use this knowledge as it applies to real-like instances of the QAP
problem, which is described in the next section, in order to find
moves in permutation space that efficiently connect local optima
between them.

3 THE QUADRATIC ASSIGNMENT
PROBLEM

The Quadratic Assignment Problem (QAP) [18] is a combinatorial
problem in which a set of facilities with given flows has to be as-
signed to a set of locations with given distances in such a way that
the sum of the product of flows and distances is minimized. A so-
lution to the QAP is generally written as a permutation π of the set
{1, 2, ...,n}. The cost associated with a permutation π is given by:

C(π ) =
n∑
i=1

n∑
j=1

ai jbπiπj

where n denotes the number of facilities/locations and A = {ai j }
and B = {bi j } are referred to as the distance and flow matrices,
respectively. The structure of these two matrices characterizes the
class of instances of the QAP problem.

The results presented in this article are based on the instance gen-
erators proposed in [17] which are in turn inspired by [31]. In [17] the
generators were devised for the multi-objective QAP, but are adapted
here for the single-objective QAP. For the sake of the present study,
we used the real-like generator which produces instances where the
distance and flow matrices have structured entries. To generate the
symmetric distance matrix, N points (integer coordinates) are ran-
domly distributed in a circle of radius 100, and the entries are given
by the distances between these N points. The flow matrix is also
symmetric with entries following the law ⌈10r ⌉ where r is a uniform
random integer from [L,U ]. This procedure generates non-uniformly
random instances of type Tainnb which have the so-called “real-like”
structure since they resemble the structure of QAP problems found
in practical applications.

4 SEARCH MOVES
In this work we consider the search space of the permutations of the
set {1, . . . ,n}, connected among them by search moves formed by
sequences of pairwise exchanges of permutation items (or simply
exchanges from now on).

As introduced in [1–3, 5, 6, 26, 27], such structured space has
an interesting algebraic interpretation that is here exploited in order

to concisely represent the exchanges involved in moving from one
permutation to another.

After recalling the required background in Section 4.1, we intro-
duce, in Section 4.2, an algebraic method that allows to identify and
concisely represent the exchange moves between two permutations.
Clearly, this method works for two generic permutations, though we
will employ it later on in order to find the connecting paths among
the local optima in a LON.

4.1 Algebraic structure of the permutation space
A permutation of the set [n] = {1, 2, . . . ,n} is a bijective function
π : [n] → [n]. Usually, a permutation π is interpreted as an ordering
of items, therefore π (i) indicates the item at position i in the ordering.
The set of all the permutations of [n] is denoted by Sn . Permutations
can be composed by means of the operator ◦. Given π , ρ ∈ Sn ,
σ = π ◦ ρ is defined as σ (i) = π (ρ(i)), for all i ∈ [n]. Sn forms a
group with respect to ◦, called symmetric group. Its neutral element
is the identity permutation e defined as e(i) = i, for all i ∈ [n],
while the inverse of π ∈ Sn is the permutation π−1 defined as
π−1(i) = j if and only if π (j) = i. Note that ◦ is associative and
non-commutative.

The group Sn is finitely generated, i.e., there exists a subset of
permutations, called generators, such that any other permutation
can be factorized in a product of finitely many generators. Sn has
multiple generating sets, each of them encoding a different kind
of search move (see [2, 7, 30]). Here, we consider the generating
set EXC ⊂ Sn defined as EXC = {ϵi j : 1 ≤ i < j ≤ n}, where ϵi j is
the identity permutation with the items i and j exchanged. Given a
generic π ∈ Sn , the composition

π ◦ ϵi j (1)

swaps the items at positions i and j in π . For example, let π =
⟨31542⟩, then π ◦ ϵ15 = ⟨31542⟩ ◦ ⟨52341⟩ = ⟨21543⟩. Hence, the
n(n − 1)/2 generators in EXC algebraically express the operations
required in order to move in the permutation space by means of
exchanges.

An important concept for any finitely generated group is its as-
sociated Cayley graph. For Sn generated by EXC, the Cayley graph
CG is the labeled graph whose vertices are all the permutations in
Sn and there is an arc from π to ρ labeled by ϵi j ∈ EXC if and only
if ρ = π ◦ ϵi j . Therefore, CG actually represents the permutation
search space equipped with its neighborhood structure as previously
introduced in Section 2.

For any pair of permutations, the shortest paths between them in
CG represent the sequences of exchanges required to transform one
permutation into the other. Formally, let π , ρ ∈ Sn and let us choose
the shortest path from π to ρ with arc-labels ϵi1 j1 , ϵi2 j2 , . . . , ϵik jk ,
then the following equivalence holds

π ◦ ϵi1 j1 ◦ ϵi2 j2 ◦ . . . ◦ ϵik jk = ρ. (2)

By left-composing both sides of the equivalence by π−1 we obtain

π−1 ◦ ρ = ϵi1 j1 ◦ ϵi2 j2 ◦ . . . ◦ ϵik jk . (3)

In general, there are multiple shortest paths between two permuta-
tions in the Cayley graph. Anyway, equation (3) continues to hold if
we replace its right hand side with a sequence of generators from any
other shortest path from π to ρ. Therefore, the permutation π−1 ◦ ρ
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is, in some sense, the difference between ρ and π . For this reason it
is also denoted as ρ ⊖ π (see [27]).

Often, we are given two endpoint permutations π and ρ and we
are required to compute one of the sequences of exchanges that
transform π into ρ. From equation (3), this is equivalent to one of
the factorizations of ρ ⊖ π = π−1 ◦ ρ in terms of the generators in
EXC.

For instance, this factorization can be computed using the algo-
rithm RandSS introduced in [2], which is based on the widely known
concept of cycles decomposition of a permutation [19]. Indeed, any
permutation can be decomposed in a product of cycles. A k-cycle of a
generic permutation π is a sequence of k items (π (i0), . . . ,π (ik−1))
such that, for any 0 ≤ j < k, the item π (i j ) appears at position
π (i(j−1) mod k ) in π . For example, the permutation ⟨26745831⟩ has
the following cycles decomposition (1268)(37)(4)(5).

It is important to note that: (i) e is the only permutation with
exactly n cycles (of length 1), and (ii) an exchange of items belong-
ing to the same cycle breaks the cycle into two new cycles, thus
increasing the number of cycles by one. Therefore, a factorization
can be obtained by iteratively choosing and applying an exchange
that breaks one of the cycles of the incumbent permutation till this
one becomes the identity. The sequence of exchanges, in reverse
order of application, is thus a factorization of the input permutation.
For further details see [2].

4.2 Computation of the search moves
Here, given two generic endpoint permutations π and ρ, our objective
is to concisely represent all the pairs of items that are required to be
exchanged in at least one of the alternative exchange sequences that
transform π into ρ.

Clearly, such alternative exchange sequences exactly correspond
to the shortest paths between π and ρ in the Cayley graph induced
by the generating set EXC.

Therefore, the idea is to use the cycles decomposition of ρ ⊖ π in
order to concisely represents all the exchanges we are looking for.
However, we have to take into account a subtle aspect of the algebraic
application of an exchange generator. Indeed, the expression in
equation (1) corresponds to swap the items at positions i and j in
π , while what we would like is a way to identify the items that are
exchanged, independently of their positions.

By considering that any permutation π is a bijection from po-
sitions to items, we can exchange two generic items i and j in π
by exchanging the items at positions i and j in π−1 and inverting
back the obtained permutation. Algebraically, this corresponds to
computing (

π−1 ◦ ϵi j
)−1
= ϵi j ◦ π , (4)

where the equivalence derives from a widely known group property
and the fact that ϵ−1i j = ϵi j for any ϵi j ∈ EXC.

The expression in equation (4) says that, in order to exchange
the items i and j in a given permutation π , we simply have to left-
compose π by ϵi j . This result can be clearly extended to exchanges’
sequences longer than one. Hence, given π , ρ ∈ Sn , the sequence of
exchanges from π to ρ, such that any exchange encodes the items
to be swapped – and not their positions – can be derived from the
equivalence

ϵik jk ◦ ϵi2 j2 ◦ . . . ◦ ϵi1 j1 ◦ π = ρ, (5)

which, by right composing both sides by π−1, implies

ρ ◦ π−1 = ϵik jk ◦ ϵi2 j2 ◦ . . . ◦ ϵi1 j1 . (6)

Using the difference notation, ρ ◦ π−1 = π−1 ⊖ ρ−1.
Therefore, the pairs of items to be exchanged, in at least one

shortest path between π and ρ, are exactly all the pairs of items
appearing in each cycles of π−1 ⊖ ρ−1. The cycles decomposition
of π−1 ⊖ ρ−1 can be computed in Θ(n) time and Θ(n) space. Note
that, since the number of different shortest paths connecting two
permutations is exponential in the distance between the endpoint
permutations, our representation is compact and quick to compute.

For the sake of clarity, we provide an illustrative example. Given
the permutations π and ρ such that π−1 ⊖ ρ−1 has the cycles decom-
position (1268)(37)(4)(5), then the pairs of items to be exchanged, in
at least one shortest path from π to ρ in the Cayley graph, are: (1, 2),
(1, 6), (1, 8), (2, 6), (2, 8), (6, 8), and (3, 7).

Beside representing the exchanges of items, an additional require-
ment for our experimentation is to count, for each exchange, in how
many shortest paths it appears. Clearly, this quantifies the importance
of such an exchange in transforming π into ρ.

Given the cycles decomposition of π−1 ⊖ ρ−1, this quantity de-
pends on: (i) the number of different factorizations that are possible
for any cycle in the decomposition, and (ii) the distance between the
two items in the cycles where they appear.

In the following, we provide some approximated formulae and
tabulations of such quantities. These have been derived by con-
sidering recursive counting procedures. We will investigate exact
counting procedures in a future work.

Formally, let π−1 ⊖ ρ−1 be formed by the cycles c1, c2, . . . , cL ,
and considering the exchange ϵi j between items belonging to the
cycle ck , then the approximated number Q(ϵi j ) of shortest paths,
between π and ρ, where ϵi j appears is given by

Qk (ϵi j ) =

(∏
t,k

R(length(ct ))

)
· S

(
length(ck ),∆

(ck )
i j

)
·M!, (7)

where: R(l) is the (approximated) number of factorizations of a cycle
of length l ; S(l ,∆) is the (approximated) number of factorizations of
the cycle, of length l , which contains the two items to exchange at
distance ∆ between them; and M is the number of cycles larger than
1.

Equation (7) can be described as follows. The items i and j can
only appear in one of the cycles. Therefore, we are free to decompose
the other cycles in any one of their possible factorizations (first factor
involving the function R), while, for the cycle containing i and j, we
have to count only the factorizations containing ϵi j (second factor
involving the function S). Finally, the third factor is due to the fact
that the cycles in a decomposition commute.

The approximated number of different factorizations of an l-cycle
can be computed by the following recurrence:

R(1) = 1
R(2) = 1
R(l) =

∑n−1
i=1

∑n
j=i+1 R(j − i)R(l − j + i).

(8)

Moreover, we have been able to computationally tabulate the approx-
imated quantities R and S for cycle lengths up to 11 (this is enough
for our experimentation). This quantities are provided in Table 1,
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where l indicates the cycle length, while the S values are provided
following the order S(l , 1), . . . , S(l , l − 1).

Table 1: Tabulation of the functions R and S

l R(l) S(l ,∆)

1 1 −

2 1 1
3 3 2, 2
4 14 8, 5, 8
5 85 45, 23, 23, 45
6 621 315, 144, 117, 144, 315
7 5236 2589, 1103, 796, 796, 1103, 2589
8 49680 24182, 9818, 6561, 5818, 6561, 9818, 24182
9 521721 251493, 98627, 62454, 51178, 51178, 62454,

98627, 251493
10 5994155 2872419, 1097626, 668017, 517642, 478071,

517642, 668017, 1097626, 2872419
11 74701055 35674928, 13363000, 7889908, 5864570, 5117644,

5117644, 5864570, 7889908, 13363000, 35674928

5 ANALISYS OF THE SEARCH MOVES IN
THE COMMUNITIES OF OPTIMA

The main goal of this paper is to verify the existence of preferred
search moves that allow to move across basins of a fitness landscape.
In particular, we are interested in the landscapes of the QAP using
pairwise exchange of items as search moves.

In order to perform our investigation, we have generated four QAP
instances as described in Section 3 (see also [17]): KCso11rl-1,
KCso11rl-2, KCso11rl-3, and KCso11rl-4. All of them
have size n = 11 and belong to the family of "real-like" instances.
The relatively small size makes it possible to exhaustively build
the complete LON, while the real-like structure should result in
communities of strongly interconnected optima.

Given an instance, after computing its LON, two different com-
munity finding algorithms from the R-based package igraph[12]
have been executed in order to obtain two different clusterizations
of the optima. The algorithms used are FastGreedy and WalkTrap
which are based on a hierarchical agglomeration algorithm and on
random walks respectively. We use two methods because different
community detection algorithms usually give similar but different
partitions of the graph nodes, given their heuristic character. For
the sake of example, Figure 1 depicts the clusterization obtained by
WalkTrap on the LON of KCso11rl-1.

Once the optima are clustered into communities [20], two dif-
ferent analyses have been performed: intra-community and inter-
community analyses. Both of them are based on the scheme depicted
in Algorithm 2.

The function AnalyzeExchanges of Algorithm 2 takes as input
a set S of pairs of permutations and returns a (upper triangular)
matrix Z such that Zi j counts in how many paths, connecting pairs
of solutions in S , appears the exchange ϵi j . Therefore, Zi j measures
how much it is important to swap the items i and j in order to move
between the permutations in S . Clearly, when the pairs in S are local
optima, these quantities identifies the exchanges that are more prone
to allow moves across the basins of a fitness landscape.

Figure 1: Clusterization of KCso11rl-1 obtained by WalkTrap

Algorithm 2 Computation of the importance of the exchanges in
order to move among a set of permutations

1: function ANALYZEEXCHANGES(S ⊂ Sn × Sn )
2: Zi j ← 0 for all 1 < i < j ≤ n
3: for all pairs of permutations π , ρ ∈ S do
4: Compute the cycles decomposition of π−1 ⊖ ρ−1

5: for all cycles c of π−1 ⊖ ρ−1 do
6: for all pairs of items i, j ∈ c do
7: Zi j ← Zi j +Qk (ϵi j ) ▷ see equation (7)
8: end for
9: end for

10: end for
11: return Z
12: end function

The intra-community and inter-community analyses differ for the
set of optima provided in input to AnalyzeExchanges.

Intra-Community Analysis. For each one of the k communities
in a LON, AnalyzeExchanges is run on all the pairs of local optima
in the community. Hence, k matrices of Z -values are produced, one
per community.

Inter-Community Analysis. In this case, AnalyzeExchanges is
executed only once by taking as input all the pairs LOi ,LO j of local
optima such that LOi belongs to a different community with respect
to LO j .

Since the optima inside a community are more likely to be
strongly connected among them, our expectation is to observe more
"concentrated" values on the Z matrices produced by the intra-
community analysis than on those obtained from the inter-community
analysis.
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5.1 Experimental results
Since we have considered 4 instances and 2 community finding
algorithms, we have run our intra-community and inter-community
analyses on 8 clusterized LONs.

Furthermore, we have computed the Gini index on every Z matrix
produced. The Gini index is a measure of statistical dispersion very
popular in economy [11]. It takes as input a set of non-negative
values and returns a number in [0, 1]. As extreme cases, it returns 0
when all the input values are equal and 1 when all the values are zero
except one. Clearly, since in our scenario is practically impossible
to have all the "mass" concentrated in a single Z -value, a Gini index
around 0.5 has been empirically verified to produce a "concentrated"
distribution among the exchanges.

In Figure 2, we provide illustrations of the Z matrices computed
on the LON of the KCso11rl-1 instance clustered by means of
the algorithm WalkTrap. The first six heatmaps correspond to the
Z matrices of the six communities found by the intra-community
analysis, while the last one depicts the inter-community Z matrix.
The lower triangular part of every heatmap is set to zero, while the
color of the every entry (i, j), such that i < j, is hotter when the corre-
sponding Zi j value is larger. Moreover, the caption of every heatmap
provides the value of the Gini index computed on the corresponding
matrix. For the sake of space, the heatmaps of the other instances
are provided online at this link https://bit.ly/2FScdTB.

Both the graphical illustrations and the Gini indices of Figure 2
indicate the emergence of (relatively) few preferred pairs of items
to exchange in order to move between intra-community optima.
However, as expected, such observation is much less evident on the
output of the inter-community analysis. Also the Gini index of the
inter-community matrix is less than half of the smallest Gini index
obtained by the intra-community analyses.

The same indications seem to be confirmed by the data provided
in Table 2. Here, for each pair "instance + community finding al-
gorithm", it is provided: the number of communities in the LON,
the average and the standard deviation of the intra-community Gini
indexes, and the inter-community Gini index. Even here, the inter-
community Gini index is sensibly smaller than the average intra-
community Gini index in all the instances and regardless of the
community finding algorithm. The only exception is the LON of
the instance KCso11rl-2 clusterized by means of WalkTrap. Note
anyway that, in this case, the LON has only two communities. There-
fore, it looks likely that, more clustered is a LON easier is to observe
the emergence of few search moves that interconnect different local
optima in the landscape.

6 CONCLUSION AND FUTURE WORK
In this work, we have proposed an experimental analysis aiming to
determine the existence of preferred search moves that interconnect
local optima belonging to a same community or different communi-
ties of a given clusterized LON. The LONs have been exhaustively
computed on some small and real-like instances of the Quadratic
Assignment Problem. Nevertheless, this clusterized structure can be
found also in other important combinatorial optimization problems,
thereby it is likely that the present analysis can be extended to other
general cases.

Our investigation revealed that a small number of preferred search
moves are more important for moving across optima belonging to the
same community, while this result is less apparent when the optima
belong to different communities. To the best of our knowledge, this
is the first study aiming to determine the search moves – and not
only their quantities – that interconnect different basins of attractions
in a fitness landscape. The investigation has been possible by using
together consolidated fitness landscape analysis concepts, network
analysis tools, and algebraic methods.

This work represents a first step of a research which can be ex-
tended along several possible lines like, for instance, the application
to other permutation problems and the study of larger instances by
using local optima sampling and approximated methodologies. Fur-
thermore, this work can be the basis for a deeper investigation which
can be used to improve the performances of metaheuristic search
algorithmS.
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Figure 2: Heatmaps of the instance KCso11rl-1 clustered by WalkTrap
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