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ABSTRACT
This paper proposes an evolutionary approach to solve the Inven-
tory Routing Problem (IRP) using knowledge extracted from Local
Optima Networks (LONs). Solving the IRP involves a simultane-
ous optimization of the transportation routes and the inventory
levels. One of important steps in solving IRP is determining the op-
timal route of each supplying vehicle for each date of the planning
horizon. As the transportation cost is based only on the distance
matrix, constant in time and independent of the supplying vehicle,
this step consists of solving a TSP problem on a certain subset of
facilities. This paper aims at improving solving IRP by deriving
some knowledge on the full TSP problem and reusing it in solving
TSP sub-problems. Experiments carried out on popular benchmark
IRP instances prove that using the knowledge derived from LONs
increases the efficiency of the evolutionary algorithm and the pro-
posed approach outperforms simple evolutionary algorithms in
solving IRP.
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1 INTRODUCTION
This paper concerns the Inventory Routing Problem (IRP) [4, 6]
which is an extension of the Vehicle Routing Problem (VRP) [11]
combining routing optimization with inventory management op-
timization [1, 2]. In the IRP, the distribution of a single product
provided by a single supplier to a number of retailers has to be
planned. Each day the supplier produces a given, constant quan-
tity of the product, and the retailers sell varying quantities of this
product. Limited storage space is available both at the supplier and
the retailers. Storage costs are calculated per unit of the product
per day at a rate varying from location to location. The objective in
the IRP is to optimize the inventory and transportation costs under
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a number of constraints on a capacity of a fleet of vehicles deliver-
ing goods, costs and limits of local inventories, etc. A solution of
the IRP is a distribution schedule for a planning horizon of T days
along with routes for vehicles delivering the product.

To date, many approaches to IRP have been studied in the lit-
erature. Some of these approaches have been based on integer
programming and methods such as the branch-and-cut algorithm
[2]. In some works heuristics and meta-heuristics [3, 8, 12] were
used. Hybrid methods have also been proposed, for example com-
bining simulated annealing and direct search [7] or tabu search
[13]. In some approaches the IRP was reformulated as a stochas-
tic optimization problem and was solved using hybrid algorithms
combining simulation and heuristics [9, 10]. Apart from the regular
IRP, many extensions were also considered, such as the IRP with
transshipment [5], the stochastic IRP [15], the IRP with perishable
products [8], the IRP with uncertain demands [7] or the IRP with
stock-outs [9, 10].

In the IRP, two kinds of costs have to be minimized. The inven-
tory management costs arise from the need for storing enough of
the product to ensure uninterrupted sales at the retailers. Obviously,
the product has to be transported from the supplier to the retailers
and the transportation also incurs costs. Therefore one part of the
problem is to optimize inventory management and thus provide
a schedule for the distribution of the product to retailers resulting
in possibly low storage costs. The other part of the problem is route
optimization which requires finding the best possible routes for the
fleet of vehicles for successive days of the planning horizon.

As stated above, solving the IRP requires determining the opti-
mal route of each supplying vehicle for each day of the planning
horizon. The transportation cost is based only on the distance ma-
trix, constant in time and independent of the supplying vehicle.
However, on different days it may be required to plan routes visit-
ing different retailers, because an optimized inventory management
schedule may require supplying the product to certain retailers only
on chosen days, not everyday. Consequently, route optimization
in the IRP consists of solving the Travelling Salesman Problem
(TSP) on many subsets of the set of all facilities. Solving these TSP
sub-problems efficiently is crucial to solving the entire IRP, because
an inefficient route for one supplying vehicle and one date of the
planning horizon may increase the cost of the entire IRP solution
and make it non-optimal, even if the inventory management is
the same as in the optimal IRP solution [12]. Clearly, the IRP, is
a generalization of the TSP, and therefore it is itself an NP-hard
problem. However, the fact that the planned routes visit multiple
subsets of the same set of locations suggests that some advantage
may be obtained from analyzing the TSP on the full set of locations.
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This paper proposes an approach in which knowledge about
local optima of the full TSP problem is represented using the Local
Optima Network (LON) [14, 16, 17] and is subsequently used when
solving the TSP sub-problems. The proposed approach is used in
a hybrid algorithm solving the Inventory Routing Problem (IRP).
The algorithm presented in this paper combines evolutionary opti-
mization with a Simulated Annealing solution improvement that
uses knowledge extracted from LON generated for the Travelling
Salesman Problem for the full set of locations.

2 INVENTORY ROUTING PROBLEM
The Inventory Routing Problem (IRP) solved in this paper concerns
using a fleet ofv vehicles of a fixed capacityC for delivering a single
product from a supplier facility S to a given number n of retailer
facilities R1,R2, . . . ,Rn . The supplier S produces a constant number
p0 of units of the product each day. The retailer Ri (i = 1, 2, . . . ,n),
sells pi units of the product per day. The supplier stores produced
units in a local inventory, which contains the initial number l (init )0
units of the product on the starting date t = 0. The lower and upper
limits for the inventory level are l (min)

0 and l
(max )
0 , respectively.

The cost of storing the product in the supplier’s inventory is c0 per
item per day. Inventories of the retailers are modelled in a similar
manner. Each retailer Ri , for i = 1, 2, . . . ,n, has a local inventory,
which contains the initial number l (init )i units of the product on the
starting date t = 0. The lower and upper limits for the inventory
level are l (min)

i and l
(max )
i , respectively. The cost of storing the

product in the retailer’s inventory is ci per item per day. In the
Inventory Routing Problem a delivery schedule must be found along
with routes for vehicles delivering the product. For a given planning
horizon T , for each date t = 1, 2, . . . ,T , the following elements of
the solution have to be determined:

• retailers to supply on the date t ,
• the amount of the product to deliver to each of these retailers,
• the route of each supplying vehicle

The solution of the IRP can formally be described as a pair (R,Q),
in which R = (r1, r2, . . . , rT ) is a list of routes on the successive
dates t = 1, 2, . . . ,T , and Q ∈ Rn×T is a matrix of column vectors
q1, q2, . . . , qT which contains the quantities to deliver to each re-
tailer on the successive dates t = 1, 2, . . . ,T . Each route rt , where
t = 1, 2, . . . ,T is a permutation of a certain subset of retailers. If
a retailer is not included in the route on the date t , the correspond-
ing quantity encoded in the vector qt equals 0. The IRP aims at
minimizing the total cost, which is the sum of the inventory costs
and the transportation costs, i.e.:

cost(solution) =
T+1∑
t=1

(lt0 · c0 +
n∑
i=1

lti · ci ) +
T∑
t=1

cttransp , (1)

where lt0 denotes the inventory level of the supplier S on the
date t , lti denotes the inventory level of the retailer Ri on the date
t , and cttransp denotes the transportation costs for the supplying
vehicle on the date t . The routes of the vehicles determine the
transportation cost, which is calculated using a given distance
matrix defining the transportation costs between each two facilities.

Table 1 and Figure 1 present an example of an IRP instance,
with n = 10 retailers, the planning horizon T = 3, and a fleet of
one vehicle, along with the optimal solution. Table 1 shows the
parameters of the problem instance: the inventory costs, lower and
upper limits for the inventory level, the amount of the supplier’s
daily production, and the amount of the daily consumption of the
retailers. In this table the levels of inventories on the successive
dates of the planning horizon for the optimal solution are also given.
In Figure 1 (a) locations of the facilities are presented. In Figure 1
(b) - (c) the routes included in the optimal solution are presented
for the successive dates of the planning horizon. The inventory
costs for each day of the planning horizon are 76.4, 76.47, 76.52,
and 75.98, respectively. The transportation costs are 531, 1237, 94,
respectively. The total solution cost equals 2167.37.

3 LOCAL OPTIMA NETWORKS
One of important steps in solving IRP is determining the optimal
route of each supplying vehicle for each date of the planning hori-
zon. As the transportation cost is based only on the distance matrix,
constant in time and independent of the supplying vehicle, this step
consists of solving a TSP problem on a certain subset of facilities
(assigned to the given supplying vehicle on the given date).

This paper aims at improving solving IRP by deriving some
knowledge on the full TSP problem and reusing it in solving TSP
sub-problems.

Consider the Travelling Salesman Problem (TSP) with a graph
G of n + 1 nodes, R0 = S,R1,R2, . . . ,Rn , and a distance matrix
D ∈ R(n+1)×(n+1). Let p = (p0,p1,p2, . . . ,pn ) denote a candidate
solution, being a permutation of the indices of the nodes, represent-
ing a Hamiltonian route (Rp0 , Rp1 , Rp2 , . . . , Rpn , Rp0 ) in the graph
G. Let F denote the objective function, i.e.

F (p) =
n−1∑
i=0

D[pi ,pi+1] + D[pn ,p1] (2)

be the cost of the solution p.
Local Optima Network (LON) is a graph L = (V ,E), where each

node v ∈ V is a local optimum, and each edge e ∈ E represents
a possibility of passing from one local optimum to another by local
search, more precisely, using the Chained Lin-Kernighan (CLK)
heuristic [14].

The Lin-Kernighan (LK) heuristic is a local search algorithm
based on k-exchange moves. It starts with an initial route p, re-
moves k different, randomly chosen, segments from the route, and
reconnects the broken route so that it is valid again (this is the
k-exchange move). It repeats the procedure a given number of iter-
ations. A candidate solution p is k-opt if there are no k-exchange
moves that improve it.

The Chained Lin-Kernighan (CLK) is an iterative local search
algorithm based on LK. It starts with an initial candidate solution p,
improves it using LK producing a base candidate solution p̂ = LK(p),
randomlymutates the base candidate solution p̂ creating a candidate
solution q, improves it using LK producing a new candidate solution
q̂ = LK(q), and applies the procedure again to the new candidate
solution q̂ as the base candidate solution if it outperforms the old
base candidate solution p̂, or to the old base candidate solution p̂
otherwise. It stops after a given number of iterations.
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Table 1: Illustration of the definition of the IRP - levels of inventories

S R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
min inv. level 0 0 0 0 0 0 0 0 0 0 0
max inv. level - 174 28 258 150 126 138 237 129 154 189
inv. cost 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.04 0.04 0.02 0.04
production 635 - - - - - - - - - -
consumption - 87 14 86 75 42 69 79 43 77 63
inv. at t = 0 1583 87 14 172 75 84 69 158 86 77 126
inv. at t = 1 2003 0 0 86 75 42 0 79 43 77 126
inv. at t = 2 1721 87 14 172 0 84 69 158 86 77 63
inv. at t = 3 2206 0 0 86 75 42 0 79 43 0 0
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Figure 1: Illustration of the definition of the IRP - routes in the optimal solution

In order to create a LON, CLK is run multiple times, each time
initialized with a random initial candidate solution p. All local
optima produced by LK are registered, as well as, all passes from
one local optimum to another. The LON includes also the statistics
how many times each node was reached (i.e. how many times

a given local optimum was generated), and how many times each
edge was traversed (i.e. how many times a given local optimum
was transformed into another one).
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Figure 2 presents an example of the LON for a selected bench-
mark. In fact, it presents only a selected subset of 200 most im-
portant nodes of more than 8000 nodes discovered by CLK and
the most important edges between them. It is easy to see how one
optimum may be transformed to another by local search, and also,
how some local optima may be transformed to global ones by local
search. Figure 3 presents an example of the LON with 400 most
important nodes.

Figure 2: LON with 200most important nodes (large dots de-
note sink nodes, i.e. the local optima that CLK could not im-
prove using the iterative local search; red color highlights
the global optimum and the local optima transformed into
it in the CLK process)

Figure 3: LON with 400most important nodes (large dots de-
note sink nodes, i.e. the local optima that CLK could not im-
prove using the iterative local search; red color highlights
the global optimum and the local optima transformed into
it in the CLK process)

4 DERIVING KNOWLEDGE FROM LONS
The first goal of this paper is to focus on deriving knowledge from
LONs and using it in solving optimization problems.

Figure 4 presents the frequencies of nodes in CLK. One may
see that some nodes are definitely more frequent than others. Such
frequencies may be used to estimate the probability P(p̂) of reaching
the local optimum p̂. Figure 5 presents the correlation between
frequency and cost of nodes. There is no strong correlation between

frequency and cost of nodes, but it is easy to see that good solutions
are more frequent than weak ones in CLK.
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Figure 4: Frequencies of nodes
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Figure 5: Correlation between frequency and cost

Figure 6 presents the frequencies of edges, i.e. transitions be-
tween nodes, in CLK. One may see that some directions are defi-
nitely more frequent than others. Such frequencies may be used to
estimate the conditional probability P(q̂|p̂) of moving from the local
optimum p̂ to the local optimum q̂ (after a type of normalization).
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Figure 6: Frequencies of edges

Figure 7 presents the transition probability matrix (in fact, a part
of it for 40most frequent nodes), i.e. the probabilities of a transition
from the i-th node to the j-th node, estimated on the basis of the
frequencies of edges.

Such a transition probability matrix defines a probability distribu-
tion P(q|p) corresponding to the probability that, in the local search
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Figure 7: Transition Probability Matrix

algorithm, the candidate solution corresponding to the local opti-
mum pwill be transformed to the candidate solution corresponding
to the local optimum q.

5 USING LONS FOR SOLVING TSP
SUB-PROBLEMS

Having the LON constructed for the full TSP problem, we inves-
tigate whether the LON may be helpful in solving optimization
problems being a sub-problems of the original one.

Consider a sub-problem of the TSP from Section 3, i.e. a TSP with
a graph G0 ⊂ G withm + 1 < n + 1 nodes,M0,M1,M2, . . . ,Mm ∈
{R0,R1,R2, . . . ,Rn } (without the loss of generality, we assume that
M0 = R0, because each TSP sub-problem considered in IRP always
contain the depot R0), and a distance matrix T0 ∈ Rm×m derived
from the distance matrix T.

Based on the LON L constructed for the original TSP problem,
a new LONL0 for the sub-problemmay be constructed by mapping
each node p of L into p̃ by removing from the route p the nodes of
G not existing in G0 and mapping the edges accordingly.

Certainly, such mappings of nodes may not be local optima of the
sub-problem, so the created LON would be less accurate estimation
than a LON created from scratch using CLK. Nevertheless, further
studies suggest that it may improve solving the sub-problem.

A simple approach to prove that LONs may improve solving
TSP sub-problems concerns the improved Simulated Annealing
algorithm with Local Optima Networks (SA-LON), where the prob-
abilities of mutating one local optimum p into another local opti-
mum q are defined by P(q|p). For each benchmark sub-problem,
the regular SA algorithm (where the initial solution was randomly
chosen from the entire search space) was compared against its
improvement SA-LON where the initial solution was randomly
chosen from the 100 most promising L0 nodes. Figure 8 presents
the histogram of results found by the regular SA and the improved
SA with LON. Clearly, SA-LON was capable of finding the optimal

solution in all the cases, while SA gave worst solutions in about
35% of cases. Results strongly suggest that using the knowledge
from L0 significantly improves the optimization process.

6 EVOLUTIONARY APPROACH
The SA-LON improvement operator proposed in this paper is used
in an evolutionary algorithm solving the Inventory Routing Prob-
lem. The SA-LON mechanism solves the TSP sub-problems using
the LON for the entire TSP problem.

Apart from the SA-LON solution improvement the evolution-
ary algorithm uses dedicated operators based on some heuristic
knowledge from practitioners in the field. The heuristic knowledge
from practitioners is essential, because even simple instances of
the IRP are difficult to solve with regular search methods. With-
out additional knowledge on supplying policies, routing strategies,
etc. even generating feasible solutions for the initial population
becomes a challenge. In the evolutionary algorithm used in this
paper, some well-known practitioner techniques are used in order
to first generate feasible solutions (for the initial population) and
later to transform feasible solutions into new ones without breaking
their feasibility (in the mutation operators).

The evolutionary algorithm called LON-based Evolutionary Al-
gorithm for Inventory Routing Problem (LON-EA-IRP) is presented
in Algorithm 1. The initial population P1 is generated using the
Init-Population method (Section 6.2). The population is evolved
iteratively by the main loop of the LON-EA-IRP algorithm which is
repeated τ times. In each generation, the current population Pt is
evaluated, the offspring population P ′t is created, and the next pop-
ulation Pt+1 is selected from the union of Pt and P ′t . For generating
the offspring population four operators are used: Recombination
(Section 6.3), Simulated Annealing improvement using LONs (SA-
LON, Section 6.4), Date-Changing Mutation (Mut-DM, Section 6.5)
and Order-Changing Mutation (Mut-OM, Section 6.6).

Algorithm 1 LON-EA-IRP

P1 = Init-Population(N )
for t = 1 → τ do

Evaluate(Pt )
P ′t = ∅
for k = 1 → M do

Parents = Parent-Selection(Pt )
Offprings = Recombination(Parents)
Offprings = SA-LON(Offprings)
Offprings = Mut-DM(Offprings)
Offprings = Mut-OM(Offprings)
P ′t = P ′t ∪ {Offprings}

end for
Pt+1 = Replacement(Pt ∪ P ′t )

end for

6.1 Search Space and Solution Encoding
A solution to the IRP is a pair (R,Q) consisting of a list of routes R =
(r1, r2, . . . , rT ) for each date and the quantitiesQ = [q1, q2, . . . , qT ]
to deliver to each retailer on each date of the planning horizon, as
described in Section 2.
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In many practical approaches the search space of the IRP is
reduced by employing a general supplying policy instead of defining
individual quantities to deliver to each retailer. In this paper the
up-to-level supplying policy is used. This policy assumes that each
retailer is always supplied up to the upper level of its inventory (if
it is visited by the delivery vehicle on a given date) or not supplied
at all on a given date (if it is not visited by the delivery vehicle
on this date). If this approach is adopted, the candidate solution
in the evolutionary algorithm consists only of the list of routes
R and the quantities Q can be determined using the supplying
policy. Obviously, fixing the supplying policy limits the flexibility
of solutions found by the algorithm, but this approach is frequently
used in solving the IRP to limit the search space and it usually
succeeds in providing efficient solutions.

6.2 Initial Population
Because of the large number of constraints generating an initial
population for the IRP is itself a challenge. Population initialization
used in this paper starts from a base solution and constructs the
required number of solutions by mutating the base solution. The
base solution is created according to a strategy commonly used by
practitioners which tries to supply each retailer on the latest date
possible before its inventory runs out. This strategy consists of the
following steps:

(1) For each date t = 1, 2, . . . ,T , a set Rt of retailers that must
be supplied on the date t to avoid the shortage of their in-
ventories on the next date t + 1 is determined.

(2) The quantities to deliver are determined according to the up-
to-level supplying policy, i.e. the retailer is always supplied
up to the upper level of its inventory.

(3) The routes of the vehicles are determined in a greedymanner.
Each retailer R from the set Rt is considered in turn (in
a random order) and for this retailer:
• For each vehicle j = 1, 2, . . . ,v , an attempt to add the re-
tailer R to the route of the vehicle j is made, if the quantity
Q to deliver to retailer R does not cause the maximum
capacity of the vehicle to be exceeded.

• The retailer R is at first added between the supplier node
and the first node on the route and the transportation cost
is evaluated

• Then, the retailer R is shifted between the first and the
second node on the original route and the transportation
cost is evaluated, etc.

• The retailer R is assigned to the vehicle and to the po-
sition on the route of the vehicle that has the minimal
transportation cost.

• It may happen that all the vehicles are overloaded and the
quantity Q cannot be delivered on the date t . Then, the
strategy tries to shift the retailer to an earlier date and
find, in a similar manner, a route to which the quantity Q
could be added.

6.3 Recombination Operator
The recombination operator produces one offspring solution R̃
based on T parent solutions R(1),R(2), . . . ,R(T ), where T is the
planning horizon. The offspring solution is constructed in such
a way that the route for each day t in the planning horizon is
taken from a different parent solution. Let π = (π1,π2, . . . ,πT ) be
a random permutation of the numbers 1, 2, . . . ,T . The offspring
generated by the recombination operator is defined as:

r̃i = r(πi )i , for i = 1, 2, . . . ,T . (3)

If the offspring solution is not feasible, a new random permuta-
tion is generated and a new offspring is generated. This process is
repeated at mostκR times, whereκR is a parameter of the algorithm.
If no feasible offspring is generated, the recombination operator
copies one of the parent solutions randomly chosen with uniform
probability 1/T .

At the beginning of the optimization run solutions in the popula-
tion are usually quite different and parts of different parent solutions
cannot be combined into a feasible solution. Consequently, the re-
combination operator cannot produce the offspring using equation
(3). With time, however, the population converges and parts of par-
ent solutions become more similar. Then, many offspring solutions
produced using equation (3) are feasible.
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6.4 Simulated Annealing improvement using
LONs (SA-LON)

The SA-LON improvement operator takes one solution R and im-
proves all its routes ri , for i = 1, 2, . . . ,T , using Simulated Anneal-
ing with Local Optima Network, as described in Section 5, on the
basis of the knowledge discovered in the Local Optima Network.
It consists in optimizing each route in the TSP sub-problem using
the LON for the TSP sub-problem generated from the LON for the
entire TSP problem and the SA-LON algorithm, where the probabil-
ities of mutating one local optimum p into another local optimum
q are defined by P(q|p).

6.5 Date-Changing Mutation (Mut-DM)
The Date-Changing Mutation (Mut-DM) attempts to move retailers
in a given parent solution R to earlier days. The Mut-DM operator
performs the following steps:

(1) A date t is randomly chosen with the uniform probability
from the dates 2, 3, . . . ,T .

(2) A retailer R is randomly chosen from the retailers visited on
the route rt .

(3) The retailer R is removed from the routes rs , where s =
t , . . . ,T .

(4) A date t ′ is randomly chosen with the uniform probability
from the dates 1, 2, . . . , t − 1.

(5) The retailer R is added to the route rt ′ using the greedy
procedure for placing a retailer in a vehicle route used during
base solution construction (Section 6.2).

(6) The retailer R must also be added to routes for later days in
order to avoid the supplies running out. The days to which
to add the retailer R are determined as the latest possible
delivery dates that allow the retailer R to satisfy its demands.

If the above procedure does not produce a feasible solution, it
is repeated at most κM times, where κM is a parameter of the
algorithm. If not feasible solution is produced in κM repetitions,
the original solution R remains unchanged.

The Date-Changing Mutation operator only moves one selected
retailer and leaves the other retailers unchanged. Also, it does not
change the schedule before the selected starting date t ′.

6.6 Order-Changing Mutation (Mut-OM)
The Order-Changing Mutation (Mut-OM) tries to find an improved
ordering of the retailers on the routes from a given parent solution
R. The assignment of the retailers to the routes in solution R is not
changed. For each route r1, r2, . . . , rT in R several permutations of
retailers are checked. If the length of the route is no more than ρ
retailers, where ρ is a parameter of the algorithm, all permutations
are evaluated. For routes withmore than ρ! retailers, only ρ! random
permutations are evaluated. The original route is replaced with the
best found alternative if it outperforms the original one, otherwise
the original route is left unchanged.

The Mut-OM operator does not change the dates on which the
retailers are supplied, so it does not affect the feasibility of the
solution.

7 RESULTS
The approach proposed in this paper was validated on the bench-
mark IRP instances published in [2]. Table 2 presents the details
of them. The benchmark IRP instances have the planning horizon
T of 3 days, the different numbers of retailers (5, 10, 15 or 20), the
different inventory costs (between 0.01 and 0.05), and different
locations of the facilities and various inventory, production and
consumption levels. The benchmark IRP instances concern a fleet
of one vehicle.

Table 2: Detail of benchmark IRP instances

n = 5 5 instances with the planning horizon T = 3
and the inventory costs between 0.01 and 0.05

n = 10 5 instances with the planning horizon T = 3
and the inventory costs between 0.01 and 0.05

n = 15 5 instances with the planning horizon T = 3
and the inventory costs between 0.01 and 0.05

n = 20 5 instances with the planning horizon T = 3
and the inventory costs between 0.01 and 0.05

For each benchmark IRP instance, the LON-EA-IRP algorithm
was run 10 times. It started with creating the LON for the full TSP
problem, as described in Section 3, and then, it evolved a population
of N = 1000 candidate solutions, producing M = 2000 offspring
solutions in each iteration, during T = 100 iterations (however, in
most cases, the exact solutions were found after about 30 iterations).

Table 3 presents the results of the LON-EA-IRP algorithm on 20
benchmark IRP instances. The first two columns contain the name
of the benchmark and the exact optimum, respectively, both pub-
lished in [2]. The next two columns contain the best and the mean
result of the 10 runs of the LON-EA-IRP algorithm, respectively.
The last two columns contain the difference between the best or
the mean result and the exact optimum, respectively.

8 CONCLUSIONS
This paper proposed an evolutionary algorithm for the IRP problem
that solves the underlying TSP sub-problems using some knowledge
derived from Local Optima Network created for the full TSP prob-
lem. The results of the experiments performed on the benchmark
IRP instances, published in [2], suggest that using LONs enables
to improve the evolutionary algorithm and makes it capable of
solving the benchmark IRP instances. It seems to be a significant
improvement of the evolutionary algorithms, because inmany cases
it avoids the situation when an inefficient route for one supplying
vehicle and one date of the planning horizon increases the cost
of the entire IRP solution and makes it not optimal, even if the
inventory management is the same as in the optimal IRP solution.

However, some additional research on discovering knowledge
from LON may improve further the approach proposed, especially
in the context of generating LONs for TSP sub-problems from the
LON created for the full TSP problem, as well as, developing more
efficient evolutionary operators based on the knowledge from the
LONs.
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Table 3: Results of LON-EA-IRP on 20 benchmark IRP instances. fopt denotes the optimal value obtained using exact methods
presented in [2].

benchmark optimum best of
10 runs (fb )

mean of
10 runs (fm ) fb − fopt fm − fopt

abs1n5 1281.6800 1281.6800 1281.6800 0.0000 0.0000
abs2n5 1176.6300 1176.6300 1176.6300 0.0000 0.0000
abs3n5 2020.6500 2020.6500 2020.6500 0.0000 0.0000
abs4n5 1449.4300 1449.4300 1449.4300 0.0000 0.0000
abs5n5 1165.4000 1165.4000 1165.4000 0.0000 0.0000
abs1n10 2167.3700 2167.3700 2167.3700 0.0000 0.0000
abs2n10 2510.1299 2510.1300 2510.1300 0.0001 0.0001
abs3n10 2099.6799 2099.6800 2099.6800 0.0001 0.0001
abs4n10 2188.0100 2188.0100 2188.0100 0.0000 0.0000
abs5n10 2178.1500 2178.1500 2178.1500 0.0000 0.0000
abs1n15 2236.5300 2236.5300 2236.5300 0.0000 0.0000
abs2n15 2506.2100 2506.2100 2506.2100 0.0000 0.0000
abs3n15 2841.0600 2841.0600 2854.2600 0.0000 13.2000
abs4n15 2430.0700 2430.0700 2439.4440 0.0000 9.3740
abs5n15 2453.5000 2453.5000 2464.0390 0.0000 10.5390
abs1n20 2793.2900 2793.2900 2793.3440 0.0000 0.0540
abs2n20 2799.9000 2799.9000 2821.1572 0.0000 21.2572
abs3n20 3101.6000 3101.6000 3102.6296 0.0000 1.0296
abs4n20 3239.3100 3239.3100 3242.5289 0.0000 3.2189
abs5n20 3330.9900 3330.9900 3334.2789 0.0000 3.2890
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