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ABSTRACT
Distributed Denial of Service (DDoS) cyber attacks continue to
increase and cause disruptions in both industry and politics. As
more critical information and services are provided through net-
works, it is important to keep these networks available. However,
since adversaries are continuously changing and adapting, station-
ary defense strategies do not effectively secure networks against
attacks. We investigate Nash equilibria in cyber security problems
by modeling attacker-defender interactions using competitive coevo-
lutionary algorithms. In particular, we examined the performances
of two algorithms (and their variations) that look for Nash equilibria,
NashSolve and HybridCoev, and compared their performances
against other existing heuristics. Using two evaluation techniques,
one that looked at average fitness scores and one that created a com-
pendium of MEU, MinMax, and inverse Pareto front ratio scores,
we found that NashSolve and HybridCoev did not perform sig-
nificantly better for both attacker and defender populations relative
to other heuristics.
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1 INTRODUCTION
Cyber attacks have become increasingly sophisticated, dangerous,
and frequent as more information and technologies move online.
Although systems can be secured against attacks, adversaries may
learn from these defenses and find new ways to breach them. De-
fenders must then adapt to these new attacks and determine new
strategies, and the cycle repeats. Therefore, cyber adversaries is a
perpetual security problem. When considering networks, resources
may not be dynamic enough to constantly reroute and change; thus,
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we want to be able to select the best defense solution that is robust
against autonomous and adaptive adversaries [18].

One way to evaluate solutions in a multi agent setting is to con-
sider Nash equilibria. These are points which satisfy every player’s
optimizing condition given the other players’ choices. That is, a
player does not have incentive to deviate from its strategy given
the other players’ strategies. This concept has been used to under-
stand the strategic actions of multiple players in a deterministic
gaming environment [16]. Since we can model different network
threat scenarios as games, Nash equilibria may offer insight into
attacker-defender coevolution.

Our research questions focus on evaluating Nash equilibria in
the context of attacker-defender coevolutionary algorithms. How
do the performances of two Nash equilibrium finding algorithms,
NashSolve [23] and HybridCoev [27], perform when com-
pared against existing and previously tested heuristics? How do
we know when we have found a Nash equilibrium? Can we find
ways to further improve these algorithms?

The contributions of this paper are:

(1) Evaluating coevolutionary algorithms that look for Nash equi-
libriums in the context of cyber security problems.

(2) Introducing variants of competitive coevolutionary Nash equi-
librium finding algorithms.

(3) Objectively comparing performance of Nash equilibrium-
finding algorithms against existing coevolutionary algorithms.

The Background section (Section 2) gives an overview of previ-
ous and related work, including Nash equilibriums, cyber security,
and Nash equilibriums in the context of cyber security. The Method
section (Section 3) describes coevolutionary algorithms, in partic-
ular, two Nash equilibrium-finding algorithms: NashSolve and
HybridCoev. The Experiment section (Section 4) details the setup,
including the Mobile Asset Placement problem, settings, and hold-
out sets, as well as results and discussion. Finally, the Conclusion
section (Section 5) summarizes our findings and lists potential areas
for future work.

2 BACKGROUND
This section defines a Nash equilibrium, provides background on
competitive coevolution, as well as the use of competitive coevolu-
tion in Cyber Security.

2.1 Nash equilibrium
A strategy is a Nash equilibrium if no player can improve by unilat-
erally changing their strategy. Let (S, f ) be a game with n players,
where Si is the strategy set for player i, S = {S1×S2×· · ·×Sn } is the
set of strategies and f (x) = (f1(x), . . . , fn (x)) is the payoff function,
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x ∈ S . Let xi be a strategy of player i and x−i be a strategy of all play-
ers except player i. When each player i ∈ {1, . . . ,n} chooses strategy
xi giving the strategies x = (x1, . . . , xn ) then player i obtains payoff
fi (x). The chosen strategies x∗ ∈ S is a Nash equilibrium (NE) if no
unilateral deviation in strategy by any single player is profitable for
that player, that is

∀i, xi ∈ Si : fi (x∗i , x
∗
−i ) ≥ fi (xi , x

∗
−i ).

When the inequality above holds strictly, then the equilibrium
is called a “strict Nash equilibrium”. If there is a player with an
exact equality between x∗i and another strategy in the set S , then the
equilibrium is called a “weak Nash equilibrium”.

Nash equilibria can be difficult to find with populations. In the
context of populations it is the evolutionary stable strategies that are
of interest. An evolutionary stable strategy occurs when the whole
population is using this strategy and any small group of invaders
using a different strategy will eventually die off over multiple gen-
erations. If and only if a strategy is evolutionary stable it is a Nash
equilibria, not the reverse.

2.2 Nash Equilibrium and Evolutionary
Computation

A basic competitive coevolutionary algorithm evolves two coupled
populations, each with selection and variation (crossover and muta-
tion). One population comprises tests and the other solutions [20].
In each generation, different competitions are formed by pairing a
test and a solution. This couples the two population as they share a
fitness evaluation component.

A test competes to demonstrate the solution as incorrect. The
solution competes to solve the test correctly. The dynamic of the al-
gorithm, driven by conflicting objectives and guided by performance-
based selection and random variation can gradually produce better
and more robust solutions (i.e defenses) [21, 26]. Competitive co-
evolutionary algorithms are often applied in domains in which there
is no exogenous objective measure of performance but wherein per-
formance is relative to others is a good measure. These have been
called interactive domains in [11, 20] and include games, e.g. hybrid
coevolutionary programming for Nash equilibrium search in games
with local optima [27].

A fitness score is derived from some function of its performance
outcomes in its competitions. Methods have been defined depending
on the specific problem domain, e.g., [1, 4, 6, 12, 28]. A more formal
approach, using the solution and test perspective, describes fitness
assignments as solution concepts [20]. Solution concepts include:
best worst case, maximization of expected utility, Nash equilibrium,
and Pareto optimality. One of the key challenges with coevolution is
how to train and rate the performance of solutions [2, 3].

2.3 Cyber security and Competitive Coevolution
Network defense is studied with the coevolutionary agent-based net-
work defense lightweight event system (CANDLES) [22] a frame-
work designed to coevolve attacker and defender agent strategies
with a custom, abstract computer network defense simulation. The
RIVALS network security framework, supports three studies into,
respectively DDOS, deceptive and isolation defense [18]. Malware
coevolution was studied for mobile malware and anti-malware [25].

Other examples of competitive coevolution in cyber security can be
found in [8, 9, 15, 17].

There is scope to expand the work regarding finding Nash equilib-
rium solutions with competitive coevolutionary algorithms in cyber
security. This paper will further investigate this.

3 METHOD
Competitive coevolutionary algorithms can be used to model the
“arms race” between attackers and defenders. In particular, a previous
project RIVALS [7] is used to determine the best defense strategy
for a network, specifically using peer-to-peer network simulation
and simulated extreme distributed denial of service (DDoS) attacks.

Using competitive coevolutionary algorithms, populations itera-
tively evolve against each other by evaluating the fitness of solutions
against adversaries. The fitness values assigned to individuals at a
generation are relative to the adversaries that the individuals were
evaluated against, and these fitness evaluations are the most compu-
tationally cost intensive portion of the algorithm. Individuals with
the highest fitness are selected in each population, and their offspring
then produce the next generation of populations. These offspring in-
herit portions of their parents’ genomes through a specified crossover
probability, and further variation is introduced by randomly changing
the genome through a specified mutation probability. The process is
then repeated for a specified number of epochs or until convergence.

In this section we present the methods we will use to find Nash
equilibria. We look at two algorithms, NashSolve and Hybrid-
Coev, that attempt to find Nash equilibria within a problem.

3.1 NashSolve
The NashSolve algorithm uses an archive to try and solve the
problem of cycling in the solution space, which leads to suboptimal
or mediocre solutions [23]. This occurs due to intransitivities, where
there are cycles within the “A beats B" relation on a set of players.
NashSolve starts with a random player in a fixed-size archive

of players. We compare all of our candidate solutions with this
player, and record their performance. If the worst case performance
of a new solution against the archive is above a specified lower
threshold, we add it to the archive. We then iterate, assigning to
each candidate solution its worst score against all the players in the
archive. When the size limit is reached, any new player added to the
archive replaces the oldest player there. Traditional coevolution is
then performed on the populations.

Additionally, we explored two variations on the original Nash-
Solve algorithm. In NashBestSolve, we compare best case
performance of a new solution against the archive, and in NashAvg-
Solve, we compare average case performance of a new solution
against the archive.

3.2 HybridCoev
The HybridCoev algorithm tries to overcome the problem of “lo-
cal Nash equilibrium traps” [27]. These are points that follow a local
optimization path but are not true global Nash equilibrium points.
HybridCoev players have a set of multiple strategies, where

each strategy has its own score. The fitness of a HybridCoev
individual is determined to be the best score of its strategies. Addi-
tionally, we evaluate the scores of a strategy population by randomly

1660



Investigating algorithms for finding Nash equilibria in cyber security problemsGECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Algorithm 1 NashSolve

1: define global input Evolutionary Algorithm (EA),
maxArchiveSize, lowerThreshold

2: procedure NASHSOLVE

3: for i ← 0 to дenerations do
4: Archive ← {RandomPlayer }
5: Solutions ← EA.дetCandidateSolutions()
6: for each s in Solutions do
7: minScore ←∞
8: for each a in Archive do
9: score ← eval(s,a)

10: if score < minScore then
11: score ←minScore
12: s .score ←minScore
13: sort(Solutions)
14: if Solutions[0] < lowerThreshold then
15: Archive .add(Solutions[0])
16: if |Archive | > maxArchiveSize then
17: Archive .remove(0)
18: EA.pushSolutions(Solutions)
19: EA.evolve()

return Archive[−1]

choosing a strategy from a random player in the population and then
playing it against a randomly chosen strategy from a random player
in the rival population until all strategies have been played.
HybridCoev starts with a randomly chosen strategy of a player

in a population. We then take the best strategies of all other rivals
from the previous generation and apply a local hill climber for fine
tuning of the chosen strategy of the player. This chosen strategy
is then replaced by the new finely tuned strategy. These steps are
repeated as many times as set by the best rival matching rate, and
then the process is repeated for every other player in turn. Traditional
coevolution is then performed on the populations.

4 EXPERIMENTS
In this section we present our empirical investigation into on eval-
uating Nash equilibria in the context of attacker-defender coevolu-
tionary algorithms. How do the performances of Nash equilibrium
finding algorithms perform compared against other competitive co-
evolutionary heuristics? How do we know when we have found a
Nash equilibrium? Our hypothesis is that it will be difficult for the
competitive coevolutionary algorithms to find Nash equilibria, even
for the heuristics that claim to be designed to find them, due to the
added complexities of population based search.

First we present the setup of the problem and heuristics, and then
the results.

4.1 Setup
4.1.1 Mobile Asset Placement Problem. The Mobile Asset

Placement (MAP) problem is based on the problem described in
RIVALS [7]. MAP illustrates the worst-case scenario in a network.
A network runs the Chord protocol, and a mission is simulated where
an attacker will take out a set of nodes for the entirety of the mission
while a defender attempts to complete a set of tasks consisting of a

start node and an end node. A task succeeds as long as both nodes in
the task are not taken out by the attacker, and the mission succeeds
if all tasks succeed. Note that MAP models DOS threats and looks
at where to allocate resources, so the problem determines quality of
service, not detection. Additionally, MAP is static, so we can quickly
evaluate strategies while considering a worst-case vulnerability. A
sample grammar for MAP topology 1 (Figure 1) is given below.
<attacker> ::= [<attacks>]
<attacks> ::= <node>, <attacks> | <node>
<node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6

<defender> ::=
[task(<node>, <node>), task(<node>, <node>), task(<node>, <node>),
task(<node>, <node>), task(<node>, <node>), task(<node>, <node>)]

<node> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6

We ran experiments on three different MAP topologies, with
variations shown in Table 1. Topology 1 is a small network used for
testing and verification of algorithm correctness. Topologies 2 and
4 are medium-sized networks with very different edge connections
that are more reflective of security problems. Illustrations of these
topologies are shown in Figures 1, 2, and 3.

Table 1: MAP topology variations

Topology # Nodes # Tasks
1 7 6
2 23 4
4 16 5

1 2 

5 6 

0 3 4 

Figure 1: MAP topology 1

5 6 

17 18 

0 1 2 3 4 7 8 9 10 11 

12 13 14 15 16 19 20 21 22 23 

Figure 2: MAP topology 2

In order to measure how an individual performs against an ad-
versary, we use the same fitness functions previously defined by
RIVALS for network placement.
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Algorithm 2 HybridCoev

1: define global input Evolutionary Algorithm (EA), adversaryMatchinдRate
2: procedure HYBRIDCOEV

3: for each population in populations do
4: for each individual in population do
5: individual .strateдies ← {RandomStrateдies}

6: for i ← 0 to дenerations do
7: eval_all_strateдies()
8: EA.evolve()
9: for individual in population do

10: for s in adversaryMatchinдRate ∗ individual .strateдies do
11: bestAdversaryStrateдies ← individual .adversary.bestStrateдies
12: tunedStrateдy ← hillclimber (s,bestAdversaryStrateдies)
13: s ← tunedStrateдy

14: EA.pushSolutions(population)
return best strateдies

15: procedure EVAL_ALL_STRATEGIES

16: for each population in populations do
17: randomIndividuals ← randomize(population.individuals)
18: while randomIndividuals do
19: individual ← randomIndividuals .pop()
20: s1← random(individual .strateдies)
21: s2← random(random(individual .adversary).strateдies)
22: s1.score ← eval(s1, s2)

0

8

1

6

15

5
9

7

13
12

14

11
10

2

3

4

Figure 3: MAP topology 4

The attacker fitness is calculated by

fa =
nf ailed

ntasks
−

nattacks
c · ntasks

where ntasks is the total number of tasks, nf ailed is the number
of tasks the attacker was able to disrupt, nattacks is the number
of attacks the attacker used, and c is some constant. This formula
helps to incentive attackers to disrupt tasks using as few attacks as
possible.

The defender fitness is calculated by

fd =
nsuccessf ul

ntasks
− nsame_nodes − nduplicate_tasks

where nsuccessf ul is the number of successful tasks, nsame_nodes
is the number of tasks with the same starting and ending node, and
nduplicate_tasks is the number of duplicated tasks. This function
helps incentivize defenders to succeed at as many tasks as possible
while penalizing approaches that use trivial tasks (same start and
end node) or duplicate tasks.

4.1.2 Settings. We want to find an optimal heuristic of obtain-
ing an accurate solution while still being efficient with time and other
resources. The most computationally costly element of a coevolu-
tionary algorithm is the fitness evaluation, and the number of fitness
evaluations done is proportional to population size and number of
epochs/generations. Thus, we ran experiments varying these parame-
ters with ratios to 100 to determine performance differences between
heuristics. We ran 30 trials of the following (population_size
p, generations д) pairs: (p = 2,д = 50), (p = 5,д = 20), (p =
10,д = 10), (p = 20,д = 5).

Settings used for all algorithms and heuristics are as follows:

• tournament_size=2
• crossover_probability=0.8
• mutation_probability=0.1

Additionally, experiment-specific settings for the algorithms eval-
uated are shown in Table 2.

4.1.3 Hold-out Set. For each algorithm, we calculate the fit-
ness of the best solutions at each generation averaged over all runs.
However, solution fitness is relative to the fitness of the adversary
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Table 2: Competitive coevolutionary algorithm-specific settings

Algorithm Settings
DiscoCoev [13] n_clusters=3

DofCoev [14] dof_impute_strategy=mean,

dof_alpha=.8,

dof_num_components=2

GaupRecCoev [19] gauprec_alpha=.25

GridCoev [19] host_population=defender,

host_solution_concept=meu

HybridCoev [27] num_strategies=3,

rival_matching_rate=.9,

max_hill_climber_iter=5

IPCACoev [10] win_threshold=.1,

parent_archive_probability=.9

MaxSolveCoev [5] archive_size=20

MEULockstepCoev [19] locked_population=defender,

locked_population_generations=2,

locked_population_elite_size=1,

locked_population_parents_size=2

MinMaxCoev [7] N/A
MinMaxLockstepCoev [19] locked_population=defender,

locked_population_generations=2,

locked_population_elite_size=1,

locked_population_parents_size=2

MuleGE [7] mule_ge_elite_size=1,

one_way_population=attacker

NashSolve [23] lower_threshold=-2,

max_archive_size=3

RIPCACoev [7] win_threshold=.1,

parent_archive_probability=.9

SimpleCoev [7] N/A

population at that generation during the run. Additionally, different
heuristics may have different ways of computing fitness. Thus, the
fitness scores calculated during the experiments are not absolute,
and algorithm performances cannot be objectively compared in this
way.

In order to objectively compare the performances of different
algorithms, for each experiment we evaluate each algorithm’s best
solution at each generation against a randomly generated “hold-out
set” of attackers and defenders. We then compare the fitness of
solutions against this hold-out set to have a constant standard for
performance.

4.2 Results
A sample of high performing attacker and defender solution are
shown in Figures 4 and 5.

We will primarily show results from MAP topology 2 with (p =
10,д = 10) and MAP topology 4 with (p = 20,д = 5). We believe
that this data is a good representation of the general performance of
these algorithms with average population sizes and generations on
larger, more relevant topologies.

We will first look at NashSolve and HybridCoev perfor-
mance individually, then compare them with existing algorithms.

Figure 4: High performing attacker on MAP topology 4 with
(p = 20,д = 5), red marks the attacked nodes.

Figure 5: High performing defender on MAP topology 4 with
(p = 20,д = 5), green marks the tasks and the dashed line the
connections.

The best, median, and worst scores are marked in all the result
tables.
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4.2.1 NashSolve. Tables 3 and 4 show results for the Nash-
Solve variants for various MAP topologies and (population_
size, generations) pairs. The values shown are the fitness
scores of the best final generation solutions averaged across all runs.
Additionally, Figure 6 compares variation performance against the
holdout set over time. We see there was not much variance in attacker
or defender performance within NashSolve variants for a given
MAP topologies and (population_size, generations)
pair. That is, comparing worst (Nash), average (NashAvg), and
best fitness (NashBest) solutions against the archive did not seem
to significantly affect performance.

Table 3: (population_size, generations) pairs
forNashSolve attacker performance final fitness against
hold-out set.

Attacker Nash NashAvg NashBest
Topology 2
(5, 20) .948 ± .028 .942 ± .023 .939 ± .020
(10, 10) .787 ± .028 .800 ± .030 .792 ± .027
(20, 5) .927 ± .012 .926 ± .009 .931 ± .009
Topology 4
(5, 20) .884 ± .046 .890 ± .050 .880 ± .036
(10, 10) .759 ± .050 .771 ± .049 .758 ± .052
(20, 5) .857 ± .022 .861 ± .030 .868 ± .032

Table 4: (population_size, generations) pairs for
NashSolve defender performance final fitness against hold-
out set

Defender Nash NashAvg NashBest
Topology 2
(5, 20) .064 ± .111 .069 ± .148 .156 ± .179
(10, 10) .106 ± .163 .157 ± .188 .173 ± .204
(20, 5) .151 ± .178 .209 ± .185 .166 ± .147
Topology 4
(5, 20) .091 ± .190 .057 ± .137 .031± .174
(10, 10) .117 ± .105 .145 ± .083 .121 ± .082
(20, 5) .190 ± .128 .192 ± .098 .169 ± .116

We also find that defender scores are much lower than attacker
scores. This is not surprising, as similar results have been found in
other heuristics as well. When we look at the solutions themselves,
we find that the final generation solutions are not similar for either
attacker or defender, and there were no duplicate solutions. This
could imply a difficulty in finding a nash equilibrium for the MAP
problem.

4.2.2 HybridCoev. When we evaluate HybridCoev perfor-
mance, we must consider how to calculate a player’s fitness against
the hold-out set given that each player has multiple strategies. We
use the same eval_all_strategies() evaluation to calculate
scores for each strategy, but we have determined three ways to calcu-
late player fitness to compare against other algorithm performances:
we can either assign a player’s fitness as its best strategy score, worst
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Figure 6: NashSolve variations’ performances against
the holdout set over time on MAP topology 2 with
(population_size=10, generations=10), averaged
over 30 runs

strategy score, or average of all its strategy scores. Note that the
HybridCoev algorithm and solution does not change; we only
vary the calculation for hold-out set fitness evaluation (columns in
Tables 5 and 6).

Tables 5 and 6 show results for the HybridCoev fitness calcula-
tion variants for some MAP topologies and (population_size,
generations) pairs. Again, the values shown are the fitness
scores of the best final generation solutions averaged across all runs.
Upon visual inspection of the tables, and of Figure 7, it looks as if
there are differences in fitness scores for calculating using best, aver-
age, and worst strategy scores. However, these differences fall within
approximately one standard deviation from the average, which may
not be as significant. This suggests a variety of strategies per player,
and that a given player’s strategies may not all converge to one
similar strategy.

Table 5: (population_size, generations) pairs for
HybridCoev attacker performance final fitness against hold-
out set

Attacker Worst Avg Best
Topology 2
(5, 20) .888 ± .157 .933 ± .082 1.00 ± 0.00
(10, 10) .633 ± .277 .777 ± .189 .911 ± .191
(20, 5) .911 ± .147 .955 ± .085 .977 ± .083
Topology 4
(5, 20) .793 ± .131 .873 ± .085 .986 ± .050
(10, 10) .673 ± .167 .770 ± .142 .840 ± .150
(20, 5) .760 ± .203 .830 ± .119 .960 ± .080
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Table 6: (population_size, generations) pairs for
HybridCoev defender performance final fitness against hold-
out set

Defender Worst Avg Best
Topology 2
(5, 20) -.322 ± .370 -.067 ± .200 .144 ± .186
(10, 10) -.433 ± .405 -.061 ± .199 .289 ± .187
(20, 5) -.356 ± .412 .011 ± .223 .356 ± .191
Topology 4
(5, 20) -.587 ± .609 -.210 ± .329 .120 ± .160
(10, 10) -.667 ± .542 -.250 ± .260 .220 ± .181
(20, 5) -.793 ± .749 -.257 ± .370 .287 ± .184
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Figure 7: HybridCoev score performance variations
against the hold-out set over time on MAP topology 2 with
(population_size=10, generations=10), averaged
over 30 runs

We again find that defender scores are much lower than attacker
scores. Additionally, when we look at the solutions themselves, we
find that the final generation solutions are not similar for either
attacker or defender. Again, this could imply a difficulty in finding a
Nash equilibrium for the MAP problem.

4.2.3 Comparison. To compare NashSolve and Hybrid-
Coev performance against other algorithms, we consider multiple
evaluation techniques. One method looks at average and final best
fitness scores averaged across all runs. The other method creates a
compendium [24] by calculating MEU, MinMax, and inverse Pareto
front ratio scores to create an objective combined score for a single
best solution.

We first look at the average and final fitness scores averaged across
all runs. The best individuals per generation are saved and evaluated
against the hold-out set, and their fitness scores are recorded for each
trial run. The “final” fitness score for an population is the best final
generation fitness averaged across all trials, and the “average” fitness
score for a population is the average of the best fitness scores across
all generations averaged across all trials. Table 7 displays average

and final fitness scores for the attacker and defender populations for
various algorithms.

When looking at MAP defender solutions ranked by fitness against
the hold-out set, we saw IPCACoev, rIPCACoev, and Minmax-
LockstepCoev tended to produce the strongest solutions for all
topologies and for all (population_size, generations)
pairs, including the example shown in Table 7. We expected IPCA-
Coev and rIPCACoev to perform well for the defender popula-
tion based on previous empirical data; however, these algorithms
have long running time and require more evaluation steps. The
NashSolve variations and HybridCoev algorithms did not pro-
duce particularly good solutions on average compared to other al-
gorithms. Additionally, note that some NashSolve and Hybrid-
Coev final scores are less then the average scores. This implies
that the final best solutions did not necessarily perform better than
previous generation solutions.

We then compare these heuristics against each other by creating a
compendium. Here, we look at each algorithm’s performance against
the hold-out set using three different solution concepts: MEU is the
maximized expected utility, MinMax is the best worst case solution
using the fittest test, and inverse Pareto front measures the ratio of
the Pareto front number of a solution to the total number of Pareto
fronts. We then use these three solution concepts to calculate a
combination score based on the summed normalized MEU, MinMax,
and inverse Pareto front ratio. In the event of a tie, each ranking
scheme first uses MEU score, then MinMax score, then inverse
Pareto front ratio to break the tie. If multiple solutions are still tied
after this, the top solution is chosen at random from among the tied
solutions. Table 8 displays the combined score, as well as the score
for each different solution concept, for the highest combined ranking
individual solution produced by each algorithm.

When looking at this compendium, we notice that the algorithms
rank similarly, particularly for defender solutions. However, for some
attacker solutions, the corresponding algorithms that achieve these
high combined scores did not perform well in the previous Table
7 comparison. The Nash equilibrium algorithm NashBestSolve
and RIPCACoev are prime examples of this. However, the Table 8
results do not necessarily contradict the results from Table 7. The
compendium considers the highest combined score for an individ-
ual solution rather than averaging over all runs, so algorithms that
perform well in Table 8 but do not perform well in Table 7 may be
good at finding strong individual solutions but not strong solutions
on average.

5 CONCLUSION & FUTURE WORK
We looked at two Nash equilibrium finding algorithms, NashSolve
and HybridCoev, and applied them to cyber security problems.
We then analyzed their performances individually and compared
against other existing algorithms. When considering different eval-
uation techniques, we found that NashSolve and HybridCoev
do not produce particularly strong defense solutions on average, they
are able to produce strong individual solutions. As expected it was
difficult to identify nash equilibria for MAP with the competitive
coevolutionary heuristics, even the ones that claimed to specialize in
finding nash equilibria.
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Table 7: Algorithm average and final fitness scores against hold-out sets on MAP topology 2 with (population_size=10,
generations=10), averaged over 30 runs

Attacker Defender
Algorithm Avg Final Avg Final
DiscoCoev .822 ± .005 .830 ± .035 .284 ± .071 .400 ± .195
DofCoev .809 ± .005 .807 ± .037 .218 ± .043 .177 ± .282
GaupRecCoev .807 ± .003 .806 ± .046 -.040 ± .062 -.011 ± .328
GridCoev .802 ± .007 .806 ± .032 .267 ± .053 .327 ± .191
HybridCoevAvg .796 ± .018 .777 ± .189 .011 ± .057 -.061 ± .199
HybridCoevBest .945 ± .018 .911 ± .191 .283 ± .018 .289 ± .187
HybridCoevWorst .652 ± .033 .633 ± .277 -.272 ± .104 -.433 ± .405
IPCACoev .815 ± .003 .818 ± .040 .413 ± .076 .494 ± .227
MaxSolveCoev .822 ± .013 .830 ± .047 .337 ± .087 .387 ± .215
MEULockstepCoev .805 ± .008 .803 ± .045 .324 ± .054 .320 ± .205
MinMaxCoev .790 ± .006 .783 ± .030 .148 ± .039 .093 ± .153
MinMaxLockstepCoev .801 ± .005 .801 ± .043 .423 ± .106 .479 ± .265
NashAvgSolve .793 ± .004 .800 ± .030 .162 ± .021 .157 ± .188
NashBestSolve .792 ± .006 .792 ± .027 .148 ± .028 .173 ± .204
NashSolve .787 ± .004 .787 ± .028 .125 ± .025 .106 ± .163
RIPCACoev .803 ± .002 .806 ± .036 .337 ± .069 .422 ± .220
SimpleCoev .811 ± .005 .806 ± .030 .286 ± .069 .363 ± .185

Table 8: Compendium rankings on MAP topology 2 with (population_size=10, generations=10)

Attacker Defender
Algorithm Coev

MEU
Coev
MinMax

Inverse
Pareto
Front

Combined
Score

Coev
MEU

Coev
MinMax

Inverse
Pareto
Front

Combined
Score

DiscoCoev .897 .330 21 1.338 .867 .333 130 2.200
DofCoev .932 .665 19 1.668 .467 0 422 1.467
GaupRecCoev .930 .663 11 1.693 .500 0 212 1.500
GridCoev .898 .322 7 1.282 .600 .333 126 1.933
HybridCoev .898 .332 1 1.238 .567 .333 211 1.900
IPCACoev .930 .663 14 1.718 .867 .333 12 2.200
MaxSolveCoev .928 .662 3 1.652 .467 0 56 0.967
MEULockstepCoev .930 .663 7 1.638 .883 .333 128 2.167
MinMaxCoev .932 .665 22 1.688 .633 .333 221 1.967
MinMaxLockstepCoev .930 .663 13 1.664 .883 .667 61 2.500
NashAvgSolve .899 .332 5 1.281 .533 0 238 1.533
NashBestSolve .932 .666 22 1.798 .533 0 222 1.533
NashSolve .897 .331 3 1.259 .600 .333 216 1.933
RIPCACoev .930 .663 12 1.793 .600 .333 7 1.933
SimpleCoev .930 .664 16 1.685 .500 .333 40 1.083

For future work, further comparison of different heuristics can
be done, for example, multidimensional Elo rating and Nash aver-
aging. Because there is no set objective way to evaluate algorithm
performance, different techniques may yield more insight into the
algorithm results. Additionally, we would like to look at more scenar-
ios and network simulations other than MAP. If we were to consider
non-static problems, we could consider measurements such as la-
tency, bandwidth, r-score, and other network measurements. We
could also try to use algorithms for creating classifiers, where we
could look at detection and false positives. Finally, we want to con-
sider applying the NashSolve and HybridCoev algorithms to

other problems that have known Nash equilibriums and analyze
performance there.
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