
An Experimental Comparison of Algebraic Differential
Evolution using different Generating Sets
Marco Baioletti

University of Perugia

Perugia, Italy

marco.baioletti@unipg.it

Alfredo Milani

University of Perugia

Perugia, Italy

alfredo.milani@unipg.it

Valentino Santucci

University for Foreigners of Perugia

Perugia, Italy

valentino.santucci@unistrapg.it

Umberto Bartoccini

University for Foreigners of Perugia

Perugia, Italy

umberto.bartoccini@unistrapg.it

ABSTRACT
In this paper we provide a comparative empirical analysis of four

different generating sets for the algebraic Differential Evolution

for Permutations (DEP) applied to the Traveling Salesman Problem

(TSP). In particular, DEP has been extended in order to use the

reversal moves as generating set. Two different randomized decom-

posers are proposed for the reversal generators. The experiments

have been conducted on a selected set of commonly adopted TSP

instances, and the results show the newly proposed generating set

leads to better performances with respect to other three generating

sets based on alternative search moves.

CCS CONCEPTS
• Computing methodologies → Discrete space search; Ran-
domized search.

KEYWORDS
Algebraic Differential Evolution, Traveling Salesman Problem, Sort-

ing by Reversals

ACM Reference Format:
Marco Baioletti, Alfredo Milani, Valentino Santucci, and Umberto Bartoccini.

2019. An Experimental Comparison of Algebraic Differential Evolution

using different Generating Sets. In Genetic and Evolutionary Computation
Conference Companion (GECCO ’19 Companion), July 13–17, 2019, Prague,
Czech Republic. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3319619.3326854

1 INTRODUCTION
The Algebraic Differential Evolution (ADE) [26] is a recently pro-

posed effective meta-heuristic for combinatorial optimization. ADE

works on discrete search spaces by simulating the behavior of the

numerical Differential Evolution (DE) [28].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00

https://doi.org/10.1145/3319619.3326854

In the past, the numerical DE has been applied to combinatorial

problems by mostly adopting transformation techniques that de-

code a numerical vector (genotype) into a corresponding discrete

solution (phenotype) during the evaluation step (see for example

[11]). However, since a single discrete solution can be represented

by a potentially infinite number of continuous individuals, the

continuous-to-discrete transformation schemes introduce a one-

to-many mapping from the phenotypic to the genotypic space.

Thereby, large plateaus are very likely to be introduced in the

search landscape.

Conversely, ADE allows to implement a discrete differential

mutation operator (the key component of DE) that directly handles

the discrete solutions of the combinatorial problem at hand.

ADE can be applied to all the optimization problems whose

search space can be represented by means of a finitely generated

group. This requirement is met by most of the combinatorial search

spaces commonly considered like, for instance, the space of binary

strings [23] and that of permutations [5]. Furthermore, the algebraic

structure underlying these combinatorial space clearly establishes

connections with the common solutions neighborhoods usually

considered in literature like, for instance, the commonly considered

bit-flip neighborhood of the binary space.

In the case of permutations, the algebraic differential mutation

has been firstly implemented using a generating set based on the

adjacent swapmoves [6, 24, 26]. The algebraic Differential Evolution

for Permutations (DEP) has been applied to the flowshop scheduling

problems [26, 27] and to the linear ordering problem [2, 25] where,

respectively, state-of-the-art and competitive results have been

obtained.

In [3, 9] DEP has been extended to two generating sets: the

one based on, respectively, exchanges and insertion moves. These

implementations of DEP obtained new best known solutions on

some instances of the linear ordering problem with cumulative

costs.

In this paper, we extend DEP by adding a fourth generating set

based on the reversal moves. Reversals are one of the key operation

in search algorithms for TSP. For instance, they are used in the

2-OPT and 3-OPT algorithms [1].

In order to introduce the reversal moves in our algebraic frame-

work, an algorithm that sorts a permutation with a minimal se-

quence of reversals is required. However, since sorting-by-reversals

1527

https://doi.org/10.1145/3319619.3326854
https://doi.org/10.1145/3319619.3326854
https://doi.org/10.1145/3319619.3326854

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic M. Baioletti, A. Milani, V. Santucci, U. Bartoccini

is known to be a NP-hard problem [14], we consider the approxi-

mated algorithm proposed by Kecegioglu and Sankoff [19], which

finds a sequence of reversal whose length is at most twice the mini-

mum possible length. This algorithm has been randomized in order

to produce a random decomposition in terms of reversal genera-

tors. Furthermore, we also propose a "more stochastic" randomized

decomposer based on a relaxed version of our first proposal.

In this work, we study the behavior of DEP, using the four dif-

ferent generating set, on the Traveling Salesman Problem (TSP) [1],

which is a very famous NP-hard problem whose solutions can be

represented as permutations. In literature, TSP has been addressed

with a variety of techniques, including evolutionary algorithms and

other meta-heuristics [18, 20, 22].

Hence, an experimental investigation of the DEP performances

on a selected set of widely adopted TSP instances has been con-

ducted in order to understand which are the most suitable gen-

erating sets in our scheme. In particular, we are interested to see

whether the new generating set – based on the reversal moves – is

competitive with respect to the other generating sets. The choice of

the TSP problem is thus motivated by the fact that the reversals are

essentially equivalent to the 2-OPT moves, i.e., the most "natural"

and adopted search moves in the TSP literature [1, 18].

The rest of the paper is organized as follows. Section 2 describes

the main concepts of the algebraic differential evolution by also

providing the definitions of the generating sets based on adjacent

swaps, exchange and insertion moves. Then, the new generating

set based on reversal moves is introduced in Section 3, while a

comparison of the properties of the four generating sets is provided

in Section 4. Next, Section 5 introduces the detailed scheme of

the DEP algorithm used in the experimental analysis described in

Section 6. Finally, Section 7 concludes the paper by also providing

some future lines of research.

2 ALGEBRAIC DIFFERENTIAL EVOLUTION
FOR PERMUTATIONS

As described in [26], the design of the Algebraic Differential Evo-

lution (ADE) resembles that of the classical DE. The population

{x1, . . . ,xN } of N candidate solutions is iteratively evolved by

means of the three operators of differential mutation, crossover and

selection. Differently from numerical DE, ADE addresses combi-

natorial optimization problems whose search spaces form finitely

generated groups. Since crossover and selection schemes for com-

binatorial spaces are widely available in literature, the main focus

is on the Differential Mutation (DM) operator. DM is widely recog-

nized as the key component of DE [28] and, in its most common

variant, called “rand-1”, generates a mutant v according to

v ← xr0 ⊕ F ⊙ (xr1 ⊖ xr2), (1)

where xr0 ,xr1 ,xr2 are three randomly selected population individ-

uals, and F ∈ (0, 1] is the DE scale factor parameter.

In numerical DE, the operators ⊕, ⊖, ⊙ are the usual vector oper-

ations of Rn , while, in ADE, their definitions are formally derived

using the underlying algebraic structure of the search space [10].

The triple (X , ◦,G) is a finitely generated group representing a

combinatorial search space if:

• X is the discrete set of solutions in the space;

• ◦ is a binary operation on X satisfying the group properties,

i.e., closure, associativity, existence of a neutral element (or

identity e), and invertibility (x−1); and
• G ⊆ X is a finite generating set of the group, i.e., any x ∈ X
has a (not necessarily unique) minimal-length decomposition

⟨д1, . . . ,дl ⟩, with дi ∈ G for all i ∈ {1, . . . , l}, and whose

evaluation is x , i.e., x = д1 ◦ · · · ◦ дl .

For the sake of clarity, the length of a minimal decomposition of x
is denoted with |x |.

Using (X , ◦,G)we can provide the formal definitions of the oper-

ators ⊕, ⊖, ⊙. Let x ,y ∈ X and ⟨д1, . . . ,дk , . . . ,д |x |⟩ be a minimal

decomposition of x , then

x ⊕ y := x ◦ y, (2)

x ⊖ y := y−1 ◦ x , (3)

F ⊙ x := д1 ◦ · · · ◦ дk , with k = ⌈F · |x |⌉ and F ∈ [0, 1]. (4)

The algebraic structure on the search space naturally defines

neighborhood relations among the solutions. Indeed, it induces

a colored digraph whose vertices are the solutions in X and two

generic solutions x ,y ∈ X are linked by an arc with color д ∈ G
if and only if y = x ◦ д. Therefore, a simple one-step move can be

directly encoded by a generator, while a composite move can be

synthesized as the evaluation of a sequence of generators (a path on

the graph). In analogy with Rn , the elements of X can be dichoto-

mously interpreted both as solutions (vertices on the graph) and

as displacements between solutions (colored paths on the graph).

As detailed in [26], this provides a rational interpretation to the

discrete DM of definition (1). The key idea is that the difference

x ⊖ y is the evaluation of the generators in a shortest path from y
to x .

Clearly, ⊕ and ⊖ do not depend on the generating set, thus they

are uniquely defined. Conversely, ⊙ relies on the chosen generating

set and, also fixing it, a minimal decomposition is not unique in

general. Therefore, ⊙ is implemented as a stochastic operator, thus

requiring a randomized decomposition algorithm for the finitely

generated group at hand.

The algebraic Differential Evolution for Permutations (DEP) [26]

is an implementation of ADE for the search space of permutations.

Indeed, the permutations of the set [n] = {1, . . . ,n}, together with
the usual permutation composition ◦ : [n] × [n] → [n], form the so-

called Symmetric group S(n). Since S(n) is finite, it is also finitely

generated. Different choices for the generating set are possible and,

more interestingly, each generating set can be interpreted as a class

of transformations that allow to move from one permutation to

another in the search space. In [26] and [3], DEP implementations

have been provided for the following three generating sets:

• ASW , which is based on adjacent swap moves and it is for-

mally defined as

ASW = {σi : 1 ≤ i < n}, (5)

where σi is the identity permutation with the items i and i+1
exchanged. Hence, given a generic π ∈ Sn , the composition

π ◦σi swaps the i-th and (i+1)-th items of π . For instance, let
π = ⟨3, 5, 2, 4, 1⟩, thus π ◦ σ3 = ⟨3, 5, 2, 4, 1⟩ ◦ ⟨1, 2, 4, 3, 5⟩ =
⟨3, 5, 4, 2, 1⟩.

1528

An Experimental Comparison of ADE using different Generating Sets GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

• EXC, which is based on exchange moves and it is formally

defined as

EXC = {ϵi j : 1 ≤ i < j ≤ n}, (6)

where ϵi j is the identity permutation with the items i and j
exchanged. Hence, given a generic π ∈ Sn , the composition

π ◦ ϵi j swaps the i-th and j-th items of π . For instance, let
π = ⟨3, 5, 2, 4, 1⟩, thus π ◦ϵ2,5 = ⟨3, 5, 2, 4, 1⟩ ◦ ⟨1, 5, 3, 4, 2⟩ =
⟨3, 1, 2, 4, 5⟩.

• INS, which is based on insertion moves and it is formally

defined as

INS = {ιi j : 1 ≤ i, j ≤ n}, (7)

where ιi j is the identity permutation where the item i is
shifted to position j. Hence, given a generic π ∈ Sn , the
composition π ◦ ιi j shifts the i-th item in π to position j . For
instance, let π = ⟨3, 5, 2, 4, 1⟩, thus π ◦ ι3,5 = ⟨3, 5, 2, 4, 1⟩ ◦
⟨1, 2, 4, 5, 3⟩ = ⟨3, 5, 4, 1, 2⟩.

A decomposition for a generic permutation π ∈ Sn can be ob-

tained by ordering the items in π using a sorting algorithm that

only performs moves from the chosen set, i.e., adjacent swaps for

ASW , generic exchanges for EXC, and insertions for INS. The se-
quence of generators corresponding to the moves performed during

the sorting process is annotated, then the sequence is reversed and

each generator is replaced with its inverse [7, 8, 26?]. Clearly, a
sorting algorithm performing an optimal number of moves gives

rise to a minimal decomposition.

Optimal randomized decomposers for ASW , EXC, and INS have

been implemented by means of generalized and randomized vari-

ants of, respectively, the bubble-sort, selection-sort, and insertion-

sort algorithms [3, 26]. They have been called RandBS, RandSS,
RandIS and each one exploits a different algebraic property of per-

mutations.

Since (the ordered permutation) e is the only permutation with

0 inversions [26], RandBS iteratively decreases the number of in-

versions by swapping two randomly selected adjacent items πi
and πi+1 which form an inversion of π , i.e., πi > πi+1. The time

complexity of RandBS is Θ(n2).
RandSS exploits the fact that e is the only permutation with n

cycles (of length 1) in its cycles representation, thus it iteratively

increases the number of cycles of π by randomly breaking a ran-

domly selected cycle. Indeed, it turns out that any cycle can be

split in two shorter cycles by exchanging any pair of items in the

original cycle. The amortized time complexity of RandSS is Θ(n).
RandIS considers that e is the only permutation with a (unique)

longest increasing subsequence (LIS) of length n, thus it iteratively
extends the LIS length of π by shifting a suitable item in a suitable

position. The time complexity of RandIS is Θ(n2).
For further implementation details, proofs of correctness and

complexity we refer the interested reader to [26] and [3].

3 GENERATING SET BASED ON REVERSAL
MOVES

Another possible generating set for the permutation group is based

on the concept of reversal operation. A reversal R(i, j), with 1 ≤

i < j ≤ n, is an operation which, given a permutation π ∈ S(n),
reverses the items in the interval [i, j] of the ordering represented

by π . For instance, let π = ⟨4, 9, 5, 3, 8, 2, 1, 7, 6⟩, then the reversal

R(4, 7) applied to π produces the permutation ⟨4, 9, 5, 1, 2, 8, 3, 7, 6⟩.

Reversals are widely studied in biology [16].

Here, we provide an algebraic definition of reversal operations

and we derive a randomized decomposition algorithm for the cor-

responding generating set.

Any reversal R(i, j) can be put in correspondence with the per-

mutation ρi j = ⟨1, . . . , i−1, j, j − 1, . . . , i − 1, i, j+1, . . . ,n⟩. Indeed,

the application of R(i, j) to a given π ∈ S(n) is equivalent to π ◦ ρi j .
Since the reversals of the type ρi,i+1 are equivalent to the genera-

tors in ASW , the set REV of all the possible reversals is a generating

set of the permutation group. Formally,

REV = {ρi j : 1 ≤ i < j ≤ n}. (8)

Furthermore, as for the cases presented in Section 2, a decom-

position of a generic permutation, in terms of the generators in

REV , can be obtained by means of a sorting algorithm that only

uses reversal operations.

With this regard, it is easy to see that any permutation can be

sorted – thus decomposed – with no more than n − 1 reversals1,
however it is not known if this bound is strict or not [15].

In [14], it is proven that the problem of sorting by a minimal

number of reversals is NP hard. Hence, also the problem of de-

composing a permutation as a minimal sequence of reversals is

NP-hard.

Anyway, there exist approximated algorithms which produce a

decomposition whose length is at most a small multiple of the min-

imal decomposition length. Among them, one of the most suitable

to be randomized is the greedy algorithm proposed by Kecegioglu

and Sankoff in [19], to which we refer with KS. The decomposition

produced by KS has a worst case approximation factor of 2, though,

practically the approximation is often very close to the optimal

length [19]. Although there are algorithms with theoretically better

approximations – for instance, the algorithm of Berman et al. [12]

has approximation factor 1.375 – these are much more complex

and not suitable for our final goal.

The algorithm KS uses the concepts of breakpoint and decreasing
strip. A breakpoint of a permutation π is a position i such that

|π (i) − π (i + 1)| > 1, while π (i),π (i + 1), . . . ,π (j − 1),π (j) is a
decreasing strip if its items are in decreasing order.

If the permutation π is extended in both ends with positions

π (0) = 0 and π (n + 1) = n + 1, the identity is the only permuta-

tion without breakpoints. This is the termination criterion used in

KS that, at each iteration, reduces the number of breakpoints by

selecting a suitable reversal move. Indeed, it is easy to see that a

reversal operation R(i, j) can only remove or introduce breakpoints

at positions i and j. For the sake of completeness, the pseudo-code

of KS is provided in Algorithm 1.

Note that, the concept of decreasing strip is used within KS to
guarantee its termination. As explained in [19], decreasing strips

can be quickly verified by maintaining the two arrays “up” and

“down”. This trick allows to implement KS in Θ(n2) time.

In the following we introduce two randomized variants of KS,
namely, RandRS and RandRS2.

1
It is enough to iteratively "put in order" the item i by reversing an interval whose

two ends are the position i and the position where the item i resides. Clearly, this
process requires at most n − 1 iterations.

1529

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic M. Baioletti, A. Milani, V. Santucci, U. Bartoccini

Algorithm 1 Kecegioglu and Sankoff’s Greedy algorithm

1: function KS(π ∈ S(n))
2: l := 0

3: while π contains at least a breakpoint do
4: l := l + 1
5: Let ρil , jl a reversal that removes the most breakpoints

of π , resolving ties among those that remove one breakpoint

in favour of reversals that leave a decreasing strip

6: π := π ◦ ρil , jl
7: end while
8: return ⟨ρi1, j1 , . . . , ρil , jl ⟩
9: end function

3.1 RandRS
We now describe how we have randomized KS in order to use it

in DEP. By denoting with nb(π) the number of breakpoints in the

permutation π , our randomization works by iteratively choosing

(and applying to π) anyone of the reversals ρ ∈ REV satisfying one

of the following properties in priority order:

(P1) nb(π ◦ ρ) = nb(π) − 2;
(P2) nb(π ◦ ρ) = nb(π) − 1 and π ◦ ρ has at least one decreasing

strip;

(P3) nb(π ◦ ρ) = nb(π) − 1;
(P4) nb(π ◦ ρ) = nb(π).

Property (P4) guarantees that, in the next algorithm iteration,

there will be a reversal satisfying one of the properties (P1–P3) [19].

The pseudo-code of the algorithm, called RandRS, is provided in

Algorithm 2.

Note that, in order to efficiently and randomly select a suitable

reversal, any iteration of the main loop applies the reservoir sam-

pling technique (with reservoir size 1) by maintaining the four

“reservoir variables” r1, r2, r3, r4 which contain a uniformly selected

random sample from the set of reversals satisfying the properties,

respectively, (P1), (P2), (P3) and (P4).

Note that, in line 6, only the reversals removing at least one

breakpoint are scanned. This means that the considered reversal

removes one breakpoint in one of its ends and, according on what

happen in the other end, one of the properties (P1–P4) is necessarily

verified.

Then, the reversal in the first non-empty reservoir is selected

(lines 29–37), appended to the sorting sequence s (line 38), and

applied to π (line 39). Moreover, the breakpoints BP are updated

accordingly (line 40). Finally, when BP = ∅, a decomposition is

produced by reversing the sorting sequence s (line 42).2

RandRS satisfies the same properties ofKS: it has time complexity

Θ(n2) and the returned decomposition is longer at most twice the

minimal decomposition of the input permutation.

3.2 RandRS2
Although randomized, RandRS is anyway a greedy algorithm that,

at each iteration, selects a reversal according to the priorities among

the rules (P1–P4). It may happen that sometimes only one reversal

2
Note that, we do not need to also invert the reversals in s , because ρ−1 = ρ for any

ρ ∈ REV .

Algorithm 2 The algorithm RandRS

1: function RandRS(π ∈ S(n))
2: s ← ⟨ ⟩
3: BP ← breakpoints of π
4: while BP , ∅ do
5: n1,n2,n3,n4 ← 0

6: for all ρi j removing at least 1 breakpoint do
7: if ρi j satisfies (P1) then
8: n1 ← n1 + 1
9: if random < 1/n1 then
10: r1 ← ρi j
11: end if
12: else if ρi j satisfies (P2) then
13: n2 ← n2 + 1
14: if random < 1/n2 then
15: r2 ← ρi j
16: end if
17: else if ρi j satisfies (P3) then
18: n3 ← n3 + 1
19: if random < 1/n3 then
20: r3 ← ρi j
21: end if
22: else ▷ ρi j automatically satisfies (P4)

23: n4 ← n4 + 1
24: if random < 1/n4 then
25: r4 ← ρi j
26: end if
27: end if
28: end for
29: if n1 > 0 then
30: ρ ← r1
31: else if n2 > 0 then
32: ρ ← r2
33: else if n3 > 0 then
34: ρ ← r3
35: else
36: ρ ← r4
37: end if
38: Append ρ to s
39: π ← π ◦ ρ
40: Update BP
41: end while
42: Reverse the sequence s
43: return s
44: end function

can be chosen and this aspect may lead to a diversity lost problem

when RandRS is embedded into an evolutionary algorithm.

For this reason, we have also devised another simpler randomized

decomposer, called RandRS2, which iteratively chooses a random

reversal satisfying anyone of the properties (P1–P4) without any

priority among them. The pseudocode of RandRS2 is provided in

Algorithm 3.

In line 5–11, only one reservoir r1 is used to select, uniformly at

random, one of the reversals that removes at least one breakpoint

in the current permutation. As aforementioned, a reversal that

1530

An Experimental Comparison of ADE using different Generating Sets GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Algorithm 3 The algorithm RandRS2

1: function RandRS2(π ∈ S(n))
2: s ← ⟨ ⟩
3: BP ← breakpoints of π
4: while BP , ∅ do
5: n1 ← 0

6: for all ρi j removing at least 1 breakpoint do
7: n1 ← n1 + 1
8: if random < 1/n1 then
9: r1 ← ρi j
10: end if
11: end for
12: Append r1 to s
13: π ← π ◦ r1
14: Update BP
15: end while
16: Reverse the sequence s
17: return s
18: end function

removes a breakpoint – in one of its ends – is guaranteed to satisfy

one of the properties (P1–P4). The rest of the algorithm works as

in RandRS.
Even if there is no theoretical bound for the length of the decom-

position produced by RandRS2, it has been experimentally observed

that the ratio between the length of the sequences produced by

RandRS and the sequences produced by RandRS2 is, in average,

around 68%.

4 PROPERTIES OF THE GENERATING SETS
Summarizing, DEP can work with four different generating sets:

ASW , EXC, INS, and the newly proposed REV .
In Table 1, we provide, for each generating set, the number

generators, the diameter of the induced Cayley graph, and the time

complexity of the corresponding randomized decomposer.

Generating Set Cardinality Diameter Time Complexity

ASW n − 1
(n
2

)
Θ(n2)

EXC

(n
2

)
n − 1 Θ(n)

INS (n − 1)2 n − 1 Θ(n2)
REV

(n
2

)
≤ n − 1 Θ(n2)

Table 1: Properties of the generating sets

We now discuss the effect of the classes of search moves, cor-

responding to every generating set, on a permutation encoding a

solution of the (symmetric) Traveling Salesman Problem (TSP).

We first note that adjacent swaps are a special kind of rever-

sals. Indeed, σi = ρi,i+1 for all σi ∈ ASW . Hence, without loss of

generality, given π ∈ S(n − 1) and ρi j ∈ REV , the composition

π ◦ ρi j replaces two arcs of the corresponding TSP tour. In particu-

lar, it replaces the arcs (π (i − 1),π (i)) and (π (j),π (j + 1)) with the

arcs (π (i − 1),π (j)) and (π (i),π (j + 1)).3 It is interesting to notice

3
For the sake of notation, though π ∈ S(n − 1), we consider π (n) = π (0) = n.

that the reversals exactly correspond to the 2-OPT moves widely

adopted in the TSP literature [18].

Regarding the generating set INS, we consider the effect of the
proper insertions, i.e., all the ιi j ∈ INS \ ASW . Given π ∈ S(n − 1),
the composition π ◦ ιi j replaces three arcs of the TSP tour. In

the case i < j, it replaces the arcs (π (i − 1),π (i)), (π (i),π (i + 1))
and (π (j),π (j + 1))with the arcs (π (i − 1),π (i + 1)), (π (j),π (i)) and
(π (j),π (i + 1)). The case i > j is analogous. Therefore, proper in-
sertions are a particular case of 3-OPT moves [18].

Finally, the proper exchanges in EXC\ASW have themost disrup-

tive effect since, given ϵi j ∈ EXC\ASW and π ∈ S(n−1), the compo-

sition π ◦ϵi j replaces four arcs of the TSP tour. The removed arcs are:

(π (i − 1),π (i)), (π (i),π (i + 1)), (π (j − 1),π (j)) and (π (j),π (j + 1)).
The inserted arcs are: (π (i − 1),π (j)), (π (j),π (i + 1)), (π (j − 1),π (i))
and (π (i),π (j + 1)). Hence, proper exchanges are a particular case
of 4-OPT moves [18].

5 DEP FOR THE TRAVELING SALESMAN
PROBLEM

The main scheme of our DEP implementation for the TSP problem

is outlined in Figure 4.

Algorithm 4 DEP scheme used in this work

1: Randomly initialize the population {π1, . . . ,πN }
2: for gen← 1 to MaxGen do
3: for i ← 1 to N do
4: νi ← DifferentialMutation(i, {π1, . . . ,πN }, F)
5: υi ← Crossover(πi ,νi)
6: Evaluate f (υi)
7: end for
8: Select the population for the next iteration

9: if restart criterion is satisfied then
10: Reinitialize the population

11: end if
12: end for
13: Apply local search to the best individual πbest

DEP directly evolves a population {π1, . . . ,πN } of N permuta-

tions. In this algorithm we use the solution representation [4, 17]

which fixes the last city in the TSP tour and uses a permutation of

the remaining n − 1 cities in order to encode a TSP solution
4
.

Each permutation uniquely encodes a TSP tour using the solution

representation discussed in Section 4.

For every population individual πi , the differential mutation

operator builds a mutant νi by using the formula (1). The popular

self-adaptive scheme jDE [13, 21] is used in order to automatically

adapt the value of the parameter F ∈ (0, 1].
After some preliminary experiments, three alternative crossover

operators have been selected: MPX (Maximal Preservative CRX),

ER (Edge Recombination) and OX1 (Order Crossover). Their de-

scriptions are provided in [20], where it is also claimed that they

are among the most used crossovers for the TSP.

4
In this way, there is a one-to-one correspondence between permutations in S(n − 1)
and tours of n cities.

1531

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic M. Baioletti, A. Milani, V. Santucci, U. Bartoccini

Regarding selection, the crowding scheme proposed in [29] is

adopted in order to slow down population convergence. Each off-

spring υj has a closest population individual closest(υj). Therefore,
every population individual πi is associated to the set of offsprings

Ui = {υj : closest(υj) = πi }. Then, for 1 ≤ i ≤ N , the new popula-

tion individual πi is selected to be the fittest among the solutions

inUi ∪ {πi }.
A restart mechanism is used when all the population individuals

converge to the same solution. In that case, N − 1 individuals are
randomly reinitialized.

At the end of the evolution, a local search operator is applied

to the best solution. The local search is based on widely adopted

2-OPT neighborhood (i.e., the reversal moves) and uses the best

improvement strategy.

Summarizing, the devised scheme of DEP has three parame-

ters/components to be chosen: the population sizeN , the generating

set used in the differential mutation, and the crossover operator.

6 EXPERIMENTS
An experimental analysis has been conducted on 25 TSP instances

selected from the commonly adopted benchmark suite TSPLIB
5
.

The size of the instances varies in the range n ∈ [14, 100]. The
main goal of this analysis is to investigate the performances of the

different generating sets when DEP is applied to the TSP.

Since two different randomized decomposers have been intro-

duced for REV , i.e., RandRS and RandRS2, an additional purpose

of the analysis to understand whether the larger amount of ran-

domization in RandRS2 leads to better results or not. For the sake

of notation, we denote by REV the results obtained by DEP using

the reversal generating set with RandRS, and by REV2 the results
obtained using RandRS2.

By combining every generating set with the three crossovers ER,
MPX and OX1, 15 DEP configurations have been considered.

All the DEP configurations use a population size of 100 individu-

als and have been executed 20 times per instance, with a 100 000

generations as termination criterion.

The obtained results are shown in Table 4. For each instance i
and for each algorithm configuration j, two data are reported. The

first is the average relative percentage deviation (ARPD), computed

as

1

20

20∑
r=1

F ri j − Bi

Bi
× 100,

where F rih is the fitness returned by the algorithm configuration j
in its r–th run on the instance i , while Bi is the best fitness value
obtained by all the DEP executions for the instance i . Together with
the ARPD, we also provide its rank among all the 15 algorithm

configurations. ARPD and ranks are then aggregated in the last two

rows of the table.

Table 4 clearly shows that the overall best algorithm configu-

rations are EXC/ER, REV/ER, REV2/ER, REV2/MP and REV/MP .
Although, the algorithm configuration EXC/ER has been able to

produce better solutions for the instances n = 100 cities, the al-

gorithm configurations using the reversal moves have anyway

similar performances. Moreover, notice that the performances of

5
TSPLIB is available at https://bit.ly/2UBP2Fd.

the EXC-based schemes fall down when coupled with the two other

crossovers.

In Table 2, we have aggregated the averageARPD and the average

ranks for each generating set. It is possible to see that REV and

REV2 are the best best generating sets, while INS is very close to

them and EXC and ASW are clearly worse, either considering the

average ARPD or the average rank. The comparison between REV
and REV2 does not produce a clear winner, indeed REV has the best

ARPD value, while REV2 reaches the smallest average rank.

ASW EXC INS REV REV2

Avg ARPD 7.35 3.97 2.89 2.72 2.80

Avg Rank 11.26 7.65 7.34 6.92 6.83

Table 2: Experimental comparisons of the generating sets

Finally, in Table 3, we provide for each instance the best solutions

found by anyone of our algorithm configurations. These results are

compared with the best known solution (obtained from the TSPLIB

website).It is important to notice that, in many cases, DEP has been

able to match the best known solutions, also in some of the larger

instances like, for instance, kroB100 and kroE100.

Instance Best Found Best Known Gap

burma14 3330 3323 7

ulysses16 6867 6859 8

gr17 2085 2085 0

gr21 2707 2707 0

ulysses22 7023 7013 10

gr24 1272 1272 0

fri26 937 937 0

bayg29 1610 1610 0

bays29 2020 2020 0

dantzig42 699 699 0

gr48 5046 5046 0

eil51 426 426 0

berlin52 7542 7542 0

brazil58 25395 25395 0

st70 675 675 0

pr76 108159 108159 0

eil76 539 538 1

gr96 55367 55209 158

rat99 1212 1211 1

kroA100 21497 21282 215

kroB100 22141 22141 0

kroC100 20812 20749 63

kroD100 21405 21294 111

kroE100 22068 22068 0

rd100 7911 7910 1

Table 3: Best results by DEP vs Best Known Solution

1532

An Experimental Comparison of ADE using different Generating Sets GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Instance ASW/ER ASW/MP ASW/O1 EXC/ER EXC/MP EXC/O1 INS/ER INS/MP INS/O1 REV/ER REV/MP REV/O1 REV2/ER REV2/MP REV2/O1

burma14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

ulysses16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

gr17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

gr21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

ulysses22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

gr24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

fri26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

bayg29

0.23 0.04 0 0.03 0 0 0.17 0 0 0 0 0 0.06 0 0

15 12 5.5 11 5.5 5.5 14 5.5 5.5 5.5 5.5 5.5 13 5.5 5.5

bays29

0.32 0 0 0.01 0 0 0.06 0 0 0 0 0 0 0 0

15 6.5 6.5 13 6.5 6.5 14 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5

dantzig42

0.36 0.29 0.14 0.5 0.04 0.04 0 0 0 0 0 0 0 0 0

14 13 12 15 10.5 10.5 5 5 5 5 5 5 5 5 5

gr48

0.92 3.95 1.26 0.5 0.06 0.63 0.68 0.61 0.92 0.71 0.51 1.07 0.46 0.39 0.68

11 15 14 4 1 7 8.5 6 12 10 5 13 3 2 8.5

eil51

1.24 4.41 3.83 0.92 0.85 3.26 0.90 2.04 2.81 0.69 1.78 2.62 0.85 1.57 2.82

6 15 14 5 2.5 13 4 9 11 1 8 10 2.5 7 12

berlin52

8.74 5.61 0.66 3.08 0.87 0.67 3.5 1.38 1.03 1.42 2.18 0.77 0.79 1.81 1.18

15 14 1 12 5 2 13 8 6 9 11 3 4 10 7

brazil58

2.44 4.05 2.19 0.61 0.07 0.80 0.91 1.22 1.61 0.84 1.32 1.38 1.08 1.67 0.88

14 15 13 2 1 3 6 8 11 4 9 10 7 12 5

st70

7.19 13.77 9.17 2.21 2.83 7.44 2.19 2.59 4.27 2.88 2.44 5.48 2.79 2.95 4.84

12 15 14 2 6 13 1 4 9 7 3 11 5 8 10

eil76

5.75 9.21 12.66 2.54 3.46 9.30 2.88 4.55 8.62 2.81 4.25 8.10 2.44 4.51 8.21

9 13 15 2 5 14 4 8 12 3 6 10 1 7 11

pr76

5.97 8.29 4.99 4.85 5.17 3.70 7.06 4.34 2.47 5.36 3.94 3.06 7.07 3.78 2.62

12 15 9 8 10 4 13 7 1 11 6 3 14 5 2

gr96

3.66 10.42 10.24 3.70 5.78 14.03 1.98 4.81 4.38 2.62 2.66 4.46 1.93 3.49 3.36

7 14 13 8 12 15 2 11 9 3 4 10 1 6 5

rat99

8.35 14.28 13.53 5.25 12.12 18.40 5.72 9.23 6.36 4.48 7.20 7.57 4.33 6.99 7.17

10 14 13 3 12 15 4 11 5 2 8 9 1 6 7

kroA100

18.34 23.56 25.98 3.73 10.48 13.94 4.40 4.12 11.16 5.93 4.69 8.23 4.71 4.58 12.20

13 14 15 1 9 12 3 2 10 7 5 8 6 4 11

kroB100

15.96 18.43 25.65 3.69 8.16 19.28 6.01 4.75 9.24 4.40 5.21 8.48 5.44 4.97 10.45

12 13 15 1 8 14 7 3 10 2 5 9 6 4 11

kroC100

9.96 20.63 27.30 4.88 7.39 19.93 6.14 6.35 9.82 5.92 5.21 10 5.90 5.45 10.75

10 14 15 1 8 13 6 7 9 5 2 11 4 3 12

kroD100

15.81 18.60 28.79 5.28 5.91 16.10 7.79 4.99 9.5 6.31 5.44 7.76 6.82 4.64 9.85

12 14 15 3 5 13 9 2 10 6 4 8 7 1 11

kroE100

17.55 20.74 23.52 4.67 13.01 16.21 4.86 3.70 11.33 6.47 4.94 9.49 6.41 5.21 8.88

13 14 15 2 11 12 3 1 10 7 4 9 6 5 8

rd100

13.10 21.10 27.98 4.72 9.19 17.53 6.5 6.04 10.84 5.39 6.28 11.63 6.29 5.25 11.07

12 14 15 1 8 13 7 4 9 3 5 11 6 2 10

Avg ARPD 5.44 7.90 8.72 2.05 3.41 6.45 2.47 2.43 3.77 2.25 2.32 3.60 2.30 2.29 3.80

Avg Rank 10.72 12.02 11.04 6 7.28 9.66 7.18 6.56 8.28 6.12 6.32 8.32 6.16 6.20 8.14

Table 4: ARPDs and Ranks obtained in all the considered TSP instances

7 CONCLUSION AND FUTUREWORKS
In this paper we have studied the performances of DEP, equipped

with four different generating sets, on the Traveling Salesman Prob-

lem. In particular, we have analyzed the three already proposed

generating setsASW , EXC and INS and the newly introduced gener-
ating set REV which is based on the widely adopted reversal moves.

With this regard, two implemntations of the REV randomized de-

composer have been considered.

The experimental analysis shows that the reversal moves lead

to better results, whichever crossover operator is used.

As a future work, we intend to study the impact of the generating

sets in other permutation-based optimization problems. Further-

more, we are also interested in making a similar analysis with

other discrete algorithm based on the algebraic framework like, for

instance, the algebraic particle swarm optimization [4].

1533

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic M. Baioletti, A. Milani, V. Santucci, U. Bartoccini

ACKNOWLEDGMENTS
The research described in this work has been partially supported

by: the research grant “Fondi per i progetti di ricerca scientifica

di Ateneo 2019” of the University for Foreigners of Perugia un-

der the project “Algoritmi evolutivi per problemi di ottimizzazione

e modelli di apprendimento automatico con applicazioni al Nat-

ural Language Processing”; and by RCB-2015 Project “Algoritmi

Randomizzati per l’Ottimizzazione e la Navigazione di Reti Seman-

tiche” and RCB-2015 Project “Algoritmi evolutivi per problemi di

ottimizzazione combinatorica” of Department of Mathematics and

Computer Science of University of Perugia.

REFERENCES
[1] D. L. Applegate, R. M. Bixby, V. Chvátal, and W. J. Cook. 2006. The Traveling

Salesman Problem: A Computational Study. Princeton University Press.

[2] M. Baioletti, A. Milani, and V. Santucci. 2015. Linear Ordering Optimization with

a Combinatorial Differential Evolution. In 2015 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). 2135–2140. https://doi.org/10.1109/SMC.

2015.373

[3] Marco Baioletti, Alfredo Milani, and Valentino Santucci. 2016. An Extension of

Algebraic Differential Evolution for the Linear Ordering Problemwith Cumulative

Costs. In Parallel Problem Solving from Nature - PPSN XIV - 14th International
Conference, Edinburgh, UK, September 17-21, 2016, Proceedings. 123–133. https:
//doi.org/10.1007/978-3-319-45823-6_12

[4] Marco Baioletti, Alfredo Milani, and Valentino Santucci. 2017. Algebraic Particle

Swarm Optimization for the permutations search space. In 2017 IEEE Congress
on Evolutionary Computation, CEC 2017, Donostia, San Sebastián, Spain, June 5-8,
2017. 1587–1594. https://doi.org/10.1109/CEC.2017.7969492

[5] Marco Baioletti, Alfredo Milani, and Valentino Santucci. 2017. A New Precedence-

Based Ant Colony Optimization for Permutation Problems. In Simulated Evolution
and Learning. Springer International Publishing, Cham, 960–971. https://doi.org/

10.1007/978-3-319-68759-9_79

[6] M. Baioletti, A. Milani, and V. Santucci. 2018. Algebraic Crossover Operators for

Permutations. In 2018 IEEE Congress on Evolutionary Computation (CEC 2018).
1–8. https://doi.org/10.1109/CEC.2018.8477867

[7] Marco Baioletti, Alfredo Milani, and Valentino Santucci. 2018. Automatic Alge-

braic Evolutionary Algorithms. In Proc. of Int. Workshop on Artificial Life and
Evolutionary Computation (WIVACE 2017). Springer International Publishing,
Cham, 271–283. https://doi.org/10.1007/978-3-319-78658-2_20

[8] Marco Baioletti, Alfredo Milani, and Valentino Santucci. 2018. Learning Bayesian

Networks with Algebraic Differential Evolution. In Proc. of 15th Int. Conf. on
Parallel Problem Solving fromNature – PPSNXV. Springer International Publishing,
Cham, 436–448. https://doi.org/10.1007/978-3-319-99259-4_35

[9] Marco Baioletti, Alfredo Milani, and Valentino Santucci. 2018. MOEA/DEP: An

Algebraic Decomposition-Based Evolutionary Algorithm for the Multiobjective

Permutation Flowshop Scheduling Problem. In Proc. of European Conference on
Evolutionary Computation in Combinatorial Optimization - EvoCOP 2018. Springer
International Publishing, Cham, 132–145. https://doi.org/10.1007/978-3-319-

77449-7_9

[10] Marco Baioletti and Valentino Santucci. 2017. Fitness Landscape Analysis of the

Permutation Flowshop Scheduling Problem with Total Flow Time Criterion. In

Computational Science and Its Applications – ICCSA 2017. Springer International
Publishing, Cham, 705–716. https://doi.org/10.1007/978-3-319-62392-4_51

[11] J. C. Bean. 1994. Genetic Algorithms and Random Keys for Sequencing and

Optimization. ORSA Journal on Computing 6, 2 (1994), 154–160. https://doi.org/

10.1287/ijoc.6.2.154

[12] Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. 2002. 1.375-

Approximation Algorithm for Sorting by Reversals. In Algorithms - ESA 2002,
10th Annual European Symposium, Rome, Italy, September 17-21, 2002, Proceedings.
200–210. https://doi.org/10.1007/3-540-45749-6_21

[13] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer. 2006. Self-Adapting

Control Parameters in Differential Evolution: A Comparative Study on Numerical

Benchmark Problems. IEEE Transactions on Evolutionary Computation 10, 6 (2006),
646–657. https://doi.org/10.1109/TEVC.2006.872133

[14] Alberto Caprara. 1997. Sorting by Reversals is Difficult. In Proceedings of the First
Annual International Conference on Computational Molecular Biology (RECOMB
’97). ACM, New York, NY, USA, 75–83. https://doi.org/10.1145/267521.267531

[15] Zanoni Dias and Ulisses Dias. 2015. Sorting by Prefix Reversals and Prefix

Transpositions. Discrete Applied Mathematics 181 (2015), 78 – 89. https://doi.org/

10.1016/j.dam.2014.09.004

[16] Guillaume Fertin, Anthony Labarre, Irena Rusu, Stéphane Vialette, and Eric

Tannier. 2009. Combinatorics of genome rearrangements. MIT press.

[17] John Grefenstette, Rajeev Gopal, Brian Rosmaita, and Dirk Van Gucht. 1985.

Genetic algorithms for the traveling salesman problem. In Proceedings of the first
International Conference on Genetic Algorithms and their Applications, Vol. 160.
Lawrence Erlbaum, 160–168.

[18] Keld Helsgaun. 2009. General k-opt submoves for the Lin–Kernighan TSP heuris-

tic. Mathematical Programming Computation 1, 2-3 (2009), 119–163.

[19] John Kececioglu and David Sankoff. 1995. Exact and approximation algorithms

for sorting by reversals, with application to genome rearrangement. Algorithmica
13, 1-2 (1995), 180.

[20] P. Larrañaga, C. M. H. Kuijpers, R.H. Murga, I. Inza, and S. Dizdarevic. 1999.

Genetic Algorithms for the Travelling Salesman Problem: A Review of Represen-

tations and Operators. Artificial Intelligence Review 13 (1999), 129–170.

[21] Paolo Mengoni, Alfredo Milani, and Yuanxi Li. 2018. Clustering students interac-

tions in eLearning systems for group elicitation. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), Vol. 10962 LNCS. 398–413. https://doi.org/10.1007/978-3-319-
95168-3_27

[22] Yuichi Nagata and Shigenobu Kobayashi. 2013. A powerful genetic algorithm

using edge assembly crossover for the traveling salesman problem. INFORMS
Journal on Computing 25, 2 (2013), 346–363.

[23] Valentino Santucci, Marco Baioletti, Gabriele Di Bari, and Alfredo Milani. 2019.

A Binary Algebraic Differential Evolution for the MultiDimensional Two-Way

Number Partitioning Problem. In Evolutionary Computation in Combinatorial
Optimization. Springer International Publishing, Cham, 17–32. https://doi.org/

10.1007/978-3-030-16711-0_2

[24] Valentino Santucci, Marco Baioletti, and Alfredo Milani. 2014. A Differential Evo-

lution Algorithm for the Permutation Flowshop Scheduling Problem with Total

Flow Time Criterion. In Parallel Problem Solving from Nature - PPSN XIII - 13th
International Conference, Ljubljana, Slovenia, September 13-17, 2014. Proceedings.
161–170. https://doi.org/10.1007/978-3-319-10762-2_16

[25] Valentino Santucci, Marco Baioletti, and Alfredo Milani. 2015. An Algebraic

Differential Evolution for the Linear Ordering Problem. In Proceedings of GECCO
2015. 1479–1480. https://doi.org/10.1145/2739482.2764693

[26] Valentino Santucci, Marco Baioletti, and Alfredo Milani. 2016. Algebraic Differ-

ential Evolution Algorithm for the Permutation Flowshop Scheduling Problem

With Total Flowtime Criterion. IEEE Trans. Evolutionary Computation 20, 5 (2016),
682–694. https://doi.org/10.1109/TEVC.2015.2507785

[27] V. Santucci, M. Baioletti, and A. Milani. 2016. Solving Permutation Flowshop

Scheduling Problems with a Discrete Differential Evolution Algorithm. AI Com-
munications 29, 2 (2016), 269–286. https://doi.org/10.3233/AIC-150695

[28] Rainer Storn and Kenneth Price. [n. d.]. Differential Evolution – A Simple and

Efficient Heuristic for global Optimization over Continuous Spaces. Jour. of
Global Opt. 11, 4 ([n. d.]), 341–359. https://doi.org/10.1023/A:1008202821328

[29] R. Thomsen. 2004. Multimodal optimization using crowding-based differential

evolution. In Proceedings of CEC 2004, Vol. 2. 1382–1389. https://doi.org/10.1109/
CEC.2004.1331058

1534

https://doi.org/10.1109/SMC.2015.373
https://doi.org/10.1109/SMC.2015.373
https://doi.org/10.1007/978-3-319-45823-6_12
https://doi.org/10.1007/978-3-319-45823-6_12
https://doi.org/10.1109/CEC.2017.7969492
https://doi.org/10.1007/978-3-319-68759-9_79
https://doi.org/10.1007/978-3-319-68759-9_79
https://doi.org/10.1109/CEC.2018.8477867
https://doi.org/10.1007/978-3-319-78658-2_20
https://doi.org/10.1007/978-3-319-99259-4_35
https://doi.org/10.1007/978-3-319-77449-7_9
https://doi.org/10.1007/978-3-319-77449-7_9
https://doi.org/10.1007/978-3-319-62392-4_51
https://doi.org/10.1287/ijoc.6.2.154
https://doi.org/10.1287/ijoc.6.2.154
https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1109/TEVC.2006.872133
https://doi.org/10.1145/267521.267531
https://doi.org/10.1016/j.dam.2014.09.004
https://doi.org/10.1016/j.dam.2014.09.004
https://doi.org/10.1007/978-3-319-95168-3_27
https://doi.org/10.1007/978-3-319-95168-3_27
https://doi.org/10.1007/978-3-030-16711-0_2
https://doi.org/10.1007/978-3-030-16711-0_2
https://doi.org/10.1007/978-3-319-10762-2_16
https://doi.org/10.1145/2739482.2764693
https://doi.org/10.1109/TEVC.2015.2507785
https://doi.org/10.3233/AIC-150695
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/CEC.2004.1331058
https://doi.org/10.1109/CEC.2004.1331058

	Abstract
	1 Introduction
	2 Algebraic Differential Evolution for Permutations
	3 Generating Set based on Reversal Moves
	3.1 RandRS
	3.2 RandRS2

	4 Properties of the generating sets
	5 DEP for the Traveling Salesman Problem
	6 Experiments
	7 Conclusion and Future Works
	Acknowledgments
	References

