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ABSTRACT

Local Optima Networks (LONs) are a valuable tool to understand

fitness landscapes of optimization problems observed from the

perspective of a search algorithm. Local optima of the optimization

problem are linked by an edge in LONs when an operation in

the search algorithm allows one of them to be reached from the

other. Previous work analyzed several combinatorial optimization

problems using LONs and provided a visual guide to understand

why the instances are difficult or easy for the search algorithms.

In this work we analyze for the first time the MAX-SAT problem.

Given a Boolean formula in Conjunctive Normal Form, the goal

of the MAX-SAT problem is to find an assignment maximizing

the number of satistified clauses. Several random and industrial

instances of MAX-SAT are analyzed using Iterated Local Search to

sample the search space.
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1 INTRODUCTION

Local Optima Networks (LONs) have proven to be a valuable tool

to analize and visualize the search landscape of combinatorial op-

timization problems [5, 10]. A LON is a graph where the set of

vertices are local optima of an optimization problem and an edge

between two nodes exists if there is a way to “jump” from one to

the other. Depending on which relationship the edges represent we

have different kinds of LONs. In this paper, two local optima x and

y will be connected by an edge if it is possible to reach y from x
after perturbing x and applying a hill climber.
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Local Optima Networks have been computed and analyzed for

many combinatorial problems, including Quadratic Assignment [3],

Permutation Flow-Shop [4], Traveling Salesman [6], and Number

Partitioning [7]. Several different local optima structures have been

identified in the LONs of the studied fitness landscapes, including

plateaus and funnels. Their presence (or absence) serves to explain

the performance of trajectory-based methods such as Iterated Local

Search on the underlying optimization problems. And LONs are a

useful tool to analyse the global structure of fitness landscapes.

MAX-SAT is the optimization version of the Satisfiability (SAT)

problem. Given a Boolean formula, SAT checks if there is an as-

signment of variables to Boolean values such that the formula is

satisfiable. The Boolean formula is commonly expressed as a con-

junction of clauses (Conjunctive Normal Form). A clause is a list of

literals (a Boolean variable or its negated) that is satisfied if at least

one literal is true. The Boolean formula is satisfiable if all the clauses

are. The goal of MAX-SAT is to find an assignment to maximize

the number of satisfied clauses. Thus, the objective function (to be

maximized) is the number of satisfied clauses.

To the best of our knowledge the LONmodel has not been applied

before to the MAX-SAT problem. Indeed, MAX-SAT has proven

difficult to model with LONs in the past, due to the existence of large

plateaus in the underlying search space. An analysis with LONs can

shed light onto the structure of MAX-SAT fitness landscapes, which

can help to increase our understanding and improve the design and

selection of optimization algorithms.

The organization of the paper is as follows. In Section 2 the

basic concepts of Local Optima Networks are introduced. Section 3

introduces Gray Box Optimization and the hill climber used in

our Iterated Local Search algorithm. Sections 4 and 5 present the

methodology used in the experimental evaluation and the results

obtained. The paper concludes with Section 6.

2 LOCAL OPTIMA NETWORKS

A recent variant of LONs, the Compressed Monotonic LONs (CM-

LONS) [7], allows modelling the funnel structure of landscapes

with neutrality (i.e. existence of plateaus of local optima with equal

fitness). We describe below the LON model, before introducing the

Compressed Monotonic model (CMLON).

2.1 LON Model

A fitness landscape [8] is a triplet (S,N , f ) where S is a set of po-
tential solutions i.e., a search space, N : S −→ 2S , a neighbourhood

structure, is a function that assigns to every s ∈ S a set of neigh-
boursN (s), and f : S −→ R is a fitness function that can be pictured
as the height of the corresponding solutions.

In our study, the search space is BN , i.e. the space of binary

strings of lengthN , so its size is 2N . As neighbourhood, we consider
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the standard Hamming distance 1 neighbourhoods, that is, the set

of all solutions at most Hamming distance 1, respectively, from the

current solution.

LON. Is the directed graph LON = (L,E), where L is the set of
the local optima, and E is the set of escape (perturbation) edges.

Local optima. A local optimum, which in MAX-SAT is a maxi-

mum, is a solution l such that ∀s ∈ N (l), f (l) ≥ f (s). Notice that the
inequality is not strict, in order to allow the treatment of neutrality

(local optima of equal fitness), which is known to widely occur on

MAX-SAT. The set of local optima, which corresponds to the set

of nodes in the network model, is denoted by L. Local optima are
determined with the efficient local search algorithm described in

Section 3.2.

Perturbation edges. Edges are directed and based on the per-

turbation operator (k-bitflips). There is an edge from local optimum

l1 to local optimum l2, if l2 can be obtained after applying a random
perturbation (k-bitflips) to l1 followed by local search. Edges are
weighted with estimated frequencies of transition. We determined

the edge weights in a sampling process. The weight is the number

of times a transition between two local optima occurred. The set of

edges is denoted by E.

2.2 Compressed Monotonic LON Model

Compressed local optima. A compressed local optimum (also

called a local optima plateau) is a set of connected nodes in the

LON with the same fitness value. Two nodes are connected if there

is an edge between them. The set of compressed optima with the

same fitness, denoted by CL, corresponds to the set of nodes in the

Compressed Monotonic LON model.

Monotonic Perturbation edges. The set of perturbation edges

E as defined for the LON model above, but after removing deterio-

rating edges, that is, edges connecting a pair of nodes where the

end node has inferior fitness than the start node. We call this set

monotonic, ME, as it contains only non-deteriorating transitions

between optima.

Compressed Monotonic LON. Is the directed graph CMLON

= (CL,CE), where nodes are the compressed local optima CL. The
edges CE are aggregated from the monotonic edge setME by sum-

ming up the edge weights.

Monotonic Sequence. A monotonic sequence is a path of con-

nected nodesMS = {cl1, cl2, . . . , cls } where cli ∈ CL. By definition
of the edges, f (cli ) ≥ f (cli−1). There is a natural end to every
monotonic sequence, cls , when no improving transitions can be
found. In the directed CMLON network, cls will be a node without
outgoing edges (called a sink in the graph theory terminology).

Funnel. A funnel can be loosely described a grouping of local

optima, conforming a coarse-grained gradient towards a high fitness

optimum. More formally, we characterise funnels in the CMLON

as the aggregation of all monotonic sequences ending at the same

point (funnel top or sink). Funnels can be seen as basins of attraction

at the level of local optima.

3 GRAY BOX OPTIMIZATION

We will work along the paper with functions defined over a set

of Boolean variables xi , each one taking values 0 and 1. We say

that a function f of n variables has k-bounded epistasis if it can be
written as a sum ofm subfunctions fl , each one depending on at
most k variables:

f (x) =
m∑

l=1

fl (xil,1 ,xil,2 , . . . ,xil,k ), (1)

where il, j is the index of the j-th variable in subfunction fl . In
the case of binary variables, these functions have been named Mk

Landscapes by Whitley et al. [12]. In Gray Box Optimization, the

optimizer can evaluate the set ofm subfunctions in Equation (1)

(although their internal structure is unknown). This contrasts with

Black Box Optimization, where the optimizer can only evaluate

solutions and get their fitness value.

3.1 Variable Interaction Graph

The Variable Interaction Graph (VIG) [12] is a useful tool that

can be constructed under Gray Box Optimization. It is a graph

V IG = (V ,E), where V is the set of variables and E is the set of

edges representing all pairs of variables (xi ,x j ) having nonlinear
interactions. These nonlinear interactions can be captured in two

ways. First, assuming that every pair of variables appearing together

in a subfunction have a nonlinear interaction. A second approach

is to apply the Fourier transform [9], and then look at every pair of

variables to determine if there is a non-zero Fourier coefficient as-

sociated with a term with the two variables. This second method is

more precise and not very expensive, because the Fourier transform

can be constructed in O(n) time for k-bounded epistasis functions.
An example of the construction of the variable interaction graph

for a function with n = 18 variables (numbered from 0 to 17) and

k = 3, is given below. We will refer to variables using numbers,

e.g., 9 = x9. The objective function is the sum over the following

18 subfunctions:

f0(0, 6, 14) f5(5, 4, 2) f10(10, 2, 17) f15(15, 7, 13)
f1(1, 0, 6) f6(6, 10, 13) f11(11, 16, 17) f16(16, 9, 11)
f2(2, 1, 6) f7(7, 12, 15) f12(12, 10, 17) f17(17, 5, 2)
f3(3, 7, 13) f8(8, 3, 6) f13(13, 12, 15)
f4(4, 1, 14) f9(9, 11, 14) f14(14, 4, 16)

From these subfunctions, assume we extract the nonlinear in-

teractions that are shown in Figure 1. In this example, every pair

of variables that appear together in a subfunction has a nonlinear

interaction.

3.2 Efficient Local Search

For Mk landscapes, Whitley and Chen [11] proved that the location

of improving moves can be determined in constant time for the

Hamming distance 1 neighborhood. Two solutions are neighboring

in this neighborhood if they differ in one bit. This result was later

generalized by Chicano et al. [2], who proposed a hill climber that

explores the solutions contained in a Hamming ball of radius r
around a solution in constant time. The concept of Score function

is at the core of both results. For v,x ∈ Bn , and a pseudo-Boolean
function f : Bn → R, we denote the Score of x with respect to
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Figure 1: Sample Variable Interaction Graph (VIG).

move v as Sv (x), defined as follows:

Sv (x) = f (x ⊕ v) − f (x), (2)

where ⊕ denotes the exclusive OR bitwise operation. The Score

Sv (x) is the change in the objective function when we move from
solution x to solution x ⊕ v , that is obtained by flipping in x all

the bits that are 1 in v . Storing the Score function in memory

makes it possible to explore all the solutions at Hamming distance 1

in constant time. When a move is performed, the Score function

is updated. If the number of subfunctions a variable appears in

is bounded by a constant, then the time required to update the

Score function is constant, yielding a very efficient hill climber

for pseudo-Boolean problems [2]. This hill climber is used in our

implementation of Iterated Local Search used in the experimental

evaluation.

4 METHODOLOGY

4.1 Benchmark Instances

We used benchmark instances having a low number of variables

in order to be able to compute the global optimum in all of them.

In particular, we used instances with 40 variables, which is the

minimum number of variables found in instances of the MAX-SAT

Evaluation 20171. The ratio of the number of clauses to the number

of variables, is known to have an impact on the search difficulty [13].

Therefore, we generated random MAX-SAT instances with n = 40
variables and varying the number of clauses (m). In particular, we
generated instances with m/n ∈ {2, 4, 6, 8, 10, 11}. The instance

generator and the instances themselves can be found with the

source code in GitHub2.

We also considered three industrial instances from the MAX-

SAT Evaluation 2017. The instances are maxcut-san400_0.5_1,
maxcut-sanr200_0.7 and maxcut-brock400_2, with m = 790,

m = 1092, andm = 1188 clauses, respectively.
For all the instances we computed the global optimum using an

exact method, in other to be certain that the sampling processes

reached it. Instead of using an exhaustive enumeration (which could

take a long time) we applied the recently proposed Dynastic Poten-

tial Crossover Operator (DPX) [1]. This operator is able to explore

the full dynastic potential of two parent solutions providing the

best among the solutions in that space. When one parent solution is

1http://mse17.cs.helsinki.fi/benchmarks.html
2https://github.com/jfrchicanog/EfficientHillClimbers

exactly the complement of the second parent, the dynastic potential

is the whole search space and the global optimum is provided. DPX

worked well for the instances with the lowest number of clauses

but failed to run for largest instances due to memory problems.

To overcome this, we made equal some variables in both parent

solutions, thus exploring only one hyperplane in the search space.

After enumerating all the possible hyperplanes we can obtain the

global optimum. The exploration of these hyperplanes was paral-

lelized in different machines, thus reducing the time to compute the

optimum from days to minutes, thanks to a cluster of more than

100 machines.

4.2 Sampling Method

The sampling procedure consists of aggregating the local maxima

and transition edges obtained by 100 runs of an Iterated Local Search

(Algorithm 1). The stopping condition was set as fixed running time

(60 s). Weights are added to edges indicating the number of times

they appear in the sampling process.

Algorithm 1 Iterated Local Search

1: x ← generateRandomSolution();

2: x ← applyLocalSearch(x );
3: while not stopping condition do

4: y ← perturb (x );
5: y ← applyLocalSearch(y);
6: reportEdge(x ,y);
7: if f (y) > f (x) then
8: x ← y;
9: end if

10: end while

11: return x ;

Table 1: Description of Metrics.

Performance Metrics

hitrate Proportion of runs that reached the global optimum.

iter Number of iterations before reaching the global optimum.

Network Metrics

noptima Number of optima (including local and global).

nglobal Number of global optima.

edgesi Proportion of edges that are improving.

edgesn Proportion of edges that are neutral.

edgesw Proportion of edges that are worsening.

ncoptima Number of compressed optima (plateaus).

ncglobal Number of compressed global optima.

ncedges Number of compressed edges.

neutrality Ratio of compressed to total number of optima.

lplateau Size of the largest plateau.

nlfunnels Number of sub-optimal funnels.

In our ILS implementation, the perturbation flips 5% of the vari-

ables selected at random (which corresponds to 2-bitflips forn = 40).
The local search operator iterates the hill climber explained in Sec-

tion 3.2 until a local optima is found (no neighbor can improve the

objective function). A new local optimum is only accepted in Line 7

if it improves the incumbent solution. However, we report all the
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edges encountered between local optima in Line 6, which includes

neutral and worsening edges.

4.3 Network and Performance Metrics

For each instance, we extracted the LON models and computed

the measurements described in Table 1. Metrics are reported as

aggregations over 100 runs.

5 RESULTS

5.1 Network Analysis

Table 2 reports the network statistics described in Table 1 for the

sampled local optima networks on the random and industrial in-

stances with n = 40 and increasing clause to variable ratiom/n.
For the random instances, results show that the the size of the

networks, as measured by the number of local optima, noptima,

and compressed local optima, ncoptima, decreases with increasing

number of clauses. This seems counter-intuitive, a small connected

network should, in principle, be easier to traverse than a larger

one, as the possible trajectories towards the global optimum are

shorter. But we know that search difficulty tends to increase with

the number of clauses [13]. Some networkmetrics help us to explain

this. Looking at the number of global optima, nglobal, we can ob-

serve a sharp decline in this metric when going fromm/n = 4 to 6.
Moreover, looking at the size of the largest plateau size lplateau,

we can observe that for m/n ∈ {1, 2} the largest plateau is the

global optimum plateau (as the size coincides with the number of

global optima), but this is not the case for m/n ≥ 4, where the

largest plateau is a sub-optimal plateau. Another network metric

explaining the increased difficulty for largerm/n ratios is the pro-
portion of worsening edges, edgesw . This metric reflects the effort

required across the search process to find an improving transition.

This value is found to be larger for the instances with largem/n
ratios. The instance with 440 clauses is the only random instance

revealing a sub-optimal funnel, nlfunnels = 1. All the instances

show a high level of neutrality, which is a well known feature of

MAX-SAT fitness landscapes. This can be appreciated by looking at

the proportion of neutral edges edgesn, and the ratio of compressed

to total number of optima neutrality3, which both decrease with

the number of clauses.

Regarding the performance metrics in random instances, we

observe that the hit rate is maximum in all the instances except

the largest one. In these cases we can use the average number of

iterations to reach the global optimum as a search difficulty metric

and we observe an increase in this value with the number of clauses.

The largest instance (m/n = 11) does not reach the global optimum
in all the cases and this biased the average number of iterations

to reach the global optimum, which cannot be compared with the

other random instances. The conclusions is that the difficulty of

the random instances increase with the number of clauses, as was

observed in previous work [13]

The industrial instances show a larger proportion of worsening

edges edgesw , when compared to the random instances, indicating

higher search difficulty. The less constrained instance (m/n = 20)
reveals a network of similar size than the studied random instances.

3neutrality is reported as as the reciprocal of the ratio of compressed to total number
of optima, so that higher values represent higher neutrality.

However, the two instances with ratio m/n > 1000 show larger

networks; they also show two global optima plateaus. The instance

with largest ratio (m/n = 1188) shows a sub-optimal funnel. The
industrial instances also show a high level of neutrality as indicated

by the high neutrality value. Regarding the performance metric, we

observe that the instance withm = 1092 clauses is the most difficult
one. This highlights an interesting fact: in industrial instances more

clauses do not necessarily means more difficulty. The number of

improving edges seems to be a good indicator of search difficulty

in this the industrial instances.

In order to give a more detailed characterisation of the plateau

sizes, Figure 2 shows bar-plots of the sizes of compressed optima

(plateaus) in decreasing order for all the studied instances. The

instance type, number of clauses and clause to variable ratio are

indicated in the sub-captions. In order to better compare the magni-

tude differences, the square root of the sizes is reported. The scale

of the y axis goes from 0 to 25 for first three plots (a), (b) and (c),

while for the rest, it goes from 0 to 10. A general trend across all

instances is the existence of a few large plateaus, followed by a

larger set of smaller plateaus, ending with a number of plateaus

of size one (i.e. single optima). On the random instances (plots (a)

- (f)), the size and number of plateaus decreases with increasing

m/n ratios. In contrast, the number of plateaus does not seem to

decrease with them/n ratio on the industrial instances.

5.2 Visualization

Visualization is a useful tool in the analysis of network data, allow-

ing us to appreciate structural features which could be difficult to

infer from the raw data and statistical analysis. In particular, the

sampled compressed monotonic LONs for the studied benchmark

instances are relatively small and not very dense (with less than

300 nodes and edges as can be seen in Table 2), which facilitates

visualization.

Figure 3 illustrates 2D projections of the LONs for all the stud-

ied instances. The instance type, number of clauses and clause to

variable ratio are indicated in the sub-captions. Network plots were

produced using the R statistical language together with the igraph

package. Graph layouts consider force-directed methods. Networks

are decorated to reflect features relevant to search dynamic. The

rectangular nodes indicate plateaus with lengths proportional to

plateau sizes (i.e. the number of single local optimawithin a plateau),

while the circular nodes indicate single optima. The color of nodes

indicates the funnel membership with pink reflecting nodes that

belong to global optimal funnels, and light blue indicating nodes

that belong to sub-optimal funnels. Red nodes correspond to the

global optimum (optima), while dark blue nodes indicate the top of

sub-optimal funnels. Edges widths are proportional to their weight,

which is the estimated probability of transitions. That is, the most

probable transitions are thicker in the plots.

On the random instances (plots (a)-(f) in Fig. 3), the overall

size of the networks decreases with them/n ratio. The amount of
neutrality also decreases with the number of clauses, which can

be appreciated in the network plots as the reduction in number

and length of the rectangular nodes. For the instances with lower

number of clauses (plots (a) and (b) in Fig. 3) the global optimum is

a large plateau (red rectangle), whereas form/n > 4 (plots (c) - (f) in
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Figure 2: Barplots indicating the distribution of local optima plateau sizes for the benchmark instances with n = 40. The

instance type, number of clauses and clause to variable ratio are indicated in the sub-captions. The square roots of the plateau

sizes is used to account for the magnitude differences across instances. Notice that the y axis of the first 3 plots (a), (b) and (c)

goes from 0 to 25, while for the rest it goes from 0 to 10.
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Table 2: Performance and networkmetrics for the random and industrial benchmark instances with n = 40 variables. The first
two columns indicate the number of clausesm and clause to variable ratiom/n.

Random Instances

m m

n
hitrate iter noptima nglobal edgesi edgesn edgesw ncoptima ncglobal ncedges neutrality lplateau nlfunnels

80 2 1.00 27 9 678 648 0.003 0.705 0.292 52 1 89 0.995 648 0

160 4 1.00 20 1989 184 0.012 0.627 0.361 61 1 91 0.969 184 0

240 6 1.00 55 568 1 0.156 0.702 0.143 87 1 121 0.847 159 0

320 8 1.00 39 305 2 0.124 0.551 0.325 44 1 53 0.856 88 0

400 10 1.00 120 282 3 0.081 0.585 0.335 32 2 41 0.887 47 0

440 11 0.95 8 180 4 0.137 0.382 0.481 20 1 23 0.889 25 1

Industrial Instances (maxcut)

790 20 1.00 93 437 5 0.125 0.263 0.611 50 1 76 0.886 17 0

1092 27 0.96 60424 3154 12 0.053 0.133 0.814 225 2 282 0.929 29 0

1188 30 0.99 408 1885 6 0.105 0.200 0.695 141 2 250 0.925 51 1

Fig. 3), the global optimum becomes a single node or a small plateau,

with large sub-optimal plateaus appearing (pink rectangles). The

random instance with m = 440, is the only one revealing a sub-

optimal funnel Plot (b), which can be appreciated as the subset of

blue nodes pointing towards the small dark blue node (the funnel

top or sink).

The LON for less constrained of the industrial instances (plot (g)

in Fig. 3) resembles in size and structure the LON of the random

instance withm/n = 8 (plot (d)). However, the most constrained
industrial instances (plots (h) and (i) in Fig. 3) show visibly larger

networks, with two separated global optima small plateaus. More-

over, the industrial instance withm/n = 30 (plot (i)) also shows

a very small sub-optimal funnel, visualised as the two light blue

nodes, ending in a dark blue small plateau acting as trap to the

search process (no outgoing edges).

6 CONCLUSIONS

We conducted a preliminary study extracting, analysing and vi-

sualising LONs for the MAX-SAT problem. This article joins two

recent active research strands, Local Optima Networks and Gray-

Box Optimization. The recently proposed Compressed Monotonic

LON model allowed us to deal with the large plateaus observed in

MAX-SAT, while Gray-box optimization allowed us a fast extrac-

tion of the LON data. We studied both randomly generated and

industrial instances. All the instances studied showed high degrees

of neutrality, as expected. On the random instances, increasing

the number of clauses produced smaller networks. This seemed

counter-intuitive initially, as smaller connected networks seem to

reflect easier search. But we know that search difficulty in MAX-

SAT tends to increase with the number of clauses. A closer analysis

revealed that it takes longer for the algorithm to find improving

transitions on the more constrained instances. So even though the

monotonic trajectories towards the global optimum in the networks

are shorter, it takes longer for the algorithm to find the improving

hops. Moreover, the random instances with low number of clauses

have a large global optima plateau, indicating that it is easier to

reach it. The industrial instances showed a different pattern than the

random instances, producing larger networks when the number of

clauses increases. This difference deserves further investigation. We

also observed the appearance of a sub-optimal funnel in the most

constrained random instance and the most constrained industrial

instance. Sub-optimal funnels are associated with increased search

difficulty, another promising sign indicating that LON analysis can

help in understanding search difficulty.

Future work will explore larger instances and will investigate

correlations between LON features and algorithm performance. We

will also explore LONs induced by hybrid algorithms incorporating

partition crossover. The improving, neutral andworsening edges are

biased by the stopping condition. The reason is that after the global

optimum is found no improving edges can be found, thus reducing

its proportion. To avoid this bias, in future work the analysis should

be stopped once the global optimum is found.
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(a) random,m = 80,m/n = 2 (b) random,m = 160,m/n = 4 (c) random,m = 240,m/n = 6

(d) random,m = 320,m/n = 8 (e) random,m = 400,m/n = 10 (f) random,m = 440,m/n = 11

(g) maxcut,m = 790,m/n = 20 (h) maxcut,m = 1092,m/n = 27 (i) maxcut,m = 1188,m/n = 30

Figure 3: Local optima networks for the benchmark instances with n = 40 variables. The instance type, number of clauses and

clause to variable ratio are indicated in the sub-captions. Rectangular nodes indicates plateaus, that is, nodes compressing two

or more connected local optima, while circular nodes indicate single local optima. The lengths of rectangles is proportional to

the size of plateaus, specifically, to the square root of the number of optima in the plateaus. Pink nodes belong to the funnel

containing the global optimum, while light blue to sub-optimal funnels. Red indicates the global optimum(a), while dark blue

indicates the bottom of a sub-optimal funnel.
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