Benchmarking GNN-CMA-ES on the BBOB noiseless testbed

Louis Faury
Criteo Al Lab
LTCI, Telecom ParisTech
Université Paris-Saclay, France
Lfaury@criteo.com

ABSTRACT

We evaluate in this paper the GNN-CMA-ES algorithm on the
BBOB noiseless testbed. The GNN-CMA-ES algorithm was recently
proposed as a plug-in extension to CMA-ES, introducing the possi-
bility to train flexible search distributions, in contrast to standard
search distributions (such as the multivariate Gaussian). By com-
paring GNN-CMA-ES and CMA-ES, we show the benefits of this
extension on some unimodal functions as well as on a variety of mul-
timodal functions. We also identify a family of unimodal functions
where GNN-CMA-ES can degrade the performances of CMA-ES
and discuss the possible reasons behind this behavior.

CCS CONCEPTS

« Computing methodologies — Continuous space search;

KEYWORDS

Benchmarking, Black-box optimization, Evolutionary Strategies,
Generative Neural Networks

ACM Reference format:

Louis Faury, Clément Calauzenes, and Olivier Fercoq. 2019. Benchmarking
GNN-CMA-ES on the BBOB noiseless testbed. In Proceedings of Genetic and
Evolutionary Computation Conference Companion, Prague, Czech Republic,
Fuly 13-17, 2019 (GECCO ’19 Companion), 9 pages.
https://doi.org/10.1145/3319619.3326856

1 INTRODUCTION

The Covariance Matrix Adaptation Evolutionary Strategies (CMA-
ES) [8, 14] is a stochastic method for continuous zeroth-order opti-
mization of arbitrary (e.g non-convex, non-smooth) functions, and
belongs to the general class of Evolutionary Strategies (ES) [19, 22].
In a few words, CMA-ES maintains a multivariate normal search
distribution which it updates via heuristic mechanisms such as
covariance matrix adaptation. This allows the efficient optimiza-
tion of a variety of hard (ill-conditioned, non-separable) unimodal
functions and also enables the search distribution to potentially es-
cape local minima of multimodal functions via an efficient implicit
exploration/exploitation trade-off.
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In recent work [5], we argued that the rigidity of the normal
distribution could potentially be harmful to the stochastic search.
For instance, its lack of flexibility could lead an algorithm like
CMA-ES to reduce the entropy of the search distribution so that it
locally fits the objective function level curves. Such a shortage in
entropy will impact the quality of the exploration phase, by either
slowing down the discovery of the minimum (for instance in a
curved valley), or taking away some probability mass on a (local)
minimum, which could be revealed to be the global minima with
more function evaluations.

In order to circumvent such short-comings and maintain flexi-
ble search distributions that could adapt to a variety of objective
functions, we proposed in [5] to use bijective Generative Neural Net-
works in ES algorithms. Generative Neural Networks (GNNs) [17]
have been studied in the context of density estimation and shown
to be able to model complex and multimodal distributions. While
in all generality they have intractable densities (justifying their
adversarial training [7]), recent work [3, 4, 20] focused on building
bijective GNNs (also known as normalizing flows), for which the
density can be exactly computed. As shown in [5], this enables an
efficient gradient-based training of GNNs for an ES purpose.

We focus on one particular bijective GNN: the NICE [3] model.
It allows to model highly flexible distributions at minimal cost,
and induces a volume preserving transformation. This means that
the volume of the distribution is fully determined by the latent
distribution of the GNN (typically a multivariate normal). The ex-
ploration/exploitation trade-off is therefore left entirely to the latent
space, which can be shaped by literally any ES algorithm operating
on the latent distribution.

In this paper, we base on [5] and focus on the case where the
GNN’s latent distribution is a multivariate normal, trained by CMA-
ES. We denote this algorithm GNN-CMA-ES and detail its procedure
in Section 2. We detail the experimental procedure we followed in
Section 3 and provide experimental results on the BBOB testbed in
Section 4. Finally, we discuss these results in Section 5.

2 GNN-CMA-ES
2.1 Notation

In the following, we note f the objective to be minimized and
x € X its D-dimensional argument. Samples x from the GNN
are obtained by applying a bijective mapping g, to samples z €
Z drawn from a latent distribution v,,. The symbol 5 represents
the weight and biases of the neural networks implemented by the
NICE model to build gy, which structure can be found in [5] or
in the original NICE paper [3]. The latent distribution v,, is set to
be a multivariate normal with mean y and covariance matrix %,
described jointly by the parameter w = {u, X). Finally, we note 7,
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the distribution generated by the GNN and will use the notation 0
to jointly describe the parameters w and n - that is 0 £ (w, 1).

2.2 Principle

We train GNN distributions with an ES perspective by minimiz-
ing the objective:

J©) = J(w,n) = Ex~n, , [f()] 1
which gradients w.r.t € can be obtained thanks to the log-trick and
estimated from Monte-Carlo sampling [25]. This gradient evalu-
ation only requires being able to differentiate the log-density of
7w,y Thanks to the bijectivity of gy, this density can easily be eval-
uated (and differentiated) thanks to the change of variable formula.
Indeed, noting h; = g,;l we have:

Ohy(x)
ox @

The NICE model maintains a unit Jacobian ( |0h;/0x| = 1) and
allows to compute h;, for the same price as a feed-forward pass on
gn- This allows to efficiently access stochastic gradients of (1) and
train GNNss for an ES context in a principled manner.
Unfortunately, jointly training © and 5 via the objective (1) ulti-
mately fails, even with second-order approach like natural gradient
descent (leading to instances of the Natural Evolutionary Strategies
[24]). In [5], we derive an efficient training technique that performs
an alternated minimization of J(w, n). More precisely, at every gen-
eration ¢ of the ES procedure we successively (approximately) solve:

T, (%) = Voo (i (x)

(3a)
(3b)

w¢+1 = argmin J(w, n;)
w

Ne+1 = argmin J(@¢+1,1)
1

The optimization of the latent distribution parameters (3a) is left
to CMA-ES, which operates on the multivariate normal distribution
V. Note that by rewriting the objective (3a):

J(@,1t) = Bzny,, [ f(9n,(2))] 4

this procedure is equivalent to running CMA-ES on the (non-stationary)

objective function f o gy,.

The optimization of the parameters 7 (ruling the flexibility of the
distribution 7, ) in (3b) is done by solving a trust-region problem,
augmented with inverse propensity scores to take into account the
change in distribution brought by (3a) and unbias the empirical
estimation of By, [f(x)] with samples from 7,,,, ,. Concretely,
we obtain 1;4+1 by (approximately) solving the program:

—””‘“”’(x)ﬂx)]

”w,,l]t(x)

s.t KL (”wtﬂ,I]H”leJh) <¢

rn,]in IE'xNﬂlvty ne

®)

where ¢ is a hyper-parameter given by the user that controls the
change in distribution the GNN optimization is allowed to bring.
The Kullback-Leibler (KL) divergence is approximated from samples,
as well as the expectation under 7, ,. The constraint is enforced
via an adaptive penalization scheme (see [21]), and an optimal
point for the penalized objective can be readily (approximately)
discovered by a stochastic gradient descent algorithm. The role of
the trust-region is to avoid degeneracies that are known to happen
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when minimizing inverse propensity scores [23] and to prevent the
GNN from overfitting.

The objective in the program (5) is known as off-policy, meaning
that it incorporates past samples in its optimization loop without
adding bias to the estimation. It can therefore be readily augmented
with samples from past generations, that is from 7,,_,, Hieis+
Teo,_1,n,7 (noting T the history’s horizon). This technique can be
useful when the population size A of the ES algorithm is small, in
order to ensure sufficient data exposure for the GNN. This setting
was not evaluated in [5] and is leveraged here to be able to use
CMA-ES with its default population size (rather small compared to
usual batch sizes used to train GNNs).

The GNN-CMA-ES algorithm can be understood as a plug-in
extension to CMA-ES, enabling to learn diverse and flexible search
distributions which adapt their density level curves with those of
the objective function. The CMA-ES algorithm operates directly
on the composed function f o gy, where gy, is learned by (3a). This
allows the representation of the objective function in the latent
space to be better suited for the stochastic search with a normal
distribution, potentially leading to faster discovery of the global
minimum. The exploration/exploitation trade-off is left to CMA-ES,
which fully rules the volume of the search distribution.

2.3 Algorithm

We provide in Algorithm 1 the pseudo-code for GNN-CMA-ES.
This generic algorithm can readily incorporate extension to CMA-
ES, like restart and increasing population sizes (the restart being
dictated only by the CMA-ES algorithm). We indicate in Algorithm 1
only the hyper-parameters linked with the GNN extension, and
use for the remaining the CMA-ES default configuration. These
hyper-parameters include the KL radius ¢, the sample size M used to
estimate the KL divergence in (5), the initial value of the Lagrangian
multiplier $y used to solve (5), the horizon T and the structure of
the Multi-Layer Perceptrons (MLPs) used in the NICE model.

We implement the NICE model using the Tensorflow Probabili-
ties [2] (TfP) library. Relying on Tensorflow automatic differentia-
tion, the penalized version of (5) is optimized with Adam [16] until
a minimum is discovered.

3 EXPERIMENTAL PROCEDURE

We use the IPOP-CMA-ES [1] implementation of the PyCMA [9]
library (version 2.6.0), both as baseline and as inner optimizer of
GNN-CMA-ES. We therefore benchmark GNN-IPOP-CMA-ES in
this paper, which we keep short to GNN-CMA-ES to reduce clutter.
For all hyper-parameters relative to IPOP-CMA-ES, we use their
default (adapted) value from PyCMA (both for the baseline and the
inner optimization on GNN-CMA-ES). Similarly, we use in all our
experiments the same hyper-parameters for GNN-CMA-ES, which
we provide in Table 1. The NICE model is also kept constant in
all experiments, and set to have three coupling layers with a one
hidden layer MLP with 16 units and hyperbolic tangent activation.
The computational overhead induced by the GNN is therefore quite
modest (at least for GNNs standards), however enough to bring
significant flexibility - as demonstrated in [5].
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Algorithm 1: GNN-CMA-ES algorithm (with historic data)

:Objective function f, initial mean po,

initial scale oy
hyper-parameters:KL radius ¢, KL batch size M, NICE
model architecture, initial weights g,
initial penalty fo, horizon T

inputs

1 (Initialization)

2 Initialize CMA-ES with mean po and variance oy - Ip
3 Initialize NICE MLPs weights and biases with 7.

4 Let A < 4+ [3log D]

5 Let H be a circular buffer of length T x A

¢ while not terminate do

7 (Sampling)

8 Sample Z = {z1,...2)} iid Voo

9 Apply gy, to Z, obtain X = {x1,...x;} i1d Toonne

10 Evaluate L = {0, 5, (x1), . . . Teop,, (x2)}

11 Evaluate F = {f(x1),..., f(x3)}.

12 Let H «— H + {X,L,F}

13 (CMA-ES iteration)

14 Apply CMA-ES to v, with samples Z and evaluations
F.

15 Obtain w41

16 (NICE iteration)
//KL divergence estimation

- . iid
17 Sample X1, ..., XM ~ Tw, g,
5 Torypr,ne (¥i)
w || Ko 2o )
@fi1s i
//Gradient based optimization

19 Ne+1 €

. Teopyr.n(X) 5
argmin, {T_l/l Y. fer [+ B KL(wp 41, ’7)}
20 (Penalty update)

21 if I(:L(wtﬂ, Nt+1) > 2¢ then

22 ‘ Pr+1 < 1.5

23 end

24 else if KL(wr41, Nt+1) < €/2 then
25 ‘ Br+1 < Bi/1.5

26 end

27 end

We run IPOP-CMA-ES and GNN-CMA-ES both with a budget of
10* x D on the BBOB 2018 noiseless function suites in four differ-
ent dimensions (D=2,3,5 and 10). We follow the default evaluation
procedure presented in the demonstration files of the Comparing
Continuous Optimizers (COCO) code base (version 2.2.2). For each
run of the algorithms, an initial starting point xq is sampled uni-
formly in [-5,5]P and the initial step-size is set to o = 2.0. For
both algorithms, the maximum number of restarts is set to 6.

4 RESULTS

Results from experiments according to [15] and [10] on the
benchmark functions given in [6, 13] are presented in Figures 1, 2
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Table 1: GNN-CMA-ES default hyper-parameters

Hyper-parameter ‘ Symbol ‘ Value

MLPs initialization Mo Glorot initialization
Initial KL regularization Bo 1.0

KL radius £ 0.01
Horizon T 3

KL sample size M 100 x D

and 3 and in Tables 2 and 3. The experiments were performed with
COCO [12] version 2.2.2, the plots produced with version 2.2.2.

The average runtime (aRT), used in the figures and tables,
depends on a given target function value, fi = fopt + Af, and is
computed over all relevant trials as the number of function evalua-
tions executed during each trial while the best function value did
not reach f;, summed over all trials and divided by the number of
trials that actually reached f; [11, 18]. Statistical significance is
tested with the rank-sum test for a given target A f; using, for each
trial, either the number of needed function evaluations to reach A f;
(inverted and multiplied by —1), or, if the target was not reached,
the best A f-value achieved, measured only up to the smallest num-
ber of overall function evaluations for any unsuccessful trial under
consideration.

5 DISCUSSION

The relative performance of GNN-CMA-ES with respect to IPOP-
CMA-ES greatly varies among the different objective functions of
the BBOB testbed. As shown in Figures 1,2 and 3, GNN-CMA-ES
accelerates CMA-ES on some (unimodal and multimodal) func-
tions. Such acceleration is expected given the main motivation
behind GNN-CMA-ES, which is flexibility of the search distribution.
With additional flexibility, the search distribution can continuously
adapt its search directions (useful on fg and fo for instance) and
concurrently keep track of several local minima. On the other hand,
GNN-CMA-ES degrades CMA-ES performances on some separable
unimodal and ill-conditionned functions (f2 and fi; for instance).
While this is not satisfying, it is quite natural that the multivariate
normal performs better on most of these functions. Indeed, we be-
lieve that since most of them have ellipsoidal shapes, the rigidity of
the Gaussian serves as an implicit prior and the search distribution
can efficiently align its density level lines with those of the objective
functions. One can also witness that on the unimodal functions
where GNN-CMA-ES accelerates CMA-ES, this improvement in
performances seems to vanish as the dimension increases.

These experimental results therefore validate the benefits of us-
ing flexible search distributions in ES algorithms on some objective
functions. They also highlight the fact that on relatively simple
objectives, the normal search distribution is perfectly adapted and
the additional flexibility brought by GNN-CMA-ES can degrade the
convergence rate of CMA-ES.

As a consequence, future work could therefore focus on reducing
the impact of GNN-CMA-ES on such functions while still allowing
acceleration on non (locally) separable and multimodal functions
with weak structure. We also plan on investigating the sensitivity of
GNN-CMA-ES with respect to its hyper-parameters (such as e and T,
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that are here kept constant in all experiments) to design dimension-
adapted optimal values. Finally, since the GNN extension proposed
in [5] holds for virtually any ES algorithms, further benchmarking
could be performed with other ES algorithms, such as the Natural
Evolutionary Strategies family.
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Figure 1: Average running time (aRT in number of f-evaluations as log,, value), divided by dimension for target function
value 1078 versus dimension. Slanted grid lines indicate quadratic scaling with the dimension. Different symbols correspond
to different algorithms given in the legend of fi and f4. Light symbols give the maximum number of function evaluations
from the longest trial divided by dimension. Black stars indicate a statistically better result compared to all other algorithms
with p < 0.01 and Bonferroni correction number of dimensions (six). Legend: o: GNN-CMA-ES, ¢: IPOP-CMA-ES
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Figure 2: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimen-
sion (FEvals/DIM) for 51 targets with target precision in 108--2] for all functions and subgroups in 2-D. As reference algorithm,
the best algorithm from BBOB 2009 is shown as light thick line with diamond markers.
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Aopt_[1et 1e0 let le2 le3 te5 te7 [N Afopt |tet 1e0 Te-1 Te-2 1e-3 le-5 le-7 [#suce
(‘NN‘:‘MA 40(52).0 5'5((6;0 1(](7)61) 14(8)6.0 2()(4)6.0 2‘)(5)6.0 '59(4)6.0 ::j:: f13 z 3 26 60 n ) 122 1515
POPCM |280 S0 sa® 120 M) 3O WO S0 poron |aan s ast)  as00  as) aaem adon s

f2 16 19 25 % 26 28 2 115 f1q 1 7.0 16 24 38 67 90 15/15
GNN-CMAJ68(69) 145(27) 146(170) 167(160) 182(351) 188(280) 197(287) 1415 Gan-onAl 350) 376 30 50 1509 7509 5509 oTs
IPOP-CM | 9.5(5) 1@3)** 103)*4 1e)*4 13)*4 13(3)*4 14®** 1515 pop-cM | 43(7) 3.2(4) 3.6(0.9) 4.1(1) 47(1) 4.8(1) 4.7(1) 15/15

f3 15 271 445 446 450 454 464 15/15 15 37 291 1033 1066 1113 1231 1412 15/15
GNN-CMA 3.1(2) 2.3(3) 7.3(12) 7.5(15) 7.7(6) 8.0(8) 8.2(15) 15/15 GNN-CMA| 2.2(1.0) 25(2) 1.8(1) 1.8(2) 1.8(1) 1.7(1) 1.6(1) 15/15
IPOP-CM | 6.0(2) 2.9(5) 6.6(5) 7.4(8) 7.6(8) 7.9(9) 8.1(8) 15/15 1POP-CM | 1.3(0.7) 2.7(2) 2.6(3) 2.8(3) 2.7(3) 2.6(3) 23(2) 15/15

4 22 344 459 496 523 544 566 15/15 16 9.0 50 174 326 358 409 538 15/15
GNN-CMA[ 1.9(2) 5.2(6) 37(39) 55(54) 52(45) 51(59) 50(66) 7/15 GNN-CMA[ 3.7(4) 6.3(13) 2.7(5) 1.6(3) 1.6(0.2) 1.8(2) 1.5(1) 15/15
IPOP-CM | 1.9(1) 5.7(6) 95(66) 89(141) 85(105) 83(47) 80(115) 5/15 [pOP-CM | 3.4(1) 9.1(9) 5.1(3) 2.9(1) 2.7(5) 2.8(5) 23(3) 15/15

f5 40 4.0 4.0 4.0 4.0 4.0 40 15/15 17 3.0 61 133 275 396 1086 1657 15/15
GNN-CMA[ 4.1(4) 6.2(3) 6.6(6) 6.7(6) 6.7(6) 6.7(6) 6.7(6) 15/15 GNN-CMA[16(2) 1.5(5) 13(1) 1.1(0.1) 1.6(1) 1.4(1) 1.3(0.7) [15/15
IPOP-CM | 3.1(3) 6.5(2) 7.0(5) 7.0(6) 7.0(4) 7.003) 7.0(4) 15/15 1pOP-CM | 1.7(2) 1.6(0.7) 1.2(2) 1.5(0.9) 1.3(2) 1.6(1) 1.4(1) 15/15

f6 13 23 41 54 67 95 124 15/15 f18 19 134 666 1249 1708 2438 2858 15/15
GNN-CMA| 2.4(2) 3.1(2) 33(0.9) 3.5(0.8) 3.4(0.8) 3.5(0.8) 3.6(0.5) 15/15 GNN-CMA| 4.1(3) 3:2(2) 0.89(0.6) 0.61(0.5) 0.70(0.7) 0.96(0.4) 0.91(0.6) 15/15
IPOP-CM | 2.3(3) 34(2) 3.0(0.5) 3.1(08) 3.2(0.8) 3.5(1) 3.7(0.6) 15/15 1pOP-CM | 5.1(14) 3.0(4) 0.83(0.8) 0.67(0.8) 0.56(0.2) 0.65(0.4) 0.75(0.5) 15/15

£7 3.0 21 60 193 217 217 241 15/15 £19 1 1 2 216 227 252 276 15/15
GNN-CMA| 4.6(8) 2.6(3) 2.1(1) 0.80(0.4) 0.79(0.5) 0.79(0.8) 092(0.7)  [15/15 GNN-CMA| 1(0) 1(0) 11(3) 7.4(7) 7.4(10) 7.2(7) 6.8(6) 15/15
IPOP-CM | 3.6(5) 2.3(3) 24(2) 0.82(0.5) 0.84(0.5) 0.84(0.5) 0.920.6)  [15/15 1pop-CM | 1(0) 1(0) 6.4(8) 8.3(5) 10(14) 11(11) 12(10) 15/15

8 50 12 37 46 86 94 112 15/15 £20 4.0 61 365 366 366 370 375 15/15
GNN-CMA| 3.3(4) 3.2(4) 2.8(2)%3 102)*3 2607)*%  3.009%2  3.1(09)*3 1515 GNN-CMA| 4.0(4) 5.4(d) 7.006) 8409 8.909) 9.3(8) 10(7) 15/15
IPOP-CM | 4.1(3) 7.0(5) 7.9(2) 8.0(3) 4.8(0.9) 5.0(1) 4.8(0.9) 15/15 IPOP-CM | 2.8(2) 9.0(10) 11(16) 15(6) 16(15) 16(15) 16(19) 14/15

£9 1 18 30 44 68 81 92 15/15 f21 2.0 51 174 276 290 324 330 15/15
GNN-CMA[ 1(0) 2.8(2) 4.3(3) 5.0(3) 4.0(2) 4.2(2) 4.3(2) 15/15 GNN-CMA| 1.1(0.5) 3.3(9) 2.8(7)% 2.3(0.5)% 2.2(0.5)% 2.3(7)% 2.4(7) 15/15
IPOP-CM | 1(0) 3.5(3) 7.7(5) 7.5(4) 5.4(2) 5.5(1) 5.5(2) 15/15 IPOP-CM | 1.3(0.5) 5.3(5) 7.3(12) 4.7(6) 4.8(8) 4.5(6) 4.7(5) 15/15

f10 30 46 54 61 68 82 9% 15/15 £22 5.0 27 168 218 249 289 306 15/15
GNN-CMAR1(51) 28(23) 29(51) 29(36) 27(35) 23(23) 20(26) 15/15 GNN-CMA| 1.1(1) 10(10) 4.7(4) 4.7(9) 9.2(1) 14(38) 13(19) [13/15
IPOP-CM | 4.4(3) 4.1(2) 1.6(1)* 14(1)*2 1.42)*2 4.50.4)* 4.30.6* 1515 TPOP-CM | 1.0(2) 10(12) 12(21) 13(16) 15(24) 21(25) 20(32) 13/15

11 35 45 50 62 67 81 97 15/15 f23 8.0 193 234 263 299 348 379 15/15
GNN-CMA[17(33) 34(46) 42(58) 37(12) 38(52) 32(44) 28(34) 15/15 GNN-CMA| 2.6(3) 4.2(3) 6.7(3) 7.005) 6.4(4) 6.0(6) 5.9(6) 15/15
IPOP-CM | 5.5(2) 5.2(2)% 5.6(1)*2 1907)*3  a80)*3 4.808)*3  4.70.7)*3 1515 IPOP-CM | 2.2(1) 4.6(4) 7.7(3) 7.2(5) 7.3(6) 6.7(5) 6.5(6) 15/15

f12 35 16 75 94 105 153 195 15/15 24 18 857 8515 23399 24113 24721 24721 5/15
GNN-CMA[26(38) 39(47) 33(43) 29(42) 27(37) 21(19) 17(13) 15715 GNN-CMA 1.5(0.9) 8.0(7) 5.5(5) 5.9(6) 5.7(4) 5.6(12) 5.6(7) 2/15
IPOP-CM | 5.9(10) 8.1(2)* 6503)*  653)*2  66(19)*2  s5912*  s54*  |isns POP-CM | 19(1) 18(36) 516) 5.76) 5.50) 540) 544 215

Table 2: Average runtime (aRT in number of function evaluations) divided by the respective best aRT measured dur-
ing BBOB-2009 in dimension 2. This aRT ratio and, in braces as dispersion measure, the half difference between 10
and 90%-tile of bootstrapped run lengths appear for each algorithm and target, the corresponding reference aRT in
the first row. The different target Af-values are shown in the top row. #succ is the number of trials that reached
the (final) target fopt + 1078, The median number of conducted function evaluations is additionally given in italics,
if the target in the last column was never reached. Entries, succeeded by a star, are statistically significantly bet-
ter (according to the rank-sum test) when compared to all other algorithms of the table, with p = 0.05 or p =
10F when the number k following the star is larger than 1, with Bonferroni correction by the number of func-
tions (24). A | indicates the same tested against the best algorithm from BBOB 2009. Best results are printed in bold.
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IPOI}'CM 322) 1003) 176) 23(4) 290 416) 546) 1515 pop.cM | 2.6(0.7) 3.0(0.8) 3206*2  3307*3  09200**  1.002**  1.000.)*3 [1515
2 83 87 38 39 90 92 94 15/15 ) ;
S I I B I = v T T T B T
POP-CM | 8.3@)*3  100)** 106**  no** 12()** 1a(** 15()** 15/15 1pop-CM | 1.4(2) 2.7(0.5) 3.7(2) 3.6(0.7) 3.6(0.8) 3.4(0.7) 2.6(0.2) 15/15
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IPOP-CM | 4.5(3) 6.1(2) 6:4(2) 6.5(3) 6.5(3) 6.5(3) 6.5(2) 15/15 1pOP-CM | 5.0(5) 1.0(0.5) 0.89(0.1) 0.64(2) 0.56(0.5) 0.92(0.3) 1.1(0.5) 15/15
f6 114 214 281 404 580 1038 1332 [15/15 £18 103 378 3968 8451 9280 10905 12469 [15/15
GNN-CMA| 2.4(03) 2000.1) 23(0.5) 21(03) 17(0.4) 130.1) 13(02) 1515 GNN-CMA| 1307) 330 0540 05503) 07507) 05404 09708 TS
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£7 24 324 1n 1451 1572 1572 1597 15/15 £19 1 1 242 1.0e5 1.2¢5 1.2¢5 12e5  [15/15
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IPOP-CM | 3.1(2) 1.1(1) 0.71(0.4) 0.66(0.3) 0.71(0.5) 0.71(0.4) 07305 [15/15 pop-cum | 1(0) 1(0) 109(73) 162 1401) 1401) 18() 315
f8 3 273 336 372 391 410 422 L5/15 £20 16 851 38111 51362 54470 54861 55313 [14/15
GNN-CMA| 3.4(0.9) 2.9(0.9) 35005 37(03) 3.9(0.4) 110.2) 1.4(0.9) 1515 GNN-CMA| 390) 510) 1709) 30 20 1409 1109) 15
IPOP-CM | 2.9(2) 3.9(3) 41(3) 43(0.5) 4.4(3) 4.6(2) 458(3) 15/15 1pop-CM | 3.4(2) 62(5) 3103) 233) 22(1) 2203) 22(3) 5/15
£9 35 127 214 263 300 335 369 15/15 21 41 1157 1674 1692 1705 1729 1757 |41
GNN-CMA| 5.4(0.9) 5.2(2) 5.2(1) 5.0(1) 4.8(1) 4.8(1) 4.7(0.8) 15/15 GNN-CMA| 2.3(1) 5.409) 6.603) 6.703) 6.3(2) 6.8(23) 6.9(16) 14715
IPOP-CM | 6.0(2) 3.3(6) 6.3(5) 6.2(3) 5.8(5) 5.7(3) 57(2) 15/15 1poP-CM. |16(9) 11(8) 1861) 18(12) 18(43) 18(50) 182) 10/15
£10 349 500 574 607 626 829 880 1515 a2 71 386 938 980 1008 1040 1068 [14/15
GNN-CMA 5.8(5) 6.8(7) 8.0(8) 8.7(8) 83(9) 6.9(5) 6.7(5) 15/15 GNN-CMA|10(16) 15(14) 36(34) 20(31) 39(50) 39(24) 38(76) 10/15
POP-CM | 2005*2  1702**  1702**  1702**  1802**  1502**  160.0** |1515 1POP-CM | 4.6(9) 14(102) 43(97) 41(67) 47(51) 16(39) 45(36) 8/15
11 143 202 763 977 1177 1467 1673 1515 f23 3.0 518 14249 27890 31654 33030 34256 |15/15
GNN-CMA[19(14) 25(3) 8.6(4) 73(3) 6.5(3) 5.4(3) 4.9(2) 15/15 GNN-CMA| 4.4(4) 6.9(4) 1.8(2) 1.00(0.4) 0.91(1) 1.1(1) 1.0(1) [12/15
POP-CM |3.805)*2  3.2070*%  09702*%  0810.0*%  0.760.00**  0710.0**  0.720.)*% |15/15 POP-CM | 3.3(2) 11(7) 3.0(3) 1.9(2) 1.7(3) 1.6(2) 1.8(3) 8/15
f12 108 268 371 413 461 1303 1494 15/15 f24 1622 2.2e5 6.4e6 9.6e6 9.6e6 1.3e7 1.3e7 3/15
GNN-CMA| 8.8(11) 11(11) 13(10) 1409) 14(3) 6102) 5.7(8) 15/15 GNN-CMA| 2.4(2) 1.0(07) ~ © £ ) o ed 0/15
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Table 3: Average runtime (aRT in number of function evaluations) divided by the respective best aRT measured dur-
ing BBOB-2009 in dimension 5. This aRT ratio and, in braces as dispersion measure, the half difference between 10
and 90%-tile of bootstrapped run lengths appear for each algorithm and target, the corresponding reference aRT in
the first row. The different target Af-values are shown in the top row. #succ is the number of trials that reached
the (final) target fopt + 1078, The median number of conducted function evaluations is additionally given in italics,
if the target in the last column was never reached. Entries, succeeded by a star, are statistically significantly bet-
ter (according to the rank-sum test) when compared to all other algorithms of the table, with p = 0.05 or p =
10°¥ when the number k following the star is larger than 1, with Bonferroni correction by the number of func-
tions (24). A | indicates the same tested against the best algorithm from BBOB 2009. Best results are printed in bold.
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