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ABSTRACT
Dynamic graphs are an essential tool for representing a wide vari-
ety of concepts that change over time. Examples include modeling
the evolution of relationships and communities in a social network
or tracking the activity of users within an enterprise computer
network. In the case of static graph representations, random graph
models are often useful for analyzing and predicting the charac-
teristics of a given network. Even though random dynamic graph
models are a trending research topic, the field is still relatively
unexplored. The selection of available models is limited and manu-
ally developing a model for a new application can be difficult and
time-consuming. This work leverages hyper-heuristic techniques
to automate the design of novel random dynamic graph models. A
genetic programming approach is used to evolve custom heuristics
that emulate the behavior of a variety of target models with high
accuracy. Results are presented that illustrate the potential for the
automated design of custom random dynamic graph models.
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•Mathematics of computing→Random graphs; • Theory of
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its engineering→ Genetic programming;
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1 INTRODUCTION
Graphs are a powerful and flexible method of representing a wide
variety of concepts where the relationships between objects are
a critical element [16]. Common applications include utility and
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transportation grids as well as computer and social networks. Be-
cause graphs are such a versatile way to represent and store data,
countless algorithms exist that operate directly on graph structures
to solve problems. Graph partitioning algorithms are used to effi-
ciently distribute parallel computation jobs [14]. Social networks
use graph-based community detection approaches to improve auto-
mated recommendations [3].

When developing new graph algorithms, researchers often turn
to random graph models to test and demonstrate the flexibility and
scalability of their solutions. Random graph models are also an
invaluable tool for anticipating the development of a network, such
as predicting the spread of a communicable disease [7]. Regardless
of the specific application, the proper selection of a random graph
model is critical. An inappropriate model will produce graphs that
can differ dramatically from the intended target and provide an
unrealistic representation. For example, a model that produces
graphs that resemble transmission grids will probably be unsuitable
for representing social networks.

A variety of graph similarity metrics exist that can be used to
select the most appropriate model [8]. However, this approach only
works if a good set of models is available a priori. A new model can
be developed to suit a specific application, but manual development
can be difficult and time-consuming [17]. Hyper-heuristic search
techniques [4] have been used to automate the design of generative
random graph models [2, 18].

Random dynamic graph models are a trending research topic,
but the field is still relatively new [10, 21]. Previous methods of
automating the design of random graph models are limited to static
graphs by design [2, 9, 18]. This work investigates extending the
use of hyper-heuristics for automated graph model generation to
dynamic graph applications. Genetic programing (GP) [11] is used
to evolve heuristics that capture the behavior of a variety of ran-
dom dynamic graph models. Results show that evolution is able to
capture the characteristics of the target models with a high degree
of accuracy.

2 BACKGROUND
This section reviews a fundamental random graph model as well
as a variation of this model capable of producing dynamic graphs.
The applications targeted in this work build upon this extended
model. Also covered is some background on automated algorithm
design using a hyper-heuristic search.
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2.1 Erdös-Rényi Model
The Erdös-Rényi graphmodel is one of themost basic random graph
models, but it is also the most studied [5, 6]. This simple model
takes two parameters: the number of vertices n and a probability
p. Any possible edge between two vertices in the graph will exist
with an independent probability p. The model is typically denoted
as G(n,p).

2.2 Dynamic Erdös-Rényi Model
Previous work introduced an extension of the Erdös-Rényi graph
model that can be used to create dynamic graphs [21]. This exten-
sion adds two additional model parameters: α and β . The initial
graph is created according to the static Erdös-Rényi model. At each
time step, missing edges are added with probability α and exist-
ing edges are removed with probability β . If α and β are constant,
the number of edges in the graph will tend towards

(n
2
)
∗ α

α+β .
See Zhang et. al. [21] for more detail on the characteristics of this
model.

2.3 Hyper-Heuristics
Instead of attempting to solve a specific problem instance, a hyper-
heuristic search aims to find a heuristic solution that can produce
high-quality solutions to a class of problems [4]. This work lever-
ages genetic programming (GP), a common hyper-heuristic tech-
nique, to evolve a population of programs that modify an input
graph in a way that resembles a target random dynamic graph
model. Solutions are represented using traditional Koza-style parse
trees [11] with strongly-typed versions of tree construction and
variation [15].

3 RELATEDWORK
Automating the design of static random graph models is well stud-
ied. Bailey et. al. demonstrated that GP could be used to auto-
mate the inference of graph models for complex networks [2]. This
approach was extended with increased primitive granularity to
achieve more flexibility in random graph generation [18]. Harrison
et. al. investigated the impact of objective selection when using GP
to evolve random graph models [9]. The evolution of graph models
has also been extended to directed graph applications [12]. Menezes
et. al. employed a symbolic regression GP approach to select edges
to add to incrementally build a network [13]. Methods other than
GP have been used to automate the design of graph models, such
as using simulated annealing to optimize an action-based approach
to construct complex network models [1].

A key limitation of these approaches is that they are designed
to generate static graph models. Many of these methods start with
an empty initial graph and aren’t capable of modifying an existing
graph. Since most of these methods are focused on iteratively build-
ing graphs, they don’t incorporate functionality to remove existing
edges. This work aims to extend automated graph model design
to create graph update heuristics that accurately capture dynamic
graph behavior.

Figure 1: Example random graph heuristic parse tree that
first removes 1% of existing edges, then adds new edges with
probability 0.01%.

4 METHODOLOGY
This section describes the approach used in this work to evolve
heuristics for the generation of dynamic random graphs.

4.1 Representation
Solutions are represented using strongly typed parse trees [15].
These trees are constructed from primitive graph-based operations
that are described in Section 4.4. Solutions in the initial parent
pool are randomly generated from the available operations using a
ramped half-and-half approach. See Figure 1 for an example parse
tree representation of a basic random graph heuristic.

4.2 Evaluation
To evaluate the quality of an evolved solution, its behavior is com-
pared to that of a target dynamic graph model. An initial graph
is constructed according to the target model and duplicated for
comparison. The target model is used to update the initial graph by
adding and/or removing edges. Similarly, the evolved solution is
used to update the duplicate graph. The number of edges added and
removed from both graphs is tracked along with the total number
of edges. This process is repeated for a configurable number of time
steps to produce a final graph for both the target model and the
evolved solution.

The distribution of vertex degrees of the final output graphs are
compared to measure the similarity between them. A two-sample
Kolmogrov-Smirnov (KS) distribution comparison test is used to
compare the sample distributions for both graphs. This test returns
a p-value in the range [0, 1] that is maximized when the samples
are similar and likely to have come from the same distribution. DC
(degree centrality) is used to refer to the p-values from this KS test
comparison.

The distributions of the number of edges added and removed at
each time step are compared in a similar fashion to calculate the
terms EA (edges added) and ER (edges removed). The final fitness
component measures how well the evolved heuristic mimics the
target model with respect to the number of edges in the graph at
each time step. This metric, refered to as SD (size difference), is
defined as

SD =max

(
1 −

1
T

T∑
t=1

|size(Gt ) − size(Ht )|

size(Gt )
, 0

)
(1)

where size(G) is the number of edges in graph G, T is the con-
figurable number of time steps per evaluation, Gt is the graph
produced by the target model at time step t , and Ht is the graph
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produced by the evolved heuristic at time step t . The absolute differ-
ence between the size of the two graphs is normalized by the size of
the target and averaged over all time steps. This value is subtracted
from one to convert it to a maximization objective. Values for this
objective below zero are set to zero to keep each objective on the
same [0, 1] scale.

To make it easier to compare evolved objective scores across
applications, each objective score is scaled using the objective value
achieved by comparing a model against itself using the formula

Θ = 1 −
|ΘT − ΘE |

ΘT
(2)

where Θ is an objective in {DC,EA,ER, SD}, ΘT is the value for
that objective achieved by the target model evaluated against itself,
and ΘE is the value for that objective achieved by the evolved model.
This has the added benefit of penalizing overfit solutions that mimic
the evaluation test cases better than the model fits itself.

The entire evaluation process is repeated for a configurable num-
ber of test cases to measure the robustness of the evolved graph
model. Final solution fitness is defined as

f itness =
1
C

C∑
i=1

DC + EA + ER + SD
4

(3)

where C is the configurable number of test cases per evaluation.
The four metrics previously described are used to produce a

single fitness value. Alternatively, they could be used as separate
objectives in a multi-objective approach. In this proof-of-concept,
the single fitness value is used to assist with interpretability of the
results and selecting exemplar solutions without problem-specific
knowledge. Future work will leverage a multi-objective optimiza-
tion approach.

During evaluation, fitness is calculated incrementally after each
test case. If a solution’s fitness is in the bottom quartile compared to
the population after a configurable minimum number of evaluation
test cases, the evaluation process is terminated early. This is done
to avoid wasting expensive evaluation time on obviously inferior
solutions.

4.3 Evolution
To better leverage parallel computation resources, this work em-
ploys an asynchronous evolutionary approach. In the initial phase,
parent solutions are generated randomly until enough of them have
been evaluated to form a starting population. Subsequent solutions
are added to the population one at a time as they complete evalu-
ation. After adding a newly evaluated solution to the population,
an inverted k-tournament (selecting the lowest fitness) removes a
solution from the population. Then, a new offspring is generated
either by sub-tree crossover with two parents or sub-tree mutation
from a single parent. Parent solutions are chosen using traditional
k-tournament selection. The new offspring is then added to the
asynchronous queue for evaluation. This process continues until a
configurable number of evaluations have been completed.

4.4 Primitive Operations
As this work employs a strongly typed GP approach, each instance
of an operation has an associated type to enforce compatibility. The
available primitive types are as follows:

Boolean: returns a boolean value (true or false)
Integer: returns a whole number
Float: returns a floating point number
Probability: returns a floating point number bound to the

range [0, 1]
Numeric: pseudo-type that refers to operations that can han-

dle Integer, Float, or Probability types (e.g., Add)
NodeList: a collection of nodes in the input graph
EdgeList: a collection of node pairs from the input graph
List: pseudo-type that refers to operations that can handle both

NodeList or EdgeList types
GraphOp: an operation that, instead of being used for a return

value, alters the input graph
NodeOp: an operation that takes a node input when called

and alters the input graph
Op: pseudo-type that refers to operations that can handle

GraphOp, NodeOp, or EdgeOp types
Root: a special primitive type only used for the root node
Note that all references to a pseudo-type (Numeric or List, or Op)

must match for an instance of a primitive operation. For example,
all the List types must match for an instance of the ListIntersection
operation; this primitive cannot find the intersection of a NodeList
and an EdgeList.

All evolved solutions begin with a special root node primitive.
This primitive has one, two, or three GraphOp children that it calls
sequentially. In addition to altering the input graph through the
actions of its children, this primitive also tracks and returns the
edges added and removed from the input graph during execution
of the parse tree. See Table 1 for a description of the rest of the
primitive operation set.

The primitive set used was initially inspired by previous work
evolving static random graph models [2, 9, 18]. Some operations
were added specifically to ensure the primitive set was capable of
capturing the behavior of the application models targeted in this
work. This primitive set is fairly large, mostly due to the strongly-
typed genetic programming approach used. Future work will inves-
tigate how well the heuristic search makes use of each primitive in
an attempt to prune unnecessary operations.

4.5 Parameters
Table 2 lists the values of the configurable parameters used in this
work. These parameter values were initially inspired by previous
work evolving random graph models, but they have been hand-
tuned to improve performance for this application.

5 EXPERIMENT
The Dynamic Erdös-Rényi model described in Section 2 is used to
create a variety of target application models. For each target model,
a population of heuristics is evolved to mimic the model’s behavior.
The target models are created by manipulating the α parameter. All
target models use the same values for the other model parameters:
n = 1000, p = 0.01, β = 0.03. The model parameter values used in
these test cases are chosen to create noticeably different dynamic
graph behavior while keeping the size of the graphs manageable
computationally. With the exception of the final application, each of
the following models was manually constructed using the available
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Table 1: Primitive Operations

Primitive Type Inputs Description
SequentialOp Op O1,O2[,O3]:Op sequentially executes two or three subtrees

NoOp Op None does nothing
ForNodeLoop GraphOp l :NodeList, N:NodeOp for each node n in l , execute N(n)
ForIndexRange GraphOp i:Integer, G:GraphOp execute G i times
CreatePath GraphOp l :NodeList, b:Boolean connect subsequent nodes in l to create a path;

if b, connect first and last nodes in l to create a cycle
ConnectToNodes NodeOp u:Node, l :NodeList, p:Probability for every node v in l , connect u and v with chance p

AddEdges GraphOp l :NodeList, p:Probability for every pairing of nodes in l , connect with chance p
RemoveEdges GraphOp l :EdgeList, p:Probability for each edge in l , remove with chance p
RewireEdges GraphOp l :EdgeList, p:Probability for each edge in l , rewire with chance p

AddPairwiseEdges GraphOp l1, l2:NodeList connect node pairs at each index in lists l1, l2 with chance p
CreateTriangles GraphOp l1, l2, l3:NodeList, p:Probability add edges to create triangle with nodes

at each index in lists l1, l2, l3 with chance p
IfOp GraphOp b:Boolean, G:GraphOp if b, execute G

IfElseOp GraphOp b:Boolean, G,H:GraphOp if b, execute G, else execute H
Add Numeric x ,y:Numeric returns x + y

Subtract Numeric x ,y:Numeric returns x − y

Multiply Numeric x ,y:Numeric returns x ∗ y

SafeDivide Numeric x ,y:Numeric returns 1 if y = 0, else x/y
Modulus Numeric x ,y:Numeric returns x%y

Not Boolean x :Boolean returns ¬x
And Boolean x ,y:Boolean returns x ∩ y

Or Boolean x ,y:Boolean returns x ∪ y

LessThan Boolean x ,y:Numeric returns x < y

LessThanOrEqual Boolean x ,y:Numeric returns x <= y
FloatFromInt Float i:Integer returns i as a Float
ProbFromFloat Probability f :Float convert f to a probability in the range [0, 1]

GraphAverageDegree Float None returns graph average degree
AverageDegree Float l :NodeList returns average degree of nodes in l

GraphMaxDegree Integer None returns maximum degree of graph
MaxDegree Integer l :NodeList returns maximum degree of nodes in l
GraphOrder Integer None returns number of nodes in graph
GraphSize Integer None returns number of edges in graph

TrueWithProb Boolean p:Probability returns true with chance p, else false
NearestNeighbors NodeList d :Integer, l :NodeList returns list of all nodes within d hops from nodes in l
IncidentEdges EdgeList l :NodeList returns list of all edges with at least one endpoint in l
IncidentNodes NodeList l :EdgeList returns a list of unique endpoints from edges in l

AllNodes NodeList None returns list of all nodes in graph
AllEdges EdgeList None returns list of all edges in graph

NodeListIntersection NodeList l1, l2:NodeList returns list intersection of NodeLists l1 and l2
EdgeListIntersection EdgeList l1, l2:EdgeList returns list intersection of EdgeLists l1 and l2

NodeListUnion NodeList l1, l2:NodeList returns list union of NodeLists l1 and l2
EdgeListUnion EdgeList l1, l2:EdgeList returns list union of EdgeLists l1 and l2

ListFilterWithProb List l :List, p:Probability returns sublist of l randomly filtered with chance p
ListPortion List l :List, p:Probability returns first f loor (p ∗ lenдth(l)) elements of l
ListShuffle List l :List returns elements of l in randomized order

List None returns an empty list
GPConstantNode Numeric None returns randomly initialized number

Boolean None returns randomly initialized boolean
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Table 2: Parameters

Parameter Value

Population size 50
Evaluation limit 10000
Crossover chance 0.5
Mutation chance 0.5
Initial tree depth 2-7

Mutation tree depth 1-3
Evaluation test cases 10-30

Time steps per test case 100
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Figure 2: Graph size (number of edges) over time for various
α settings. For each model, n = 1000, p = 0.01, and β = 0.03.

primitive set to ensure that the language was expressive enough to
achieve the desired behavior. The final application investigates the
use of this approach to model the dynamic behavior of an enterprise
computer network.

5.1 Stable, Shrink, and Grow Models
The first three models use static values for the α parameter. The
stable model uses an α of 0.0003 to create a model that adds and
removes approximately the same number of edges at each time step
as can be seen in the middle line in Figure 2. α values of 0.0001 and
0.0005 are used to define the shrink and growmodels, respectively.
These models correspond to the bottom and top lines in Figure 2.

5.2 Parameterized Model
The fourth application targets a parameterized version of the
model during evolution. During evaluation, the evolved heuristics
are tested against each of the models shown in Figure 2. To make
this an achievable target, the model parameter values p, α , and β are
made available to the evolved heuristics through additional terminal
primitives: PInput, AlphaInput, and BetaInput, respectively. The
evolutionary process must discover how to properly leverage this
additional information.
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Figure 3: Average graph size over time for model with a pa-
rameter changepoint at time step 50.

5.3 Changepoint Model
The fifth application model incorporates a sudden change in the
model parameters. Initially, this changepointmodel has an α value
of 0.0001. At the halfway point of each evaluation, the α parameter
is set to 0.0005 and the behavior of the dynamic graph changes
noticeably. This trend is illustrated in Figure 3. Five additional
primitives are added to provide the flexibility to handle this appli-
cation. The TimeInput and TimeInputPercentage primitives return
the time step and percentage of time steps passed, respectively.
ChangepointInput returns the threshold time step (50) at which
the model parameters change. In this work, the changepoint is
simply provided to the evolved heuristics, but automated meth-
ods of detecting this transition exist [20]. ChangepointSwitch and
ChangepointSwitchElse are conditional branching primitives that
determine which branches to execute based on whether or not the
changepoint has been reached.

5.4 Time-dependent Model
The final manually constructed application model includes a time-
dependentmodel parameter. At each time step t , the α parameter’s
value is updated to 0.00001 ∗ t . The impact this has on the size of
the graph can be seen in Figure 4. This application also leverages
the TimeInput and TimeInputPercentage primitives described in
Section 5.3.

5.5 Modeling Enterprise Network Traffic
The final application investigates the potential of this approach
to model real-world phenomenon. NetFlow event logs are taken
from the computer network at Los Alamos National Laboratory
(LANL) [19] that contain information about communication ses-
sions between pairs of computers on the network, such as the ports
used or the amount of data transferred. A static graph is generated
for six minute increments during normal business hours (7am to
5pm) that contains an edge between two computer vertices if traffic
is observed between those computers during that time window. To
keep the evaluation time manageable for this proof-of-concept, the
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Figure 4: Average graph size over time for model with a
time-dependent model parameter (n = 1000, p = 0.01, α(t) =
0.00001 ∗ t , β = 0.03). The dashed line indicates the value of
the alpha parameter as it changes over time.

resulting graphs are reduced to activity between the most active
1000 computers. These static graphs are combined to produce a
dynamic graph with 100 time steps for each of the 50 highest activ-
ity days. The down-selection in terms of days is done to remove
non-business days, such as weekends and holidays, and provide
a more consistent target for the evolutionary process to model.
During solution evaluation, a subset of these days is chosen ran-
domly without replacement to generate test cases. This application
also leverages the TimeInput and TimeInputPercentage primitives
described in Section 5.3.

6 RESULTS AND DISCUSSION
Figure 5 shows the progression of fitness values over time during
an evolutionary run targeting the NetFlow application. The top
gray line indicates the best fitness seen so far during a run. The
shaded region shows the interquartile range of population fitness
values, with the black line indicating the median fitness. Although
this is an example, it exhibits features seen in the results from other
runs and applications. The large vertical jumps in the best fitness
make it obvious where evolution has discovered a key functionality.
These are typically followed by several smaller increases. Manual
inspection reveals that the large jumps typically correspond to the
introduction of entirely new subtrees whereas fine tuning of con-
stant values lead to the smaller successive increases. Figure 6 shows
an example summarization of the fitness trends for 30 experimental
runs, this time for the parameterized application model.

Figure 8 summarizes the breakdown of the fitness scores of
the highest-fitness solutions from 30 evolutionary runs for each
application. The light shaded region shows the average objective
values of the heuristics evolved for that application. Since these
values are scaled to the objective values achieved by evaluating the
model against itself, objective values closer to one indicate more
accurate models.

The objective value results suggest that the size difference (SD)
objective is the easiest to optimize. Note that due to the way ob-
jective values are scaled, a score under one can be the result of
the model overfiting on the test cases during evaluation. Manual
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Figure 5: Fitness value over time for an example evolution-
ary run targeting the NetFlow application. The dark shaded
region indicates the interquartile range of fitness values
with the black line showing the median. The lighter shaded
region shows the full range of population fitness values
(minimum to maximum).
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Figure 6: Population fitness values over time for the pa-
rameterized model application averaged over 30 evolution-
ary runs. The dark shaded region indicates the average in-
terquartile range of fitness values with the black line show-
ing themedian. The lighter shaded region shows the average
minimum to maximum range of population fitness values.

inspection reveals that overfitting occurs just as often as under-
fitting for each of the manually constructed target models. The
NetFlow application, on the other hand, is more consistently under-
fit. This is likely the result of this application exhibiting far more
unpredictable edge activity than the manually constructed models.

To illustrate the effect of the targeted evolution, the stable appli-
cation model is also compared against each target model (except
itself). The black region indicates the objective values achieved by

1509



Automated Design of Random Dynamic Graph Models GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Figure 7: Example evolved parse tree targeting the parame-
terized application model. This parse tree has been simpli-
fied from its evolved form for clarity.

this off-target model. Unsurprisingly, the stable model does poorly
at mimicking the behavior of the other application models. How-
ever, this comparison demonstrates the need for measuring the
multiple objective values. If, for instance, evaluation only consid-
ered the SD metric, this model would still perform relatively well
on multiple applications despite obviously different behavior.

See Figure 7 for an example evolved parse tree targeting the
parameterized application model. To visually analyze evolved parse
trees, some rudimentary tree simplification techniques were auto-
matically performed to reduce the size and complexity of the tree
without changing the functionality. Examples include replacing
arithmetic subtrees that produce constants with a single constant
node or pruning operation subtrees that never actually change the
graph. Note that this simplification is only done to help under-
stand the behavior of the parse tree and is never used to modify
the genotype of a solution during evolution. The example tree in
Figure 7 was chosen for its relative simplicity. Many of the evolved
solutions are still too large to include here even after simplification.
To summarize this heuristic’s behavior, it removes random edges
with probability β , then adds random edges with probability α , and
finally removes more random edges with probability p ∗ β .

7 FUTUREWORK
This work demonstrates a proof-of-concept for utilizing hyper-
heuristics to automate the development of random dynamic graph
models. A variety of application models are considered, but they
are relatively simple and have some key similarities. Edges in these
models are added and removed independently without considera-
tion of larger graph characteristics, such as community structure.
More complex models are available that produce graph with spe-
cific properties (e.g., scale-free networks). The system detailed in
this work can be applied to target more complex models. However,
the evaluation method will need to be adjusted to ensure that the
evolved solutions produce the desired graph characteristics. For

example, community detection can be incorporated into evaluation
when targeting models that produce specific community structures.

The primitive operation set will likely also need to be expanded
to address more complex models. Operations that can operate on a
higher scale than single edges would be required to achieve some
desired behaviors. Continuing with the community structure exam-
ple, primitives could be added that group vertices into communities
by examining their connectivity patterns.

There are numerous additional real-world applications this work
could target. Some of these applications will likely require that
this technique be converted to a multi-objective approach. When
targeting a clearly defined mathematical graph model, it is easy
enough to ensure that the operation set is flexible enough to per-
fectly recreate the model’s behavior. In this case, a single objective
search is sufficient because the optimal solution will simultaneously
optimize all objectives. For real-world applications, on the other
hand, there is no such guarantee that a single solution is best in
terms of all objectives. A more flexible multi-objective search can
produce a set of Pareto optimal candidate solutions from which the
end-user can select the most appropriate model.

The application of this approach to certain types of real-world
data could have impact on a number of research domains. Data sets
modeling information that could exploited, such as activity on an
internal computer network, often must be protected from release
and are limited in availability. The system designed in this work
could be applied to private data sets to produce accurate genera-
tive models that can be used for open research without releasing
protected data.

8 CONCLUSION
Random graph models are an invaluable tool in a variety of scien-
tific domains. However, research in the field of random dynamic
graph models is still relatively undeveloped. When modeling a dy-
namic concept with a random graph, the appropriate model must be
selected for an accurate representation. Automated model selection
techniques can be leveraged to identify the best choice from a pool
of candidates, but this requires a versatile set of available models
which is often limited when it comes to dynamic applications. Ac-
curate models for new applications can be manually developed, but
this process can be difficult and time-consuming.

This work investigated the potential of hyper-heuristics for au-
tomating the design of generative models for random dynamic
graphs. Results demonstrate that the genetic programming ap-
proach has the capability to produce algorithms that accurately
recreate the behavior of a number of random dynamic test models.
Also, a preliminary proof-of-concept using enterprise network traf-
fic data demonstrates the potential for leveraging this approach to
model a variety of real-world concepts.
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