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ABSTRACT
The set of primitive operations available to a generative hyper-

heuristic can have a dramatic impact on the overall performance of

the heuristic search in terms of efficiency and final solution quality.

When constructing a primitive set, users are faced with a trade-

off between generality and time spent searching. A set consisting

of low-level primitives provides the flexibility to find most or all

potential solutions, but the resulting heuristic search space might

be too large to find adequate solutions in a reasonable time frame.

Conversely, a set of high-level primitives can enable faster discovery

of mediocre solutions, but prevent the fine-tuning necessary to find

the optimal heuristics. By varying the set of primitives throughout

evolution, the heuristic search can utilize the advantages of both

high-level and low-level primitive sets. This permits the heuristic

search to either quickly traverse parts of the search space as needed

or modify the minutiae of the search to find optimal solutions in

reasonable amounts of time not feasible with implicit levels of

primitive granularity. This paper demonstrates this potential by

presenting empirical evidence of improvements to solvers for the

Traveling Thief Problem, a combination of the Traveling Salesman

Problem and the Knapsack Problem, a recent and difficult problem

designed to more closely emulate real world complexity.
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1 INTRODUCTION
Unlike a traditional search, which aims to find a high-quality so-

lution for the particular instance of a problem, a hyper-heuristic

search instead seeks to find an algorithm that produces high-quality

solutions to a specific problem class [6]. This can be accomplished

through one of two means, heuristic selection or heuristic gener-

ation. Heuristic selection, as its name implies, selects a solution

heuristic from a pool of potential candidate solutions that best fits

the application [14]. This approach can be powerful, but it relies on

having a high-quality set of available candidate heuristics a priori.

Generative hyper-heuristics instead aim to construct novel heuris-

tics that are tailored to the specific target application. Genetic pro-

gramming (GP) is a common generative hyper-heuristic technique

that relies on an evolutionary search to generate and optimize

executable program solutions [17]. The evolutionary search has

more effective genes and operations propagate from generation to

generation while less effective genes tend to be removed, allow-

ing quality heuristics to be generated over time. Conventionally,

the fundamental set of operations used to construct heuristic so-

lutions is generated by extracting a set of basic functions from

existing techniques related to the application. For instance, in sym-

bolic regression applications, the primitive set typically consists of

arithmetic operations (e.g., addition).

The proper construction of the set of primitive operations is

critical to the success of a hyper-heuristic application. If crucial op-

erations are not present, the approach will not be expressive enough

to produce high-quality solutions. Alternatively, if the primitive
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set is bloated with irrelevant operations, a substantial amount of

search time will be wasted on useless solutions.

Even if the crucial operational elements can be identified, the

level of primitive granularity can still have a dramatic effect on the

search efficiency [20, 24]. A set of high-level primitives may lead to

faster convergence, but be incapable of the fine-tuning needed to

find optimal solutions. Conversely, a set of low-level primitives may

be able to find optimal solutions, but take an unacceptably long

time to converge. Carefully selecting the proper level of primitives

requires a great deal of time, specific domain knowledge, and human

expertise. But even with those prerequisites met, the optimal set

of primitives is likely to change as the search advances, making

human intervention infeasible and ineffective.

This work investigates the impact of dynamically changing the

level of primitive granularity during the hyper-heuristic search. A

meta-level search is used to find schedules for controlling the level

of primitive granularity that improve over static configurations.

To demonstrate potential improvements, solvers for the Traveling

Thief Problem [5] (TTP) were evolved using both static and dy-

namic primitive sets and the best configurations were compared in

runtime, average fitness, and maximum fitness.

2 RELATEDWORK
Hyper-heuristics and evolutionary algorithms have both been suc-

cessfully applied to the traveling salesman problem [2, 11, 16, 26]

and the knapsack problem [7, 8, 18, 22] in the past. Additionally,

most methods for solving TTP are partially or entirely based on

evolutionary methods [4, 21, 27]. Previously, a GP approach utiliz-

ing a higher level primitive set was used to create TTP solvers that

sometimes outperformed current state-of-the-art solvers [10]. Mar-

tin and Tauritz [20] and Pope et al. [24] previously demonstrated

that adding lower level primitives to a primitive set can increase the

fitness at the cost of increasing the runtime. A similar approach was

previously used by Goldman and Tauritz [12] to demonstrate the

effectiveness of other dynamic parameters. In that work, different

parameters, such as the population size, number of children, etc.

were changed throughout evolution by using a vector of values for

specific generations and interpolating for values between the gen-

erations. The dynamic configurations found showed improvements

in fitness when given an equivalent amount of time to run.

This work can be viewed as somewhat oppositionary to previous

methods of finding reusable blocks of code as primitives during

evolution, such as Evolutionary Module Acquisition [1], Hierarchy

Locally Defined Modules [3], and Adaptive Representation [25].

Each of these examines the population, searching for reoccurring

blocks of code that can be used as primitives while generating new

individuals in later generations. A related, more recent approach,

Emergent Tangled Graph Representations, introduced by Kelly and

Heywood [15], approaches that problem differently. This method

utilizes small programs grouped together as teams and uses the

output of these teams as a part of other teams. Evolution develops

not only the higher-level teams and the programs within them, but

also the links between different teams.

3 PRIMITIVE GRANULARITY CONTROL
In a conventional GP application, the set of primitive operations

available to the search is decided a priori and does not change

over the course of evolution. The construction of the primitive set

has the potential to bias the search and have a significant impact

on the performance of the GP. Practitioners can include complex

primitives that have some key functionality that is targeted at the

application in question. A set of such high-level operations can

allow a GP to quickly find complex solutions that perform well.

Unfortunately, these complex operations typically come in an “all or

nothing” form. If an optimal solution requires a small modification

to the provided functionality, the high-level primitive set might

prevent the necessary fine-tuning.

Alternatively, a set of primitives with more basic functionality

can result in a GP with a far greater range of algorithmic expression.

However, this improved flexibility can come at the cost of a dra-

matically increased search complexity as the GP must “reinvent the

wheel” to achieve more complex functionality. Primitive granularity

control (PGC), a technique proposed in this work, aims to leverage

the benefits of both the high-level and low-level approaches.

A set of low-level primitives is extracted from previous methods

that target the TTP. More complex operations, referred to as macro

primitives, are then constructed manually from the basic primitives.

This process can be repeated, incorporatingmacro primitives within

other macro primitives to achieve even more complex functionality.

All operations in the primitive set are assigned a numerical “coarse-

ness level” that indicates their relative complexity. Basic primitives

are assigned a coarseness level of one, and macro primitives are

assigned a level of one greater than the highest operation they

contain. For instance, a macro primitive that contains only basic

primitives will have a coarseness level of two; any macro primitive

that contains this level two primitive will have a coarseness level

of at least three.

To leverage these coarseness indicators, the GP is provided a

schedule that controls the level of coarseness available in the primi-

tive set at any given point during evolution. This schedule restricts

the primitive set used during population initialization (i.e., parse

tree generation) and within the variation operators (i.e., mutation

and recombination). If the schedule lowers the coarseness level

below that of any primitives present within the solutions in a pop-

ulation, these macro operations are replaced with the lower-level

subtrees that provide the same functionality. See Figure 1 for an

example parse tree presented at three coarseness levels.

The goal of this preliminary work is to investigate the potential

for GP performance improvementswhen a dynamic schedule is used

to control the level of primitive coarseness. A subset of all possible

coarseness schedules was considered in an exhaustive meta-level

search. The best performing dynamic schedules (i.e., schedules with

at least one change in coarseness levels) were compared to the best

static schedules found.

4 TRAVELING THIEF PROBLEM
The Traveling Thief Problem [5] (TTP) is a combination of two NP-

hard problems, the Traveling Salesman Problem and the Knapsack

Problem, designed to more closely emulate real-world problems by

having the two sub-problems interact in complex and non-trivial
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WhileValueImproves (1)

AddRandomItem (3)

(a) Coarseness level 3

WhileValueImproves (1)

AddItem (1)

CanonicalRandomFloat (2)

(b) Coarseness level 2

WhileValueImproves (1)

AddItem (1)

RandomFloat (1)

Float value of 0 (1) Float value of 1 (1)

(c) Coarseness level 1

Figure 1: Example TTP heuristic at three primitive coarse-
ness levels. The coarseness of the primitives is indicated by
the number in parentheses after the primitive name.

ways. A TPP instance consists of a list of cities and a list of items.

Each item has a weight, a value, and a location, while each pair of

cities has a distance between them. A solution consists of a path

that visits each city exactly once, ending with returning to the

starting city, and a picking plan of which items to take. There is a

maximum weight of items that can be taken, and the time taken to

travel between cities scales linearly with the ratio of the sum of the

weight of the items carried to the maximum weight. The solution

value is the total worth of the picking plan subtracted by the travel

time multiplied by a constant specified by the instance known as

the renting ratio. An extremely simple example TTP instance can

be seen in Figure 2.

TTP was chosen as a test ground for PGC as simpler problems,

such as those in the general program synthesis benchmark pro-

posed by Helmuth and Lee [13], typically do not require primitives

that are complex enough to be implemented at multiple levels of

coarseness. TTP is a modern, difficult to solve problem, with even

small instances not having known optimal solutions [23]. It has also

enjoyed a great amount of attention from the field of evolutionary

computation in general [4, 9, 21, 27]. These approaches generally

start by finding a good starting TSP solution, usually using the

Lin-Kernighan heuristic [19], and then modifying either only the

picking plan or both the picking plan and the path. To minimize the

risk of starting in local optima, the GP solvers in this work begin

with random initial paths and an empty picking plan.

5 METHODOLOGY
In PGC, the coarseness level is varied throughout evolution; these

configurations are referred to as dynamic plans. To test the ef-

fectiveness of different dynamic plans, an exhaustive search was

performed over a subset of all possible configurations. Each dy-

namic plan was evaluated with a GP search for effective heuristics

0 1

23

9

8

3 7

4

2

{5, 8}

{3, 6}{4, 9}

The value pair at each city other than 0 is the item present at that city,

denoted as {value, weight}. The value for each edge is the distance

between the cities. The tour must begin at city 0.

Figure 2: TTP Example Instance

Table 1: Terminal Primitive Effective Coarseness

Coarseness
1 2 3 4 5

G
en

er
at
ed

Ty
pe int 1 2 2 2 2

float 1 2 2 2 2

worker 1 1 3 3 3

float_list - - - - -

bool 1 1 1 1 1

No terminal primitives are of type float_list.

for a TTP instance. A high level overview of the process can be

seen in Figure 3.

5.1 Meta-search
Each dynamic and static configuration consisted of a tuple of a

user-defined length s , each value in the tuple representing an over-

all coarseness level. All experiments in this paper use a tuple of

length 5, chosen as a balance between limiting the search time

while still allowing room for improvement. The static configura-

tions are represented as all members of the tuple being the same

value. Given N generations, the target coarseness would change

every ⌊N /s⌋ generations until the last segment was reached. Due

to the strong typing of the tree, primitives for the coarseness level

were not always available; in this situation, the coarseness level was

temporarily and repeatedly lowered by one until a primitive match-

ing that coarseness level was available, this procedure is shown in

Algorithm 1. In essence, this means that for each type and coarse-

ness level there is an effective coarseness level for terminals and

non-terminals, which are shown in Table 1 and Table 2, respectively.

The tables show a mapping from the overall coarseness level to a

type specific coarseness level; for example, when generating an int
terminal, any overall coarseness level of two or higher results in a

primitive of coarseness two being generated. Each of these dynamic

plans were evaluated 30 times for statistical purposes.
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Algorithm 1 Terminal and Non-terminal Filter Process

procedure FilterPrimitives(coarseness, tarдet )
pr imitiveSet ← AddPrimitives(coarseness, tarдet )
if pr imitiveSet is empty then

if tarдet = Terminal then
pr imitiveSet ← AddPrimitives(coarseness, Non-terminal)

else
pr imitiveSet ← AddPrimitives(coarseness, Terminal)

return pr imitiveSet
procedure AddPrimitives(coarseness, tarдet )

toAdd ← �
while toAdd is empty and coarseness > 0 do

Add primitives of type tarдet with
coarseness level of coarseness to toAdd

coarseness ← coarseness − 1
return toAdd

Table 2: Non-terminal Primitive Effective Coarseness

Coarseness
1 2 3 4 5

G
en

er
at
ed

Ty
pe int 1 1 1 1 1

float 1 1 1 1 1

worker 1 2 3 4 5

float_list 1 1 1 1 1

bool 1 1 1 1 1

5.2 TTP Heuristic Evolution
The heuristics for the TTP problems were represented as strongly

typed Koza-style GP Trees. Population initialization was performed

using a ramped half-and-half approach. The list of basic primitives

and macro primitives can be seen in Table 3 and Table 4, respec-

tively. The solvers start with a random initial path and an empty

picking plan, and can manipulate both. The strongly-typed parse

tree implementation requires all primitives have an associated type;

the list of available types is as follows:

float Floating point number

int Integer number

bool Boolean value

float_list Finite list of floating point numbers

worker Program control operators and operations that manip-

ulate the path and picking plan

Parse trees must have a worker type primitive as their root. Evalua-

tion is performed against a single TTP instance at a time, and the

algorithm for evaluation of an individual can be seen in Algorithm 2.

Crossover was a standard sub-tree crossover, while mutation could

either replace a subtree with a randomly generated one or with one

of its children. Survival selection and parent selection were both

k-tournament, with the fitness of the individuals being penalized

by the number of nodes in its representation to encourage efficient

solutions. Evolution was performed for a set number of genera-

tions with a set population size and number of children generated.

A set number of generations was utilized instead of running to

convergence to reduce the runtime of the system.

6 EXPERIMENTATION
Even the simplest instances in the current standard benchmark

suite for TTP [23] were computationally infeasible due to the

exhaustive nature of the search. Therefore, three new, smaller,

Algorithm 2 TTP Individual Evaluation

value ← 0

outerStaдnantCount ← 0

outerBestValue ← −∞
bestPath ← default path

bestPickinдPlan ← default picking plan

while time remains and
outerStagnantCount < Outer Stagnant Limit do

path ← Random Initial Path

pickinдPlan ← Empty Plan

innerStaдnantCount ← 0

innerBestValue ← −∞
while innerStagnantCount < Inner Stagnant Limit do

if no time remains then
return outerBestValue,bestPath,bestPickinдPlan

Evaluate individual, changing path and pickinдPlan
value ← TTP value using path and pickinдPlan
if value > innerBestValue then

innerBestValue ← value
innerStaдnantCount ← 0

bestPath ← path
bestPickinдPlan ← pickinдPlan

else
innerStaдnantCount ← innerStaдnantCount + 1

if value > outerBestValue then
outerBestValue ← value
outerStaдnantCount ← 0

else
outerStaдnantCount ← outerStaдnantCount + 1

return outerBestValue,bestPath,bestPickinдPlan

Meta-search

Hyper-heuristic search (GP)

TTP instance

For each static and

dynamic configuration

Return average runtime

and fitness information

across 30 runs

For each individual

Return runtime and

solution value

Figure 3: High Level Overview of Experiment

individual problems were created: a 10 city problem, a 12 city

problem and a 26 city problem, these instances are available at

https://github.com/dtauritz/NC-LAB-Public. Each of these prob-

lems has a single item at each location, excluding the starting city.

Parameters specific to the TTP solvers can be found in Table 5,

which were manually fine tuned. The evaluation time limit was

set to 0.5ms for the 10 city problem, 1.5ms for the 12 city problem,

and 5ms for the 26 city problem; these time limits were hand tuned

to balance reducing the runtime of the meta-search and providing

sufficient time for finding quality TTP solutions.
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Table 3: List of Basic Primitives

Primitive Signature Description

CurrentSolutionValue float() The current solution’s value

ValueChange float() Change in value from the last path/item change

Negate int(int)

float(float)

Negates a value

Velocity float() Final velocity of the thief with the current picking plan

RandomBool bool(float) Random bool with specified probability of being true

RandomInt int(int, int) Random integer within the given range

RandomFloat float(float, float) Random float within the given range

LoopVariableInt int() Variable used for looping

MapValueIndex int(float_list) Index of maximum value of a list

MaxValue float(float_list) Maximum value of a list

MapNodes float_list(float) Evaluate a subtree for each node in the path with the loop variable set to the index of

the city

DoNothing worker() Does nothing

ChainWork worker(worker, worker)

worker(worker, worker, worker)

Chains work to be performed one after the other

IfStatement int(bool, int, int)

float(bool, float, float)

worker(bool, worker, worker)

Evaluates a boolean expression and evaluate and return the first argument if true, or

the second argument if false

LKGain float(int) Returns the gain of performing an LKSwap at the specified location

LKTransform worker(int) Performs an LKSwap at the specified location

TwoOptTransform worker(int, int) Performs a two-opt transform at the specified location

SwapCities worker(int, int) Swaps two cities in the path

Distance float(int, int) Returns the distance between two cities

AddItem worker(int)

worker(float)

Sets the loop variable equal to each item outside the bag that can fit in the bag and

evaluates the child tree, placing the item the produces the largest value in the bag

RemoveItem worker(int)

worker(float)

Similar to AddItem, but removes an item instead

ItemWeight int(int) Item weight at the specified index

ItemValue int(int) Item value at the specified index

ItemRatio float(int) Cost/weight ratio of the item at the specified index

ItemLocation int(int) City index where the specified item is found

EffectiveItemValue float(int) Solution’s value changed by adding the specified item

WhileValueImproves worker(worker) Evaluate the child tree until it does not improve the solution’s value

SavePath worker() Append the current path to the saved paths

SaveItems worker() Append the current picking plan to the saved picking plans

RestorePath worker() Restore the latest saved path

RestoreItems worker() Restore the latest saved picking plan

GetFirstImprovementForPath worker(worker) For each city in the path in order, evaluates the child tree, setting the loop variable to

the city, and exiting the loop early if an improvement is made to the solution

IntToFloat float(int) Converts an integer to a float

FloatToInt int(float) Converts a float to an integer

+, −, ∗ int(int)

float(float)

Standard mathematical arithmetic.

SafeDivide int(int)

float(float)

If the divisor is zero, return zero, otherwise standard division.

>, = bool(int, int)

bool(float, float)

Standard comparison operators.

And, Or bool(bool, bool) Standard boolean operators.

Not bool(bool) Standard boolean operator.

Table 4: List of Macro Primitives

Primitive Coarseness Signature Description

MaxLKGain 2 float() The max LKGain for the current path

MaxLKGainIndex 2 int() Index for an LKSwap for maximum LKGain

LinKernighan0 3 worker() Performs Lin-Kernighan with no look-back

LinKernighan1 4 worker() Performs Lin-Kernighan with one depth look-back

LinKernighan2 5 worker() Performs Lin-Kernighan with two depth look-back

SavePathAndItems 2 worker() Saves the current path and picking plan

RestorePathAndItems 2 worker() Restores the most recently saved path and picking plan

KeepIfImproves 3 worker(worker) Evaluates a child tree, discarding the changes it did not improve the

solution

GreedyKPSearch 2 worker() Adds items that increase the solution value the most until no items fit

or the value fails to improve

RemoveHeaviest 2 worker() Removes the heaviest item from the bag

CanonicalRandomFloat 2 float() Generates a float in the range [0, 1)
AddRandomItem 3 worker() Adds a random item to the bag

RemoveRandomItem 3 worker() Removes a random item from the bag
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Table 5: TTP Solver Specific Parameters

Parameter Value

Population Size 24

Number of Children 48

Number of Generations 60

Survival Strategy (µ + λ)
Minimum Initial Depth 3

Maximum Depth 6

Mutation Minimum Depth 1

Mutation Maximum Depth 2

Inner Stagnant Limit 5

Outer Stagnant Limit 5

Evaluation Time Limit Varied with Problem
Tournament Size 3

7 RESULTS
All statistical data can be found in Table 6 and Figure 5. A graphical

comparison of the runtime versus the maximum fitness can be seen

in Figure 4. For each problem instance and each optimization tar-

get, PGC produced improved results when compared against static

primitive sets. For the 10 city problem, PGC completed in less time

when optimizing for mean fitness and runtime, always improved

on the mean fitness, and improved on maximum fitness when prior-

itizing runtime. For the 12 city problem, PGC produced worse mean

fitnesses for the mean and maximum fitness configurations, but

the maximum fitness was unaffected, and PGC always produced

shorter runtimes. For the 26 city problem, PGC completed in less

time when optimizing for fitness, and outperformed for mean and

maximum fitness when optimizing for time.

Even with a small number of coarseness levels and a small num-

ber of points where the coarseness level was changed, PGC still

demonstrated improvements. This is despite the coarseness levels

being heavily distributed towards worker primitives, as the major-

ity of macro primitives were worker primitives. However, this is

likely not as big of a problem as it initially seems. Primitives of type

worker are the most important primitives as they actually operate

on the solution; all the other primitives types are simply inputs,

parameters, etc. The primary improvement demonstrated by PGC

compared to static granularity is in reaching the same fitness in

less time or reaching greater fitness in the same amount of time.

8 CONCLUSION
This paper presented empirical evidence that dynamic primitive

granularity (referred to as coarseness levels in this work) has the

potential to outperform static primitive granularity (standard GP).

Using an exhaustive search, dynamic sets of primitives were found

that in the majority of cases exceeded or met the performance of

static ones in measures of runtime, average fitness, and maximum

fitness. For easier problems, improvementsweremainly found in the

fitness measures, while for more complex problems, improvements

were found in runtime. PGC may be expected to have the capability

to improve runtime and solution quality in other complex problems

as well. While the results presented here prove our hypothesis

of dynamic primitive granularity outperforming static primitive

granularity, the exhaustive search employed is not practical for real
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Figure 4: Max Fitness Versus Runtime for Each Run of the
Best Dynamic and Static Plans for Maximum Fitness
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Table 6: Comparison of Static and Dynamic Configurations

Mean Value Across 30 Evaluations

Mean Fitness Max Fitness Runtime Coarseness Level
Static Dynamic Static Dynamic Static Dynamic Static Dynamic

B
es
tC

on
fi
gu

ra
ti
on

Fo
r

10 City Problem
Mean Fitness -502.369 -430.871 16.976 -10.537 2.081 1.646 1 [1, 3, 1, 1, 3]

Max Fitness -502.369 -432.732 16.976 26.578 2.081 2.019 2 [2, 1, 2, 5, 3]

Runtime -714.276 -556.406 -181.861 -67.854 1.762 1.440 5 [5, 5, 1, 2, 3]

12 City Problem
Mean Fitness -826.416 -877.186 -452.449 -503.021 2.146 1.793 2 [5, 2, 2, 2, 1]

Max Fitness -826.416 -987.628 -452.449 -481.590 2.146 1.759 2 [5, 1, 1, 5, 5]

Runtime -873.578 -912.443 -516.237 -522.040 2.042 1.588 1 [4, 1, 2, 1, 3]

26 City Problem
Mean Fitness -2660.408 -2679.844 -1946.679 -1885.881 3.701 2.538 2 [2, 4, 2, 1, 1]

Max Fitness -2660.408 -2679.844 -1946.679 -1885.881 3.701 2.538 2 [2, 4, 2, 1, 1]

Runtime -3497.207 -3098.771 -2808.712 -2351.676 2.516 2.240 5 [1, 1, 2, 3, 4]

Better values that are statistically significant using the Student’s T-test with α = 0.05 are in bold.

world use, thus motivating future research to create an efficient

control method for PGC.

9 FUTUREWORK
A method to create dynamic primitive granularity plans without

significant runtime overhead may be expected to result in GP hav-

ing reduced runtime, improved solution quality, or both. If a method

is found, automated generation of higher level primitives (composi-

tion) would further reduce the need for domain-specific expertise.

The reverse, automated decomposition of higher level primitives

into simpler primitives, would also be beneficial, because it would

allow fine tuning of individuals without requiring a priori human

specification of coarseness levels. Closer examination of the con-

vergence and other factors of the dynamic and static configurations

may also provide additional insight on PGC.

An extension to PGC could be changing the coarseness level to a

range or set of allowed coarseness levels, allowing more fine-tuned

control. The use of primitives with higher coarseness levels that can

not be decomposed may also have use in PGC; such primitives may

exist due to infeasibility of representation with simpler primitives,

but the work performed is non-trivial. More sophisticated methods

of assigning coarseness levels may also be worth examining, such

as changing the level based on stagnation, rate of fitness change,

or other population measures. Additionally, each individual gener-

ated type could have its own coarseness level, which may result in

further benefits. The fact that the small number of effective coarse-

ness levels for each primitive type already resulted in noticeable

improvements indicates the high likelihood that providing a richer

set of macro primitives would yield further improvements.
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