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ABSTRACT
The link prediction problem, which involves determining the likeli-
hood of a relationship between objects, has numerous applications
in the areas of recommendation systems, social networking, anom-
aly detection, and others. A variety of link prediction techniques
have been developed to improve predictive performance for differ-
ent application domains. Selection of the appropriate link prediction
heuristic is critical which demonstrates the need for tailored solu-
tions. This work explores the use of hyper-heuristics to automate
the selection and generation of customized link prediction algo-
rithms. A genetic programming approach is used to evolve novel
solutions from functionality present in existing techniques that
exploit characteristics of a specific application to improve perfor-
mance. Applications of this approach are tested using data from
a real-world enterprise computer network to differentiate normal
activity from randomly generated anomalous events. Results are
presented that demonstrate the potential for the automated de-
sign of custom link prediction heuristics that improve upon the
predictive capabilities of conventional methods.
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1 INTRODUCTION
The link prediction problem involves predicting the existence of
a relationship between entities. This problem occurs in a num-
ber of research domains and applications. Social networks have
used link prediction to suggest new contacts [22]. Media streaming
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platforms leverage the technique to recommend material based
on a customer’s viewing history [16]. Link prediction techniques
have also seen use within cybersecurity to differentiate anomalous
behavior from normal activity [19]. Three network security appli-
cations involving the identification of abnormal activity are used
to demonstrate proof-of-concept in this work.

Graphs provide a natural method of representing data about
relationships between entities. In the social networking example,
vertices in the graph represent network users and edges indicate
connections between users. Utilizing a graph representation makes
it possible to leverage graph theoretical approaches to network anal-
ysis. For example, social networks often use graph-based algorithms
to detect communities within the network [5].

A common graph-based approach for predicting the existence
of edges in a graph aims to position vertices in a space of latent (or
hidden) features. Distances within this space are used to predict
the likelihood of connections between the vertices. Information
about the entities the vertices represent can be used to define these
features. For example, a movie streaming application might ask a
customer to choose their favorite movies or rank various genres to
characterize the customer’s interests.

However, many applications are restricted to the information
contained in the topology of an existing network when making pre-
dictions for new links. A variety of techniques have been developed
to predict new links based solely on existing edges (and the weights
on those edges, if available) in a graph. Many of these techniques
work by factorizing the graph’s adjacency matrix. This approach
produces a set of vectors that can be used as features of the vertices
within the graph. Different methods of factorizing matrices have
been used including singular-value decomposition [12], eigenvector
decomposition [9], and Poisson matrix factorization [8].

The various factorization methods differ in terms of complexity,
efficiency, and predictive capabilities for a number of applications.
The ongoing research developing new methods demonstrates that
the optimal link prediction technique likely depends on the specific
application. Heuristic selection approaches can be used to iden-
tify the best algorithm for an application from a pool of candidate
solutions, but this is limited by the quality and variety of avail-
able algorithms. New heuristics can be developed for additional
applications, but this process can be difficult or expensive.

This work investigates the use of a generative hyper-heuristic
search to automate the design of novel link prediction heuristics
that are tailored to improve predictive performance on specific
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problem applications. Functionality is extracted from existing tech-
niques to create a set of primitive graph-based operations. Genetic
programming (GP) is used to combine these operations to gener-
ate new heuristic solutions. The evolutionary search guides this
process to optimize predictive performance for a specific problem.
Results show that increases in prediction accuracy are possible for
multiple real-world applications using this approach.

2 BACKGROUND
This section covers background information on graph representa-
tion and the link prediction problem, including some commonly
used link prediction techniques. Also included is some background
on hyper-heuristics, which are leveraged in this work.

2.1 Graphs and Adjacency Matrices
A graph, G(V ,E), is made up of a set of vertices V and a set of
edges between these vertices E ⊆ V ×V . If vertices vi ,vj ∈ V are
connected, an edge (vi ,vj ) exists in E. The edge information can
also be expressed as an adjacency matrix with dimensions |V | × |V |.
For each vertex vi ∈ V , the ith row and column of A described the
outgoing and incoming edges ofvi . For verticesvi andvj , the value
at A[i][j] will be zero if no edge connects the vertices, or non-zero
otherwise. For an undirected graph, A is symmetric as all incoming
edges are also outgoing. If the graph does not contain self-loops,
the diagonal entries of A are all zero. For graphs with weighted
edges (as seen in this work), a non-zero value at A[i][j] indicates
the weight of the edge (vi ,vj ).

2.2 Link Prediction
The link prediction problem involves predicting the presence of
a relationship between two entities. In graph terms, the goal is
to determine the likelihood of an edge existing between any two
vertices. One simple approach to this problem is to consider the
relative popularity, or tendency to connect, of the two potential
edge endpoints. Conventionally, this is calculated using the formula
1−exp(−2pipj )wherepi andpj are the popularity values of vertices
vi and vj , respectively [2]. For simple undirected graphs, a vertex’s
degree can be used as an approximation for its popularity value. In
this work, the Node Popularity (NP) score uses the natural log of
the weighted degree of the vertex as the popularity metric for that
vertex. The logarithmic transformation can improve accuracy when
very active links have weights that are orders of magnitude greater
than those of low activity links. This bursty activity behavior is
common in many real-world applications including those targeted
in this work.

2.3 Adjacency Matrix Decomposition
The adjacency matrix representing a graph can be mathematically
decomposed into two or more new matrices. For a normal decom-
position, the decomposed matrices can be used to reconstruct the
original adjacency matrix, often by repeated matrix multiplication.
For example, singular value decomposition (SVD) decomposes a
matrix A ∈ Rn×n into the orthogonal matrices U ,V ∈ Rn×n and
the diagonal matrix D ∈ Rn×n , where A = UDV . The n rows ofU
and columns ofV can be used as feature vectors to characterize the
vertices in the graph.

Making predictions with the matrices produced by normal de-
composition is difficult because the matrices only capture the exact
information about existing connections in the graph. Predictions
based on these inputs will perfectly reproduce the original graph’s
connections. Fortunately, methods exist that do a better job of pre-
dicting unseen edges by finding approximations for the decomposed
matrices. For instance, the rank r truncated singular value decom-
position instead produces the matricesUr ∈ Rn×r , Vr ∈ Rr×n , and
the diagonal matrix Dr ∈ Rr×r . For values of r strictly less than n,
this is an approximate decomposition and A ≈ Ar = UrDrVr . The
closer the value of r is to n, the more accurate the approximation
Ar is to A.

While this approximate decomposition might seem counterintu-
itive, it has a couple of significant benefits. First, for large values of
n and small values of r , storingUr , Vr , and Dr requires less space
than the original A. Second, the approximate nature of Ar makes it
possible to inform predictions about edges that were not originally
in the graph. Multiple techniques leverage this approximation ap-
proach for the link prediction task. Two examples that are used in
this work are truncated singular value decomposition (TSVD) and
truncated eigenvector decomposition (TED).

Both TSVD and TED produce matrices whose rows or columns
can be used to generate length r feature vectors that characterize
each of the graph’s vertices. Conventionally, these are not used
directly; the decomposedmatrices produced are multiplied to obtain
the approximate adjacency matrix Ar . The relative values of Ar
are used to inform predictions. A high value at Ar [i][j] suggests
the edge (vi ,vj ) is likely. However, this work also considers using
the feature vectors more directly by providing them as input to a
neural network classifier.

2.4 Neural Network Classification
Neural networks have been leveraged to classify inputs as normal
or anomalous in a variety of applications [7, 14, 23]. In this work,
neural networks are trained to take an edge as input and produce
a score indicating how likely that edge is to occur in the network.
To provide the neural network with useful information, the feature
vectors produced by adjacencymatrix decomposition for each of the
edge’s endpoints are provided as input. The neural networks utilized
in this work are relatively simple fully connected feed-forward
networks with a variable number of levels. The architecture of
these networks is optimized by a hyper-heuristic search approach.

2.5 Hyper-Heuristics
The goal of a hyper-heuristics approach is not to produce the best
solution to a specific problem instance, but instead to find a heuristic
that produces high quality solutions to a specific problem class [1].
In this work, genetic programming (GP) is used to evolve programs
that perform the link prediction task. By guiding the evolution with
input from a subclass of the link prediction problem, the GP finds
tailored heuristics that exploit characteristics of that problem class
to improve predictive performance. This work uses the common
Koza-style parse tree representation for evolved heuristics [11].
The primitive operation set available to the GP was extracted from
existing approaches to the link prediction problem. To allow for a
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variety of functionalities, a strongly-typed parse tree variant [15]
is used that enforces compatibility between operations.

3 RELATEDWORK
The link prediction problem has seen a lot of recent research ac-
tivity. Both Wang et. al. [21] and Liben-Nowell et. al. [12] covered
a variety of link prediction methods and applications in the field
of social networking. Lü et. al. [13] summarized a number of ap-
proaches for other complex network types, such as those seen in
biology and e-commerce. Many link prediction methods specifically
leverage matrix decomposition. Dunlavy et. al. [3] discusses multi-
ple decomposition-based techniques for temporal link prediction.
Poisson matrix factorization [8] has seen a number of successful
applications for link prediction, including in the field of cyberse-
curity [19]. The approach presented in this work leverages some
of these methods as primitive operations available to the heuris-
tic search. Unlike some of the application-specific link prediction
methods discussed, the hyper-heuristic framework developed in
this work is not limited to the applications presented here and can
be easily applied to new problem domains.

The heuristic search utilized in this work is capable of combining
multiple link prediction techniques to improve predictive perfor-
mance. A number of ensemble learning methods take a similar
approach. Gomes et. al. [6] describes a wide variety of ensemble
learning techniques. The hyper-heuristic in this work is not limited
to a preset method of combiningmultiple link prediction algorithms.
The evolutionary search has the capability to optimize novel and
often unintuitive ways to combine these algorithms to improve
performance.

This work makes use of simple neural networks to classify links
as likely or unlikely. Neural networks have a long history of being
applied to such tasks [23]. More recently, a lot of activity has been
seen in the field of neuroevolution which leverages evolutionary
optimization to improve neural network performance [4]. More
specifically, genetic programming has been applied to optimize
neural network architectures [18]. This work uses a similar ap-
proach to optimize neural networks for the link prediction task, but
is also capable of combining these networks with alternative link
prediction techniques for further performance gains.

4 METHODOLOGY
Genetic Programming (GP) is used to evolve a population of link
prediction heuristics that are targeted at a specific application.

4.1 Representation
Strongly typed parse trees [15] are used to represent evolved solu-
tions. The initial pool of solutions is randomly generated from the
available primitive operation set (described in Section 4.4) using a
ramped half-and-half approach. An example parse tree representa-
tion of a basic link prediction heuristic can be seen in Figure 1.

4.2 Evaluation
During evaluation, an evolved solution is used to score a set of input
edges for one or more test cases. For each test case, the scoring is
compared to the true labels for the edges using a receiver operating
characteristic (ROC) curve. A ROC curve compares the true positive

Figure 1: Example link prediction parse tree.

rate (TPR) with the false positive rate (FPR) at different classification
thresholds. The area under the ROC curve (AUC) is a value in the
range [0, 1] and is maximized when the scores for positive edge
samples are consistently higher than the scores for negative edge
samples. The fitness of an evolved solution is the average AUC
values across each of the evaluation test cases. This fitness value is
maximized when the link prediction heuristic clearly differentiates
likely edges from unlikely ones.

If a heuristic contains a neural network subtree, a configurable
portion of the edge list for each test case is used to train the neural
network. The remainder of the edge list is used as a validation
set to evaluate the fitness of the entire solution. This is done to
prevent the heuristic’s fitness from being inflated by over-fitting on
the training data. Neural networks are optimized using the Adam
optimizer [10] with a binary cross-entropy loss function.

4.3 Evolution
Parents are chosen using tournament selection. According to a con-
figurable probability, either subtree crossover between two parents
or subtree mutation from a single parent is used to generate new
offspring solutions. Only crossover or mutation is used for a single
offspring, not both, due to the dramatic effect of subtree crossover
on a solution’s genotype. Offspring are added to the existing popula-
tion, then truncation based on fitness is used for survival selection.
If a configurable number of generations (convergence threshold)
pass without seeing improvement in the population’s best fitness,
execution is terminated early.

4.4 Primitive Operations
As this work employs a strongly typed GP approach, each instance
of an operation has an associated type to enforce compatibility. The
available primitive types are as follows:

Integer: returns a whole number
Float: returns a floating point number
Weight: returns a floating point number bound to the range

[0, 1]
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ScoreArray: an array of floating point values calculated for
each edge in the input list

Numeric: pseudo-type that refers to operations that can han-
dle Integer, Float, Weight, or ScoreArray types (e.g., Add)

NNOutputLayer: neural network classification output layer
NNInputLayer: input layer
NNHiddenLayer: hidden layer
NNDropoutLayer: dropout layer
NNActivationLayer: activation function layer
NNRegularizer: kernel regularizer for neural network layer
NNInputVector: feature vector formatted for input to a neural

network
See Table 1 for a description of the primitive operation set.

4.5 Parameters
See Table 2 for a list of the configurable parameter values used in
this work. These values were manually selected to keep the GP exe-
cution time reasonable across multiple applications. More extensive
tuning targeting a specific application would likely improve the
quality of the final solutions. However, the results presented in this
work demonstrate that even without application-specific tuning the
GP is able to produce heuristics that outperform tuned versions of
the conventional methods. Future work will investigate the impact
of additional tuning of the GP parameters for applications where
prediction accuracy is critical enough to warrant the increased cost
of execution time.

5 EXPERIMENT
To demonstrate the potential of this approach to improve predictive
performance for real-world applications, this work is applied to
multiple cybersecurity prediction tasks. These applications utilize
data collected from the enterprise computer network at Los Alamos
National Laboratory (LANL) [20]. The data set contains traffic in-
formation in the form of NetFlow entries as well as networked
host logs that track authentication and process execution events.
Evolved heuristics are evaluated by how well they differentiate
legitimate network activity from randomly generated anomalous
events.

5.1 Predicting Process Execution
Process execution events are collected from the LANL data to create
two types of graphs. The first contains vertices for user accounts
and process names, along with edges that indicate a process was
executed by (or on the behalf of) a user. The second replaces the
users with computers connected to processes that have been exe-
cuted on those computers. Edge weights indicate the number of
times a user-process or computer-process pair was seen in the data.
It is worth noting that these process execution graphs are bipartite;
the vertex set can be divided into the set of users (or computers)
and the set of processes and edges can only connect a vertex in one
set to a vertex in the opposite set. Only links that connect a user
(or computer) and a process are considered for prediction.

5.2 Predicting Network Traffic
A graph is constructed to represent the communication between de-
vices on the LANL network. An edge indicates that the two devices

it connects communicated at least once. Edges are weighted by
the number of distinct communication sessions occurring between
devices in the data set. Unlike the process execution application,
these network traffic graphs are not bipartite. Any pairing of two
networked devices is considered a valid link during prediction.

5.3 Training and Evaluation
The first four weeks (28 days) of data are used to generate the initial
historical graph for each application. See Table 3 for a summary of
the data set used. Adjacency matrices are created for each of these
graphs using the transformationA[i][j] = ln(1+weiдht(vi ,vj )); this
log transformation corrects for the bursty nature of this data set to
improve predictive performance. TSVD and TED feature vectors are
pre-computed for these adjacency matrices at various truncation
levels. These feature vectors are cached and made available to
the GP operations to prevent redundant computations and reduce
evaluation time whenever possible.

Each of the following 14 days is used to create an evaluation
link prediction test case. Links seen on these days are compared
to the historical graphs. To be included in the test case, both end-
points must be present in the historical graph, but the link itself
must not be present. This requires that the evolved heuristics be
able to predict new (previously unseen) links, but does not expect
the solutions to be able to predict links to vertices they have no
historical information about.

The collections of new links are labeled as positive samples for
each test case. To provide negative samples, an equal number of
links missing from both the historical graph and the test case are
randomly selected. The positive and negative samples are concate-
nated for each test case and the order of the samples is randomized.

For each application, a population of heuristics is evolved with
the goal of differentiating the positive and negative samples from
each test case. Evolved candidate solutions are executed for each test
case to produce a score for each sample. These scores are compared
to the true labels to produce an AUC score for each test case and
the solution’s fitness is its average AUC.

To establish a baseline for comparison of solution quality, each of
the basic link prediction methods (TSVD, TED, node popularity) are
programmatically tuned for each application and are evaluated in
a similar manner. A simple densely connected feed-forward neural
network, shown in Figure 2, is also trained for each application and
used for comparison. To examine the benefit of heuristic specializa-
tion, the best evolved solution from each application is also applied
to each of the other applications and compared to the heuristic
specifically evolved for that application.

6 RESULTS AND DISCUSSION
See Figure 3 for a visualization of evolved solution fitness versus
execution time of the hyper-heuristic search for example runs from
each application. Because solutions leverage existing link predic-
tion techniques as primitive operations, the search finds mediocre
solutions almost immediately. However, the steady growth in fit-
ness values shows the search optimizing performance by combining
these primitive operations in ways that exploit characteristics of
the application.
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Table 1: Primitive Operations

Primitive Type Inputs Description
Add Numeric x, y :Numeric x + y

Subtract Numeric x, y :Numeric x − y
Multiply Numeric x, y :Numeric x ∗ y
SafeDivide Numeric x, y :Numeric 0 if y = 0, else x/y

Mean ScoreArray x, y[, z]:ScoreArray array of mean values at each index
Absolute ScoreArray x :ScoreArray absolute value of each element
Rescale ScoreArray x :ScoreArray scales values in x to the range [0, 1]

MeanNormalize ScoreArray x :ScoreArray scales values in x to the range [−0.5, 0.5]
RankConvert ScoreArray x :ScoreArray converts scores to a ranking
ScaledMean ScoreArray wx , wy [, wz ]:Weight, x, y[, z]:ScoreArray finds weighted mean
RankMerge ScoreArray x, y[, z]:ScoreArray converts scores to ranks then finds mean rank

ScaledRankMerge ScoreArray wx , wy [, wz ]:Weight, x, y[, z]:ScoreArray converts to ranks then finds weighted mean
SVDScore ScoreArray None scores input edge list using TSVD
TEDScore ScoreArray None scores input edge list using TED

NodePopularity ScoreArray None scores input edge list using node popularity
NeuralNetworkRoot ScoreArray x :NNInputVector, y :NNOutputLayer scores edge list using a neural network

SVDInput NNInputVector None TSVD feature vectors
TEDInput NNInputVector None TED feature vectors

NodePopularityInput NNInputVector None node popularity scores
ConcatenateInputs NNInputVector x, y :NNInputVector concatenates two NNInputVectors
SigmoidOutput NNOutputLayer [x :NNRegularizer,] y :NNActivationLayer size one sigmoidal output layer for

classification with optional regularizer
SigmoidActivation NNActivationLayer x :NNHiddenLayer/NNDropoutLayer sigmoidal activation layer
RELUActivation NNActivationLayer x :NNHiddenLayer/NNDropoutLayer rectified linear unit activation layer
DropoutLayer NNDropoutLayer x :Float, y :NNHiddenLayer dropout layer with drop rate x
DenseLayer NNHiddenLayer x :Integer, [y :NNRegularizer,] typical densely connected layer of

z :NNActivationLayer/NNInputLayer size x with optional regularizer
L1Regularizer NNRegularizer x :Float L1 kernel regularizer with weight x
L2Regularizer NNRegularizer x :Float L2 kernel regularizer with weight x
InputLayer NNInputLayer None input layer of a neural network

GPConstantNode Numeric None randomly initialized number

Table 2: Parameters

Parameter Value

Population size 30
Offspring size 20

Generation limit 100
Convergence threshold 10

Crossover chance 0.7
Mutation chance 0.3

Parent selection tournament size 5

Initial minimum tree depth 1
Initial maximum tree depth 5

Mutation minimum tree depth 1
Mutation maximum tree depth 3

Neural network validation split 0.6
Neural network training epochs 20

Table 3: Data Set Summary

User-Process

Unique users 25,761
Unique processes 27,944

Historical user-process links 2,106,120
Total user-process test links 216,352

Computer-Process

Unique computers 13,465
Unique processes 27,944

Historical computer-process links 1,976,705
Total computer-process test links 190,857

Network Traffic

Unique devices 60,185
Historical communication links 1,136,854
Total communication test links 250,815
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Figure 2: Parse tree representation of the basic neural net-
work used for baseline comparison.

Although the search converges at around the same fitness level
of 0.99 for each application, the shape of these curves reveal some
significant differences in the difficultly of the problems. The search
targeting the Computer-Process application shows the steepest
initial increase in population fitness. This might suggest that the
Computer-Process prediction task is easier than the other two ap-
plications. It is reasonable to think that information about the com-
puter on which a process is being executed is more useful than
which user is running the process. For instance, many processes are
platform dependent and will never be seen running on a platform
they weren’t designed for (e.g., a service related to a Windows
desktop application running on an email server). Alternatively, a
network user might work on multiple computers using different
platforms.

The difference in problem difficulty is even more apparent in
the fitness values for the NetFlow application. Not only is the in-
crease in fitness more gradual, but the search takes significantly
longer to converge. There are a couple of differences in the Net-
Flow application that could explain the increased difficulty. The
NetFlow application has fewer historical links to learn from, more
test links to predict, and more unique vertices than both of the
other applications. Additionally, the NetFlow graphs are not bi-
partite, meaning that the number of possible links is much higher
(60, 1852 ≈ 362million) than for both the User-Process (≈ 72m) and
Computer-Process (≈ 37m) applications.

To compare the various link prediction techniques, the valida-
tion links from each of the test cases are combined to create a
single evaluation case. Each method is used to score this evalu-
ation case and the AUC metrics for each method can be seen in
Table 4. In each application, the heuristic targeting that applica-
tion resulted in the highest AUC. The improvement in predictive
performance demonstrates the potential for specialization of link
prediction heuristics for applications where maximizing accuracy
is critical. This is often the case when using link prediction for
detecting anomalous activity where investigating false positives is
prohibitively expensive.

It is worth noting that the evolved heuristics also outperform the
baseline approaches even when applied to applications they were
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Figure 3: Population fitness values versus execution time
from example evolutionary runs for each application. The
shaded region indicates the interquartile range.

not trained to target. This is likely the result of the evolved solutions
simply leveragingmore information than any of the individual basic
approaches. The receiver operating characteristic curves produced
when comparing the various link prediction methods are shown in
Figure 4.

Although space constraints do not allow for the inclusion of each
solution’s parse tree representation, an example evolved heuristic
for the NetFlow application can be seen in Figure 5. This tree has
been programmatically simplified after evolution via constant fold-
ing and redundant subtree pruning to make interpretation easier
without affecting predictive performance. The example tree ex-
hibits an unintuitive characteristic that is fairly common in evolved
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Table 4: Link Prediction Accuracy

Method Application

UP CP NF

NP 0.76963 0.74226 0.52967
TSVD 0.94186 0.90334 0.92936
TED 0.97478 0.97697 0.92390
NN 0.98725 0.98661 0.98836

GP-UP 0.99066 0.98718 0.98051
GP-CP 0.98897 0.98996 0.99090
GP-NF 0.98867 0.98874 0.99241

AUCs produced by the method indicated on the left for the User-Process
(UP), Computer-Process (CP), and NetFlow (NF) applications. Methods
include node popularity (NP), truncated singular value decomposition
(TSVD), truncated eigenvector decomposition (TED), neural networks

(NN), and evolved heuristics (GP-*). The shaded value in each row indicates
the best predictive performance for each application. Bold values are not

significantly worse (alpha = 0.05) than the best.

solutions. Namely, not only does it combine multiple basic link pre-
diction techniques, but it also leverages different configurations of
the same algorithm (in this example, TED decomposition at multiple
ranks).

Manual inspection of typical evolved solutions reveals some
other interesting behavior. Final solutions that do not leverage a
neural network in some way are extremely rare and only seen
in runs that prematurely converged early at lower population fit-
ness values. However, solutions that rely solely on neural network
classifiers are also rare. This provides some evidence that the com-
bination of multiple link prediction techniques is critical and has
the capability to produce solutions that are more than a sum of
their parts.

7 FUTUREWORK
The heuristic search parameters used in this work were chosen to
provide a proof-of-concept while limiting evolution time. In future
work, automated parameter tuning will be used to further increase
performance. The approach might also benefit from conversion
to a multi-objective search with training or execution time as a
minimization objective. Evolved solutions tend to incorporate re-
dundant subtrees that likely have little or no effect on predictive
performance. Minimizing execution time would encourage more
efficient solutions.

During evaluation, a number of negative samples is generated to
match the number of positive samples. This is typical for methods
using the area under the ROC curve for comparison, but not neces-
sarily representative of real-world data where anomalous events
might be far more rare than legitimate activity. The performance
impact of unbalanced sample sizes is currently unknown and will
be investigated in future work.

The results presented in this work demonstrate promising re-
sults despite having a relatively small set of simple link prediction
primitive operations. There are additional link prediction meth-
ods whose functionality could be incorporated to further improve
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(b) Computer-Process

0.0 0.1 0.2 0.3 0.4 0.5

False Positive Rate

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
ru

e
P

os
it

iv
e

R
at

e

Node Popularity

Neural Network

SVD

TED

GP-UP

GP-CP

GP-NF

(c) NetFlow

Figure 4: Comparison of receiver operating characteristic
(ROC) curves for each application. The area of these plots is
focused on the upper left corner to make it easier to see the
differences between the curves. Curves closer to the upper
left corner indicate better predictive performance. Evolved
heuristics are indicated by black lines and basicmethods are
shown in gray.

performance. One example is Poisson Matrix Factorization [8], a
state-of-the-art link prediction technique.

The evolution of neural network subtrees leveraged in this work
is also fairly rudimentary. The set of available neural network prim-
itives could be expanded to allow discovery of more flexible classi-
fiers. More sophisticated neuroevolution techniques, such as those
used in NEAT [17], might further improve the quality of the neural
network components produced in this work.
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Figure 5: Example final heuristic evolved targeting the NetFlow application.

8 CONCLUSION
Link prediction is a commonly occurring problem with applications
in recommendation systems, social networking, anomaly detection,
and others. Research in the development of new link prediction
heuristics has produced a variety of techniques with various ac-
curacy and efficiency trade-offs. Performance in link prediction
applications requires leveraging the appropriate method. While the
selection of the best link prediction heuristic can be automated, this
relies on the quality and variety of available heuristics.

This work demonstrates the potential of using a generative
hyper-heuristic search to automate the development of novel link
prediction heuristics that are customized to specific applications.
Results targeting three cybersecurity prediction tasks using real-
world enterprise network data show that the evolutionary process

is capable of improving predictive performance over baseline tech-
niques by exploiting characteristics of the problem subclasses. This
improved performance comes at the cost of additional a priori com-
putation time, but the resulting solutions provide higher accuracy
in applications where investigating false positives can be costly and
time consuming.
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