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ABSTRACT
Multi-modal multi-objective problems (MMMOPs) have two or

more distinct Pareto-optimal sets (PSs) mapping to the same Pareto-

front (PF). Identifying all such PSs assists in informed decision-

making. However, existing multi-objective evolutionary algorithms

are not equipped to discover multiple PSs. Recently, a few stud-

ies have been conducted to design algorithms for such MMMOPs.

However, the diversity of the solutions in the PF, obtained by these

algorithms, are poor. Moreover, two effective strategies, identified

to address MMMOPs, are niching methods and population filter-

ing, based on convergence and diversity of solutions in PF along

with diversity of solutions in PS. Motivated by these requirements,

this study presents Differential Evolution for MMMOPs (DE-TriM).

Its novel contributions include mating pool selection strategy and

resource allocation scheme based on reference vector based de-

composition of objective space. The effectiveness of DE-TriM is

validated by its performance analysis on 11 benchmark MMMOPs

in terms of four performance measures as compared to three recent

optimization algorithms. The results demonstrate similar perfor-

mance of DE-TriM in decision space and its superior performance

in objective space as compared to the state-of-the-art multi-modal

multi-objective evolutionary algorithm.
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1 INTRODUCTION
Multi-objective optimization problems have two or more conflicting

optimization criteria (objectives) [3]. Formally, a box-constrained

multi-objective minimization problem [3, 9] (Eq. (1)) maps a n-
dimensional vector (X = [x1, · · · ,xn ]) from the decision space (Ω)
to aM-dimensional vector (F (X )) in the objective space (RM ).

Minimize F (X ) = [f1(X ), f2(X ), · · · , fM (X )]

where, X ∈ Ω
(
⊆ Rn

)
, F (X ) : Ω 7→ RM

and Ω : xLj ≤ x j ≤ xUj ,∀j = 1, 2, · · · ,n

(1)

Two vectors are compared by Pareto-dominance relation. X
Pareto-dominates Y by Eq. (2). If ∄X ∈ Ω that dominates a solution

X⋆ ∈ Ω, thenX⋆
is a Pareto-optimal solution. A set Pareto-optimal

solution vectors and their corresponding objective vectors form

Pareto-optimal set (PS) and Pareto-front (PF), respectively.

X ≺ Y ⇐⇒
(
fi (X ) ≤ fi (Y ) ∧ fj (X ) < fj (Y )

)
,

∀i ∈ {1, 2, · · · ,M}, and ∃j ∈ {1, 2, · · · ,M} (2)

However, for a Multi-Modal Multi-Objective Problem (MMMOP),

more than one decision vectors (X1,X2, · · · ,Xk ) maps to the same

objective vector F (X ) = F (X1) = F (X2) = · · · = F (Xk ). This leads
to the following challenges for an Evolutionary Algorithm (EA) to

optimize a MMMOP:

(1) Maintenance of convergence and diversity in the objective

space while maintaining diversity in the decision space (or

specifically, in each PS).

(2) Requirement of a large population to efficiently represent

the MMMOP. For example, if each point on the PF can be

mapped from k (e.g. 9 for a SYM-PART simple problem) PSs,

and p points (e.g. 100) are required to represent the PF, then

the population size required to represent the final solution

is k × p (e.g. 9 × 100 = 900).

Let a real-world path-planning problem [18] be considered which

aims at finding the trade-off routes minimizing travelling time and

number of stops between origin and destination. There can be mul-

tiple routes requiring the same time (f1) and having same number

of stops (f2). However, the communal facilities (like availability of a

motel, a gas station, a night patrol, etc.) associated with each route

can be different which, in turn, will affect the final choice of the

decision-maker. This example highlights the practical importance

of finding multiple PSs associated with the same PF which allows

the end-users to make an informed decision. Such MMMOPs are

challenging for the three kinds of existing Multi-Objective Evolu-

tionary Algorithms (MOEAs): Pareto-dominance based algorithms

(e.g. NSGA-II [7]), indicator-based algorithms (e.g. HypE [1]) and

decomposition-based algorithms (e.g. MOEA/D [19]).
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Designing EAs for such MMMOP are still at its infancy. Stud-

ies on analyzing the solution distribution in the decision space

were performed long ago. Such notable works are as follows. Omni-

optimizer [8] introduced the concept crowding distance in the de-

cision space. Another work [2] considered diversity preservation

based on neighborhood count. However, the computation of neigh-

borhood radius was computationally expensive. The third work [20]

designed a probabilistic model to approximate PSs and PF but this

model fails when PS is a linear manifold. Within the last four years,

the trend to design such EAs for MMMOP has regained attention.

Recent works include DN-NSGA-II [11] which, like Omni-optimizer,

performs non-dominated sorting accompanied by crowding dis-

tance in decision space. Another recent work is MOEA/D-AD [17]

where the concept of (almost) equivalent Pareto-optimal solutions

is introduced. Another recent algorithm (TriMOEA_TA&R [12])

is beneficial when convergence related decision variables forms

a smaller subspace than the complete decision space. Finally, the

state-of-the-art algorithm for MMMOP is the MO_Ring_PSO_SCD

[18] which emphasized that along with diversity preservation dur-

ing population filtering, niching methods (like ring topology) plays

a crucial role. For example, MO_PSO with the ring topology pro-

duces much more diverse solutions in decision space than MO_PSO

with special crowding distance (SCD) as seen from Fig. 7 in [18].

Motivated by the need to research better niching methods for

reproduction of viable candidates to maintain diversity in both

objective and decision space as well as the need to improve the per-

formance of EAs in the objective space for MMMOPs, an EA is pre-

sented in this work. The proposed framework is called Differential

Evolution for Multi-Modal Multi-objective problems (DE-TriM).

Along with a novel strategy to select the mating candidates, this

work also proposes a novel scheme to create a feedback on size

of the mating pool. These features make the proposed framework

adaptive to problem characteristics. Experiments on the test func-

tions from [18] and comparison with algorithms for MMMOPs

establishes the efficacy of the proposed work.

Rest of the paper is organized as follows. Section 2 outlines the

proposed framework of DE-TriM. Section 3 discusses the experi-

ments performed to establish its efficacy. Section 4 concludes the

article with future scopes to extend this work.

2 PROPOSED APPROACH: DESCRIPTION OF
DE-TRIM

The proposed framework is outlined in Algorithm 1. It takes the

problem description, population size (NP ), maximum number of

fitness evaluations (MaxFES), and the set of reference vectors (R)
as inputs. It generates PSs and PF as outputs. The location of R
depends upon decision-maker’s preference. If such preference is

unavailable, Das and Dennis’s approach [4] of reference vector

generation is followed. This continues to be the standard strategy

for reference vector generation in various works [6, 10, 15, 19].

Algorithm 1 has the following major sections:

• Initialization: Parameter initialization as well as population

initialization occurs from line 2 to 6.

• Parameter Update: At the launch ofGth
generation, the mean

of F (scale factor) and CR (crossover rate) is updated at line

8. These are the parameters of Differential Evolution [5, 16].

Algorithm 1 General Framework of DE-TriM

Input: prob: A multi-modal multi-objective problem having n-
dimensional decision space (lower-bounded by XL

and upper-

bounded by XU
) andM-dimensional objective space; NP : Pop-

ulation size;MaxFES : Maximal of fitness evaluations; R: ndir
number ofM-dimensional reference vectors

Output: PS : Pareto-optimal sets; PF : Pareto-front
1: procedure DETriM(prob, NP ,MaxFES , R)
2: Gmax = MaxFES/ndir (Calculate maximum generations)

3: PSG=1: Randomly initialize a NP × n matrix bounded by

XL
and XU

4: PFG=1 = F (PSG=1) (Evaluate fitness according to prob)
5: Initialize F and CR for all candidates in PS
6: SPG=1: Initialize a vector of length ndir having same sub-

population sizes (= NP/ndir ) for each direction

7: for G = 1 to Gmax (until termination) do
8: Obtain mean values, Fm and CRm , over F and CR of all

candidates in PSG
9: for dir = 1 to ndir (for each direction) do
10: Create a sub-population with SPdir,G candidates

from PSG which are closest toWdir ∈ R in terms of d2 (Eq. (3))
11: Cur : Assign any random candidate of the sub-

population as the current candidate

12: Sample F ← N (Fm , 0.1) and CR ← N (CRm , 0.1)
for Cur such that F ∈ (0, 1] and CR ∈ (0, 1]

13: New : Obtain a new candidate according to

DE/rand/1/bin (Eq. (4) and (5)) using Cur as Xi and the mating

pool created in step 10

14: PSG : Append New to PSG
15: PFG : Append F (New) to PFG
16: end for
17: PSG+1 and PFG+1: Create population of size NP for

next generation using non-dominated sorting and SCD (as

secondary criteria) on PSG and PFG
18: AD: Find indices of the directions in R to which each

candidate of PFG+1 is closest to in terms of d2 (Eq. (3))
19: SPG+1 = Feedback_Allocation (AD,NP ,ndir ) (Algo-

rithm 2)

20: if G is divisible by 10 then
21: Re-assign all F and CR to initial values

22: end if
23: end for
24: Return PS = PSGmax and PF = PFGmax

25: end procedure

• Mating pool creation: For dir th direction, at the Gth
gener-

ation, a mating pool of size SPdir,G is created in line 10.

The mating pool consists of candidates from PSG closest (in

terms of Eq. (3)) to the dir th reference vector (Wdir ) from R.

d2
(
Xi ,Wj

)
=






F (Xi ) −
(
fmin + d1

(
Xi ,Wj

) Wj

Wj



)






where, d1
(
Xi ,Wj

)
=




(F (Xi ) − fmin )T Wj






Wj




(3)
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Algorithm 2 Feedback for resource allocation to determine

sub-population sizes

Input: AD: A vector of length NP representing indices (j) of direc-
tions (Wj ∈ R) to which Xi ∈ PS is closest to in terms of d2 (Eq.
(3)); NP : Population size; ndir : Number of reference vectors

Output: SP : A vector of length ndir with updated sub-population

sizes

1: procedure Feedback_Allocation(AD, NP , ndir )
2: for dir = 1 to ndir (for each direction) do
3: NPdir : Calculate the number of indices in AD that are

equal to dir
4: share = (NPdir /NP) × 100 (Calculate the share of pop-

ulation closest to dir )

5: SPdir =
100−share
ndir−1

× NP
100

(Assign larger sub-population

sizes to the directions having smaller shares and vice-versa)

6: end for
7: Return SP
8: end procedure

• Reproduction (DE/rand/1/bin): Reproduction and related op-

erations occur between line 11 to 15. At first, a random can-

didate from the mating pool (created at line 10) is considered

as the parent candidate Cur . Next, from Gaussian distribu-

tion with Fm , CRm and a standard deviations of 0.1, F and

CR are independently sampled. Using F and three random

candidates (Xr1 , Xr2 and Xr3 ) sampled from the mating pool

(created at line 10) and mutation with 1 difference vector (Eq.

(4)) is performed to generate the donor vector, Vi . Using CR,
Vi andXi = Cur , binomial crossover (Eq. (5)) is performed to

generate trial vector Ui = New . During crossover, a random

decision variable (Irand ) is always borrowed from the donor

vector such that New , Cur . The new candidate is added to

the population.

Vi,G+1 = Xr1,G + F ×
(
Xr2,G − Xr3,G

)
(4)

ui j,G+1 =

{
vi j,G+1, if rand(1) ≤ CR or j = Irand
xi j,G+1, otherwise

(5)

• Environmental selection: At the end of the Gth
generation,

ndir new candidates have been added to the population.

To keep the population size constant (equal to NP ), non-
dominated sorting with Special Crowding Distance (SCD)

[18] is performed in line 17. SCD considers crowding distance

in decision space as well as in objective space. For further

details of SCD, readers are referred to [18].

• Feedback in terms of sub-population size: This occurs between
line 18 to 19 which calls Algorithm 2. The idea is to assign

larger sub-population size to the directions having lesser

number of associated candidates. As seen from Fig. 1, if a

region (e.g. C) is empty or much less dense as compared to

other regions (e.g. A), the mating pool will borrow candi-

dates from neighboring regions. Increasing the size of this

mating pool helps to increase the chances of generation of

a candidate in the empty region. Such a scenario is very

common for problems with imbalance difficulties or with

biased density of solutions [13, 15].

Figure 1: Candidate selection dictating the mating pool for-
mation with respect to the objective space which is divided
by the reference lines into 5 regions associated with each
line (A, B, C, D, E)

(a) For 2D decision space (b) For 3D decision space

Figure 2: Variation of minimum sub-population size with
generations for 5 types of PFs appearing over 11 MMMOPs.

• Refresh parameters: At the end of a small number of gener-

ations, DE-TriM forgets the learned parameters and F and

CR are re-initialized in line 20 to 22 like in [14].

2.1 Algorithmic differences of DE-TriM with
other decomposition based MOEAs

Though the reference vector generation as well as association

rule of DE-TriM are similar to other decomposition based MOEAs

[6, 10, 19], it stands out at regulating the number of candidates

(Algorithm 2) for forming the sub-population (mating pool) for

a given direction. For the example in Fig. 1, in initial phase, the

number of candidates in the mating pool of each direction is two.

Thus, the two candidates associated with direction A but farthest

from it, will neither participate in the mating pool for direction A

nor for its neighboring direction B. Moreover, unlike MOEA/D [19]

or MOEA/DD [10] which uses scalarization of objective vectors,

DE-TriM uses SCD in its environmental selection step, which helps

it to deal with MMMOPs. The third feature of DE-TriM, which sets

it apart, is the adaptive parameters for its reproduction operators.

3 PERFORMANCE ANALYSIS
To analyze the performance of the proposed framework, DE-TriM is

implemented in MATLAB R2018a using a 64-bit computer with 8GB
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(a) True type-a (b) True type-b (c) True type-c (d) True type-d (e) True type-e

(f) Obtained 1 (type-a) (g) Obtained 2 (type-a) (h) Obtained 3 (type-a) (i) Obtained 4 (type-a)

(j) Obtained 5 (type-b) (k) Obtained 6 (type-c) (l) Obtained 7 (type-d) (m) Obtained 8 (type-e)

Figure 3: PFs obtained through DE-TriM as compared to true PFs. There are five types of PFs (type-a: MMF1, MMF2, MMF3,
MMF5, MMF6 and MMF7; type-b: MMF4; type-c: MMF8; type-d: SYM-PART simple and SYM-PART rotated; and type-e: Omni-
test). Out of the six type-a MMMOPs, converged PFs are obtained for MMF1, MMF6 and MMF7 as shown in Obtained 1. For the
other three type-a MMMOPs, there are gaps or outliers in the obtained PFs. For both the problems of type-d category, identical
PFs are obtained as shown in Obtained 7. Rest of the category types have one problem each and their corresponding PFs as
obtained by DE-TriM are shown as Obtained 5, Obtained 6 and Obtained 8, respectively.

RAM having Intel Core i7 processor @ 2.20GHz. The specifications

of the benchmark test functions, performance measures, and the

parameter settings of the algorithms are provided in this section.

An experiment is also presented to provide the effectiveness of the

feedback module of DE-TriM.

3.1 Test Functions
This work considers 11 test problems [18] viz. MMF1, MMF2, MMF3,

MMF4, MMF5, MMF6, MMF7, MMF8, SYM-PART simple, SYM-

PART rotated and theOmni-test problem. For each problem,MaxFES
and NP are considered as 5000n and 100n, respectively. The char-
acteristics of these MMMOPs are enlisted in Table 1. Unlike the

other problems, #PSs in Omni-test problem are scalable. Hence, an

Omni-test problem with n = 3 has 27 equivalent PSs.

3.2 Performance Measures
Performance of traditional MOEAs are noted in terms of their abili-

ties to reach the true PF (convergence) and to make the population

widely spread and uniformly distributed across the PF (diversity)

[3]. Most common measures to record these properties are the in-

verted generational distance (IGD) [3, 13] and the hypervolume

indicator (HV) [1, 15]. For HV evaluation, a reference point (Fr ef )
is selected for forming the hyper-rectangle. For IGD evaluation,

NIGD number of points are sampled from the true PF. The choice
1

of Fr ef and NIGD for each problem is stated in Table 1.

1
The reference data for PSs and PF, values of Fr ef and the MATLAB implemen-

tations of MO_Ring_PSO_SCD and DN-NSGA-II are obtained from http://www5.zzu.

edu.cn/ecilab/info/1036/1163.htm.
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(a) True 1 (b) True 2 (c) True 3 (d) True 4 (e) True 5 (f) True 6

(g) MO_Ring_PSO_SCD 1 (h) MO_Ring_PSO_SCD 2 (i) MO_Ring_PSO_SCD 3 (j) MO_Ring_PSO_SCD 4 (k) MO_Ring_PSO_SCD 5 (l) MO_Ring_PSO_SCD 6

(m) DE-TriM 1 (n) DE-TriM 2 (o) DE-TriM 3 (p) DE-TriM 4 (q) DE-TriM 5 (r) DE-TriM 6

Figure 4: PSs obtained through DE-TriM and MO_Ring_PSO_SCD as compared to true PSs for MMF1, MMF2, MMF3, MMF4,
MMF5 and MMF6 (labelled as 1, 2, 3, 4, 5 and 6, respectively) problems.

Table 1: Problem specifications: dimension of decision space
(n), dimension of objective space (M), lower bounds of deci-
sion variables (XL), upper bounds of decision variables (XU ),
reference point for hypervolume calculation (Fr ef ), number
of points in the reference sets for IGDF and IGDX evalua-
tions (NIGD ) and number of Pareto-optimal sets (#PSs).

Problems n M XL XU Fr ef NIGD #PSs

MMF1 2 2 [1,−1] [3, 1] [1.1, 1.1] 400 2

MMF2 2 2 [0, 0] [1, 1] [1.1, 1.1] 400 2

MMF3 2 2 [0, 0] [1, 1.5] [1.1, 1.1] 400 2

MMF4 2 2 [−1, 0] [1, 2] [1.1, 1.1] 400 4

MMF5 2 2 [1,−1] [3, 3] [1.1, 1.1] 400 4

MMF6 2 2 [1,−1] [3, 2] [1.1, 1.1] 400 4

MMF7 2 2 [1,−1] [3, 1] [1.1, 1.1] 400 2

MMF8 2 2 [−π , 0] [π , 9] [1.1, 1.1] 400 4

SYM-PART 2 2 [−20,−20] [20, 20] [4.4, 4.4] 396 9

simple

SYM-PART 2 2 [−20,−20] [20, 20] [4.4, 4.4] 396 9

rotated

Omni-test 3 2 [0, 0, 0] [6, 6, 6] [4.4, 4.4] 600 27

Although until recently MMMOPs have not received much at-

tention, yet about a decade ago IGD in decision space has been

considered as a performance indicator in [20]. Also, Pareto Sets

Proximity (PSP) [18] is recently being considered for assessing the

performance of an EA in the decision space.

In this work, for distinction, IGD in decision space is mentioned

as IGDX and IGD in objective space is mentioned as IGDF. Also, in

order to have lower value as the better measure over all the mea-

sures, the reciprocal of PSP (mentioned as rPSP) and HV (mentioned

as rHV) are considered.

3.3 Analysis of Allocation with Feedback
This experiment aims to show the utility of the feedback module

(Algorithm 2). With its help, all sub-regions (created by the ref-

erence vectors based decomposition of the objective space), have

almost equal number of candidates associated to it. If all the sub-

regions have equal number of candidates, the minimum number

of candidates in a sub-region will be equal to NP/ndir = 100n/10
= 10n which is 20 when n = 2 and 30 when n = 3. As can be seen

from Figs. 2a and 2b, the minimum sub-population size saturates

near 20 and 30, respectively. Thus, this experiment shows that for

all types of Pareto-front shapes over the 11 benchmark MMMOPs,

the feedback step works efficiently.

3.4 Performance of DE-TriM
For the performance in the decision space (in terms of rPSP and

IGDX), DE-TriM is compared with other EAs in Table 2. For the

performance in the objective space (in terms of rHV and IGDF), DE-

TriM is compared with other EAs in Table 3. For all results, p-values
are noted as obtained from two-tailed paired t-test [13] under the

null hypothesis (H0) that DE-TriM is equivalent to other EAs at 95%

confidence interval. Superiority of DE-TriM (p ≤ 0.05, H0 rejected)
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Table 2: Mean and standard deviation of rPSP and IGDX for MMMOPs over 31 independent runs3

rPSP IGDX

Problems DE-TriM MO_Ring_PSO_SCD DN-NSGA-II NAEMO DE-TriM MO_Ring_PSO_SCD DN-NSGA-II NAEMO

MMF1 0.0468 ± 0.0495 ± 0.0992 ± 0.3498 ± 0.0467 ± 0.0488 ± 0.0903 ± 0.2291 ±

0.0062 0.0017 (∼) 0.0126 (+) 0.1101 (+) 0.0062 0.0016 (∼) 0.0108 (+) 0.0344 (+)

MMF2 0.0586 ± 0.0455 ± 0.1486 ± 0.0632 ± 0.0517 ± 0.0397 ± 0.1135 ± 0.0633 ±

0.0174 0.0086 (−) 0.0470 (+) 0.0294 (∼) 0.0053 0.0099 (−) 0.0530 (+) 0.0189 (+)

MMF3 0.0276 ± 0.0309 ± 0.1210 ± 0.0546 ± 0.0239 ± 0.0267 ± 0.1150 ± 0.0514 ±

0.0072 0.0065 (∼) 0.0929 (+) 0.0050 (+) 0.0046 0.0056 (∼) 0.0593 (+) 0.0336 (+)

MMF4 0.0238 ± 0.0271 ± 0.0846 ± 0.0889 ± 0.0211 ± 0.0263 ± 0.0828 ± 0.0886 ±

0.0042 0.0014 (+) 0.0287 (+) 0.0348 (+) 0.0073 0.0015 (+) 0.0222 (+) 0.0293 (+)

MMF5 0.0886 ± 0.0861 ± 0.1804 ± 0.3065 ± 0.0895 ± 0.0866 ± 0.1141 ± 0.2473 ±

0.0218 0.0044 (−) 0.0167 (+) 0.0511 (+) 0.0133 0.0049 (∼) 0.0144 (+) 0.0367 (+)

MMF6 0.0772 ± 0.0727 ± 0.1499 ± 0.4906 ± 0.0764 ± 0.0732 ± 0.1387 ± 0.3257 ±

0.0169 0.0037 (∼) 0.0161 (+) 0.1002 (+) 0.0136 0.0048 (∼) 0.0183 (+) 0.0471 (+)

MMF7 0.0188 ± 0.0266 ± 0.0531 ± 0.1341 ± 0.0197 ± 0.0264 ± 0.0558 ± 0.1235 ±

0.0056 0.0015 (+) 0.0112 (+) 0.0668 (+) 0.0049 0.0019 (+) 0.0074 (+) 0.0164 (+)

MMF8 0.1049 ± 0.0677 ± 0.3307 ± 5.7662 ± 0.0988 ± 0.0674 ± 0.2957 ± 1.9494 ±

0.0154 0.0048 (−) 0.0965 (+) 0.2983 (+) 0.0029 0.0055 (−) 0.1106 (+) 0.5552 (+)

SYM-PART simple 0.0737 ± 0.1776 ± 4.1401 ± 1.2148 ± 0.0740 ± 0.1817 ± 4.0551 ± 1.2065 ±

0.0035 0.0402 (+) 1.1040 (+) 0.1614 (+) 0.0034 0.0313 (+) 0.7562 (+) 0.7072 (+)

SYM-PART rotated 0.1639 ± 0.3536 ± 7.6152 ± 6.3824 ± 0.1890 ± 0.3228 ± 3.8414 ± 4.4007 ±

0.0817 0.0753 (+) 3.8126 (+) 2.6238 (+) 0.0762 0.0249 (+) 0.0450 (+) 1.5689 (+)

Omni-test 0.0762 ± 0.3955 ± 1.3811 ± 0.7222 ± 0.0735 ± 0.4019 ± 1.3734 ± 0.7181 ±

0.0352 0.0540 (+) 0.2010 (+) 0.3339 (+) 0.0439 0.0975 (+) 0.2426 (+) 0.2284 (+)

Sum-up +/−/∼ 5/3/3 11/0/0 10/0/1 +/−/∼ 5/2/4 11/0/0 11/0/0

3
An odd number of runs such that the median run is unique for comparison of results by visualization.

Table 3: Mean and standard deviation of rHV and IGDF for MMMOPs over 31 independent runs3

rHV IGDF

Problems DE-TriM MO_Ring_PSO_SCD DN-NSGA-II NAEMO DE-TriM MO_Ring_PSO_SCD DN-NSGA-II NAEMO

MMF1 1.1456 ± 1.1483 ± 1.1493 ± 1.3408 ± 0.0026 ± 0.0037 ± 0.0044 ± 0.0828 ±

0.0007 0.0005 (+) 0.0017 (+) 0.2700 (+) 0.0003 0.0002 (+) 0.0005 (+) 0.0080 (+)

MMF2 1.1525 ± 1.1819 ± 1.1968 ± 1.2141 ± 0.0037 ± 0.0215 ± 0.0357 ± 0.0259 ±

0.0468 0.0059 (+) 0.0397 (+) 0.0313 (+) 0.0002 0.0030 (+) 0.0025 (+) 0.0094 (+)

MMF3 1.1560 ± 1.1730 ± 1.1890 ± 1.2487 ± 0.0043 ± 0.0150 ± 0.0331 ± 0.0220 ±

0.0150 0.0036 (+) 0.0525 (+) 0.1241 (+) 0.0004 0.0025 (+) 0.0087 (+) 0.0101 (+)

MMF4 1.8521 ± 1.8616 ± 1.8580 ± 1.9722 ± 0.0023 ± 0.0036 ± 0.0032 ± 0.0278 ±

0.0044 0.0021 (+) 0.0011 (+) 0.0978 (+) 0.0002 0.0004 (+) 0.0002 (+) 0.0054 (+)

MMF5 1.1463 ± 1.1484 ± 1.1495 ± 1.2672 ± 0.0028 ± 0.0037 ± 0.0040 ± 0.0858 ±

0.0007 0.0005 (+) 0.0015 (+) 0.1695 (+) 0.0003 0.0002 (+) 0.0008 (+) 0.0092 (+)

MMF6 1.1456 ± 1.1483 ± 1.1488 ± 1.3450 ± 0.0025 ± 0.0034 ± 0.0036 ± 0.1825 ±

0.0006 0.0009 (+) 0.0018 (+) 0.0532 (+) 0.0001 0.0003 (+) 0.0003 (+) 0.0094 (+)

MMF7 1.1453 ± 1.1484 ± 1.1499 ± 1.2097 ± 0.0024 ± 0.0038 ± 0.0041 ± 0.0357 ±

0.0003 0.0006 (+) 0.0011 (+) 0.0088 (+) 0.0001 0.0003 (+) 0.0004 (+) 0.0037 (+)

MMF8 2.3739 ± 2.4111 ± 2.3812 ± 3.9678 ± 0.0028 ± 0.0048 ± 0.0040 ± 0.1174 ±

0.0069 0.0169 (+) 0.0019 (+) 1.4813 (+) 0.0002 0.0002 (+) 0.0004 (+) 0.0440 (+)

SYM-PART simple 0.0600 ± 0.0605 ± 0.0601 ± 0.0625 ± 0.0099 ± 0.0435 ± 0.0129 ± 0.1088 ±

0.0000 0.0001 (+) 0.0000 (+) 0.0030 (+) 0.0011 0.0038 (+) 0.0016 (+) 0.0297 (+)

SYM-PART rotated 0.0601 ± 0.0606 ± 0.0601 ± 0.0615 ± 0.0120 ± 0.0456 ± 0.0155 ± 0.1049 ±

0.0000 0.0001 (+) 0.0000 (∼) 0.0010 (+) 0.0023 0.0068 (+) 0.0023 (+) 0.0176 (+)

Omni-test 0.0189 ± 0.0190 ± 0.0189 ± 0.0190 ± 0.0061 ± 0.0415 ± 0.0079 ± 0.0412 ±

0.0000 0.0000 (+) 0.0000 (∼) 0.0001 (+) 0.0036 0.0038 (+) 0.0006 (+) 0.0157 (+)

Sum-up +/−/∼ 11/0/0 9/0/2 11/0/0 +/−/∼ 9/0/2 8/0/3 11/0/0

3
An odd number of runs such that the median run is unique for comparison of results by visualization.
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(a) True 7 (b) True 8 (c) True 9 (d) True 10 (e) True 11

(f) MO_Ring_PSO_SCD 7 (g) MO_Ring_PSO_SCD 8 (h) MO_Ring_PSO_SCD 9 (i) MO_Ring_PSO_SCD 10 (j) MO_Ring_PSO_SCD 11

(k) DE-TriM 7 (l) DE-TriM 8 (m) DE-TriM 9 (n) DE-TriM 10 (o) DE-TriM 11

Figure 5: PSs obtained throughDE-TriM andMO_Ring_PSO_SCD as compared to true PSs forMMF7,MMF8, SYM-PART simple,
SYM-PART rotated and Omni-test (labelled as 7, 8, 9, 10 and 11, respectively) problems.

is marked by +, equivalence (p > 0.05, H0 not rejected) by ∼ and

inferiority (p ≤ 0.05, H0 rejected) by −. The obtained PFs (Fig. 3)

and PSs (Figs. 4 and 5) of the median run are also visualized for

further analysis of the results. WithMaxFES and NP as mentioned

before, the other parameter specifications of the competitor EAs

are as follows:

(1) MO_Ring_PSO_SCD: This work
1
is setup as per the specifi-

cations in [18]. It is important as it introduced the concept

of SCD.

(2) DN-NSGA-II: This work
1
is setup as per the specifications

in [11]. It is important as it established the importance of

niching for MMMOPs.

(3) NAEMO: This work is setup as per the specifications in

[15]. However, in [15], Lhard = ndir was considered. As

Lhard of NAEMO dictates its final population size, for this

experiment, ndir = 10 and Lhard = NP are considered.

NAEMO is important as it laid the theoretical foundation for

the concept of neighboring zones in the objective space is

mapped from neighboring zones in the decision space.

(4) DE-TriM: This work
2
initializes ndir = 10, F = 0.5,CR = 0.2

and learning period for F andCR as 10 generations. However,

2
MATLAB source code for DE-TriM is attached in the supplementary material.

F and CR in DE-TriM are made adaptive to local problem

characteristics.

3.4.1 Performance in the decision space. From Table 2, DE-TriM

is found to have best rPSP and IGDX values for 7 out of 11 problems.

For the remaining 4 problems, MO_Ring_PSO_SCD outperforms

DE-TriM. Moreover, neither DN-NSGA-II nor NAEMO outperforms

either of DE-TriM or MO_Ring_PSO_SCD for any of the problems.

This is because DN-NSGA-II ignores diversity in objective space

whereas NAEMO ignores the diversity in the decision space. For

further comparison of DE-TriM and MO_Ring_PSO_SCD, Figs. 4

and 5 are considered and the following observations are made:

(1) Comparing Figs. 4h with 4n, Figs. 4k with 4q, Figs. 4l with

4r, and Figs. 5g with 5l, indeed MO_PSO_Ring_SCD have

generated more uniform distribution of solutions in decision

space than DE-TriM for MMF2, MMF5, MMF6 and MMF8

problems.

(2) For both the SYM-PART problems,MO_Ring_PSO_SCD (Figs.

5h and 5i) and DE-TriM (Figs. 5m and 5n) have identified

all the 9 Pareto-optimal sets. However, unlike DE-TriM, for

MO_Ring_PSO_SCD, more candidates have converged to

some PSs than others. This hampers the rPSP and IGDX

values in Table 2.
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(3) For MMF4 problem, the distribution of solutions in decision

space is equally good for MO_Ring_PSO_SCD (Fig. 4j) and

DE-TriM (Fig. 4p).

(4) For MMF1 and MMF3 problems, the distribution of solutions

in decision space is equally poor for MO_Ring_PSO_SCD

(Figs. 4g and 4i) and DE-TriM (Figs. 4m and 4o). For both the

problems, one PS has higher distribution of solution than

the other.

(5) For MMF7 and Omni-test problems, DE-TriM (Figs. 5k and

5o) yield better approximations of PSs thanMO_Ring_PSO_SCD

(Figs. 5f and 5j). There are several outliers in the MMF7 solu-

tion obtained byMO_Ring_PSO_SCD (Fig. 5f). For Omni-test

problem, some of the solutions have not been discovered by

MO_Ring_PSO_SCD (Fig. 5j).

3.4.2 Performance in the objective space. From Table 3, DE-TriM

is found to be a clear winner. This is an important result as for most

of the algorithms which address MMMOPs, the performance in ob-

jective space gets deteriorated [12, 18]. It can be seen that although

rHV and IGDF values of DE-TriM are lowest among the competitor

algorithms for MMF2, MMF3 and MMF5, their PFs (Figs. 3g, 3h

and 3i, respectively) have holes or outliers. A 2-objective problem,

being the simplest MMMOP, still shows scope of improvement in

the performance in objective space.

Thus, overall, DE-TriM has similar performance like the state-of-

the-art algorithm (MO_Ring_PSO_SCD) for addressing MMMOPs

in decision space, but much better performance in objective space

which establishes the superiority of the proposed approach (DE-

TriM).

4 CONCLUSION
This study demonstrates a Differential Evolution approach to ad-

dress Multi-Modal Multi-objective problems (DE-TriM). It proposes

a novel mating pool selection strategy and a novel resource allo-

cation strategy based on reference vector based decomposition of

the objective space. These two strategies, accompanied by non-

dominated sorting with special crowding distance [18], helps in

efficiently addressing multi-modal multi-objective problems.

In future, more studies are to be undertaken in order to further

improve the diversity in objective and decision space. As with in-

crease in dimension of objective space, dominance resistance is

observed [13], novel methods will be required to overcome this

issue for multi-modal many-objective problems. An interesting ob-

servation is that the shape of all the Pareto-optimal sets for a given

problem are identical, hence, some correlation based reproduction

operator could be designed to generate more identical solutions

over all the Pareto-optimal sets. Such works are open for research.
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