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ABSTRACT
To briefly represent a dataset, it is crucial to find common attributes
among the data. Extended learning classifier system (XCS) finds
common attributes of multiple data and acquires generalized rules
that match multiple data. In real-world problems, it may be chal-
lenging to find common attributes due to noise in the data and
the inability of XCS to acquire the generalized rules. Considering
a classification problem as an example, noise may be included at
each input, output, as well as in the evaluation of the output. To
tackle this problem, our previous work proposed XCSs that acquire
appropriately generalized rules, specifically for a problemwith one
of the three mentioned type of noises added. In real-world prob-
lems, it is difficult to identify the type of noise in advance, which
requires an XCS to cope withmultiple types of noise. For this issue,
this paper proposes an XCS that can handle any noise on the in-
put, output, and evaluation of the output, and aims at investigating
the effectiveness of the proposed XCS in the multiplexer problems
including any of the three types of noise.
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1 INTRODUCTION
In data mining, it is crucial to clarify which attributes are essen-
tial. Besides, in a classification problem, it is necessary to clarify
attributes and their values that affect a classification class. Learn-
ing classifier systems (LCSs) [4] finds knowledge in a classification
problem using genetic algorithm (GA) [2] and reinforcement learn-
ing (RL) [8]. The LCS estimates the class for input and outputs it as
well; moreover, it is reward based on the success or failure of the
estimated class. Furthermore, LCS treats the identified knowledge
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with if-then rules called classifiers and can acquire a generalized
classifier that matches multiple inputs. The generalized classifiers
are expressed by replacing some attributes of the “if” part with a
“don’t-care” symbol. eXtended LCS (XCS) [16], which is the main-
stream of LCS, acquires classifiers that always receive the same
reward. Since the (accurate) classifiers acquired by XCS always re-
ceive the same reward, the attributes of the “if” part of the classifier
replaced by the “don’t-care” symbol does not affect the amount of
the reward. XCS assumes that if a class is outputted for the same
input, the same reward will be acquired. However, in many cases,
the assumption cannot be made due to sensor failure, incorrect
recording, the uncertainty of the reward function, to mention a
few. In data mining not limited to XCS, this problem is addressed
by preprocessing. The preprocessing complements data by esti-
mating the reasons for the uncertainty and inconsistency occur-
ring in data. Nevertheless, it is difficult to complement the data
correctly by preprocessing since it is extremely costly. Therefore,
there is a need for methods to stably acquire knowledge without
preprocessing. Additionally, XCS should be able to cope with noise
on input, output, and evaluation in order to receive an input, per-
form an output, and receive an evaluation from the training object.
This paper considers a binary classification problem for binary in-
put. In this paper, an input noise inverts some binaries of the input
while an output noise inverts the output. A reward noise changes
the reward by adding noise to the value based on a Gaussian dis-
tribution. XCSs that handle a particular type of noise have been
proposed by Lanzi et al. [6], Webb et al. [15], Lanzi et al. [5], and
Tatsumi et al. [11, 13, 14]. The methods employed by these authors
are divided into statistical table-based XCSs and constrained non-
statistical table-based XCSs. The statistical table-based XCSs have
a mechanism to record the statistical value (mean and standard de-
viation) of the acquired reward separately from the acquired clas-
sifiers; in this case, it is possible to identify the accurate classifiers
correctly and stably. Since the statistical table-based XCSs empha-
size the stability of learning performance (rule generalization and
correct rate), it requires many data to determine the accuracy of
the classifiers. On the other hand, the non-statistical table-based
XCSs identify accurate classifiers based on the relationships of the
acquired classifiers. However, these XCSs have less memory us-
age compared to the statistical table-based XCSs; besides, there
are restrictions on applicable problems associated with the non-
statistical table-based XCSs. In this paper, we introduce XCSs that
acquire appropriately generalized rules even in variance of reward
(XCS-VR)1 [11] and an XCS based on the mean of reward (XCS-
MR) [14], as statistical table-based XCSs, are applicable in environ-
ments with input, output, or reward noise added. Therefore, it is

1In [11], this method was called an XCS for Unstable Reward Environment (XCS-
URE), but we call themethod XCS-VR to clarity its contrast with the followingmethod
discussed in this paper.
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Figure 1: Learning mechanism of XCS (see [10]).

assumed that an XCS based on the range of reward (XCS-RR) [13],
which is one of the non-statistical table-based XCSs, is applicable
in problems where the range of reward acquired by the accurate
classifier is relatively small; that is, the correctness is not reversed
by noise. XCS based on the collective weighted reward (XCS-CR)
[12], which is a non-statistical table-based XCS, is applicable in
problems where the reward is only of the following two kinds: the
value is given at the time of a correct answer and at the time of an
incorrect answer. In order to expand the application area of non-
statistical table-based XCSs, it is necessary to increase the types
of noise that could be handled and coped with in the problem of
the long input length. This study focuses on creating a new XCS
that can handle any noise. Furthermore, in this paper, we propose
a non-statistical table-based XCS to acquire suitably generalized
classifiers even for learning data that include input, output, or re-
ward uncertainty in binary classification problems. The proposed
method is an extension of XCS-CR, such that it can cope evenwhen
the reward takes different values.

The rest of this paper is organized as follows: Sections 2, 3, and 4
describe how to judge the rule accuracy in XCS, XCS-CR, and XCS-
CR2, respectively. Section 5 modifies the multiplexer problems to
add noise as the uncertainty of inputs, outputs, and rewards. Sec-
tion 6 presents some experiments and results, while Section 7 dis-
cusses the results. Finally, Section 8 concludes the paper.

2 ACCURACY-BASED LEARNING CLASSIFIER
SYSTEM (XCS)

As shown in Figure 1 above, XCS repeats performance, reinforce-
ment, and rule-discovery components to acquire the classifiers.

2.1 Classifier and its generalization
XCS classifier has the condition (if) part, action (then) part, pre-
diction p, prediction error ϵ (that is, the difference between the
prediction and the reward P ), fitness F , and numerosity n. XCS ac-
quires knowledge by generating classifiers to fit multiple inputs.
When the condition part is represented by a bit string with a fixed
length composed of 0 and 1, XCS generalizes the classifiers by us-
ing the symbol # representing “don’t-care”. For example, “10###”
matches eight inputs. The first two bits are emphasized, and the
last three bits are ignored. Moreover, XCS aims to cover all inputs
with several generalized classifiers.

2.2 The mechanism of XCS
2.2.1 Performance component. XCS selects an action for an

identified input and executes it. The algorithm in this component
is summarized as follows: (i) Extracts classifiers that match the cur-
rent input in [P] and stores the extracted classifiers in the match
set [M]; (ii) XCS predicts the acquisition reward for each action ai
by calculating the prediction array P(ai ) as follows:

P(ai ) =
∑
clk ∈[M ] |ai clk .p × clk .F∑

cll ∈[M ] |ai cll .F
. (1)

(iii) XCS selects an action based on the prediction array and stores
the classifiers that have the selected action in the action set [A].
The action is generally chosen based on the ϵ-greedy selection [9]
or by alternation between random and greedy selections. Then,
XCS executes the selected action for the environment and receives
the reward P . Next, the reinforcement component is executed fol-
lowed by the execution of the evolution component after a partic-
ular time.

2.2.2 Reinforcement component. This component updates the
parameters of the classifiers in [A] as follows: (i) the prediction p
is updated based on the acquired reward P ;

cl .p ← cl .p + β(P − cl .p). (2)

The variable β is the learning rate and contributes to the learning
speed. (ii) The error ϵ , which is the difference between P and cl .p
is updated as follows:

cl .ϵ ← cl .ϵ + β(|P − cl .p | − cl .ϵ). (3)

However, when the number of updates of the classifier (cl .exp) is
less than 1/β , Equations (2) and (3) are respectively replaced with
Equations (4) and (5) below using moyenne adaptive modifée tech-
nique [3]:

cl .p ← cl .p + (P − cl .p)/cl .exp; (4)

cl .ϵ ← cl .ϵ + (|P − cl .p | − cl .ϵ)/cl .exp. (5)

These operations increase the learning speed at the beginning of
learning. (iii) The fitness F is calculated based on the accuracy κ.

κ(cl) =
{

1 if ϵ < ϵ0;
α
(
ϵ
ϵ0

)−ν
otherwise. (6)

In this equation, ϵ0 (ϵ0 > 0) is a constant that indicates the accu-
racy criterion.When the value of cl .ϵ is less than ϵ0, the classifier is
accurate. The variables α (0 ≤ α ≤ 1) and ν (ν > 0) control the re-
duction rate of the accuracy. The relative accuracy of the classifier
κ ′ is then calculated as follows:

κ ′(cl) = κ(cl) × cl .n∑
x ∈[A] κ(x) × x .n

. (7)

(iv) The fitness F is updated as follows:

cl .F ← cl .F + β(κ ′(cl) − cl .F ). (8)
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2.2.3 Rule-discovery component. This component generates new
classifiers by GA as follows: (i) Two individual parents individuals
are selected from [A]; however, the selection probability is based on
their fitness ratio. (ii) Next, two different children are generated by
crossing the selected parents. The elements of the condition part
of these children are mutated with the probability µ. (iii) Then, the
children are added in [P]. At that time, if the total numerosity n of
the classifier in [P] exceeds the parameter N , the classifiers with
low fitness are deleted preferentially.

Moreover, XCS generalizes the classifiers and organizes [P]. Sub-
sumption is the process of integrating classifiers with a low gen-
erality into more generalized (more # in the condition part) clas-
sifiers. The classifiers whose experience exp exceeds θsub and are
determined to be accurate (κ(cl) = 1) can subsume classifiers that
have their condition part included in the condition part of the sub-
suming classifier. Then, the numerosity n of the subsumed classi-
fier is added to the classifier that subsumes.

3 XCS BASED ON COLLECTIVE WEIGHTED
REWARD (XCS-CR)

3.1 Architecture of XCS-CR
The classifier of XCS-CR has the condition part, action part, predic-
tionp, prediction error ϵ , fitness F , and numerosityn as the same as
those of the classifier of XCS; however, XCS-CR differs from XCS
in the following aspects. XCS has one ϵ0 parameter that is shared
by all classifiers, but in XCS-CR, every classifier has its ϵ0. Addi-
tionary, XCS-CR classifiers have the mean of the acquired reward
M which is similar to p; however,M is more stable than p. Further-
more, XCS-CR classifier counts the number of times the reward
is received (CP=P ) and the number of estimation for each reward
(EP=P ). In the multiplexer problem, since there are two possible
reward values, 0 and 1000, the classifier has four counters CP=0,
CP=1000, EP=0, and EP=1000.

3.2 Mechanism of XCS-CR
Most parts of the learning mechanism of XCS-CR are the same as
those of the mechanism of XCS. Nevertheless, the mechanism of
XCS-CR differs mainly from that of XCS in terms of the param-
eter updating in the reinforcement component and the subsump-
tion condition in the rule-discovery component. Figure 2 shows the
learning mechanism of XCS-CRwhere the parts that distinguished
it from that of XCS are blackened.

3.2.1 Reinforcement Component. XCS-CR updates the classi-
fiers in [A] as follows. First, the CP to be incremented is the one
whose value of P is the same as the acquired reward P (i.e., CP=0
for reward 0 and CP=1000 for reward 1000). Thus,

cl .CP=P ← cl .CP=P + 1. (9)

Second, the classifier updates the mean of its acquired reward cl .M
as follows:

cl .M =
1

cl .exp

cl .exp∑
i=1

Pi (10)

, where Pi is the reward acquired when the experience exp of the
classifier cl is i . Third, the error ϵ of the classifier is updated as
shown in Figure 3. Besides, ϵ is calculated as the difference between

Figure 2: Learningmechanism of XCS-CR and XCS-CR2 (see
[12]).

Figure 3: ϵ of XCS-CR and XCS-CR2 (see [12]).

Figure 4: Calculation of CRA=a of XCS-CR (see [12]).

the most frequently acquired reward cl .mf r and the mean value of
the acquired reward. The most frequently acquired reward cl .mf r
is the reward value, for which cl .CP is the maximum. Thus,

cl .ϵ ← cl .ϵ + β(|cl .mf r − cl .M | − cl .ϵ). (11)

Fourth, XCS-CR attempts to balance noise effect by estimating
the correct action if there is no noise. For each action set [A] XCS-
CR calculates a collective reward CR using the equation:

CRA=a =

∑
cl ∈[M ] |a cl .M × cl .exp∑

C ∈[M ] |a C .exp
. (12)

Moreover, XCS-CR assumes the action with the highest CR to be
the correct action. The classifier of XCS-CR counts the number
of estimations EP for each reward. However, like CP , the EP to
be incremented is the one whose value of P is the same as the
estimated reward P . The increment is as follows:

cl .EP=P ← cl .EP=P + 1. (13)
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Figure 4 shows an example of a binary classification problem. XCS-
CR consists of [M] with classifiers matching current input “0011”.
[M] is divided into two collectives based on the action. The clas-
sifiers in the left collective have action 0, while the classifiers in
the right collective have action 1. Since the M values of the left
collective classifiers are larger than those of the right collective
classifiers,CRA=0 is larger thanCRA=1. When action 0 is selected,
XCS-CR estimates that reward 1000 will be acquired and incre-
ments cl .EP=1000 by 1. On the other hand, when action 1 is selected,
XCS-CR estimates that reward 0 will be acquired and increments
cl .EP=0 by 1.

Next, XCS-CR updates ϵ0 of the classifier. The classifier whose
estimated reward is always the same, that is, whose EP is 0 for one
reward value, is considered to be accurate. The more # symbols
there are in the condition, the more inputs a classifier matches.
However, in order to prevent assessment by only some matched
inputs, even if the number of experiences exceeds 2number of # ×
θRE , the classifiers that satisfy the above condition are targeted.
Moreover the parameter θRE is constant. Let ϵ beMaxϵ , the largest
ϵ among the classifiers in [A] satisfying the above conditions. Then,
XCS-CR updates ϵ0 as follows:

cl .ϵ0 ← cl .ϵ0 + β(Maxϵ − cl .ϵ0). (14)

Finally, XCS-CR updates the fitness F of the classifier executing
Equations (6), (7), and (8) the same as XCS does.

XCS-CR decides the accuracy of the classifier based on the es-
timated value of the acquired reward (EP=P ). A classifier that has
an estimated reward that is always one is considered an accurate
classifier, whereas a classifier with two or more estimated reward
values considered an inaccurate classifier.

3.2.2 Subsumption condition. Since a classifierwithmany # sym-
bols subsumes several classifiers, it is necessary to determine the
accuracy of such a classifier carefully. XCS has the condition that
the number of evaluation times (cl .exp) of the subsuming classifier
is greater than θsub ; however, in XCS-CR, it is changed to the con-
dition: the number of evaluation times (cl .exp) of the subsuming
classifiers is greater than 2number of # × θRE . Since the values of
θsub and θRE are assumed to be the same, the subsumption condi-
tion of XCS-CR is more severe than that of XCS. Besides, the other
condition κ(cl) = 1 for XCS-CR is the same as in XCS.

4 EXTENDED XCS BASED ON COLLECTIVE
WEIGHTED REWARD (XCS-CR2)

4.1 Architecture
A classifier of XCS-CR2 has the same parameters ϵ0,M,CP=P , and
EP=P as those of a classifier of XCS-CR.

4.2 Mechanism
Most of the mechanism of XCS-CR2 is similar to that of XCS-CR.
The mechanism of XCS-CR2 differs mainly from that of XCS-CR
in terms of calculation of EP and determination of Maxϵ for cal-
culating ϵ0. This subsection describes the mechanism of XCS-CR2
assuming a binary classification problem in which the reward ac-
quired at the time of correct answer is 1000 when there is no noise.

Figure 5: Calculation of CRA=a ,CM>500,A=a , and CM ≤500,A=a
of XCS-CR2.

4.2.1 Calculation of EP . XCS-CR2 calculates the collective re-
ward CR before acquiring a reward. At the same time, it counts
the number of macro-classifiers where cl .M is greater than 500
CM>500,A and the number of macro-classifiers where cl .M is less
than or equal 500 CM ≤500,A for each output A. Figure 5 shows
an example of the calculation of CM>500,A=a and CM ≤500,A=a .
The left-hand side of the figure is the set of classifiers whose ac-
tion is 0. Since the set on the left-hand side has three classifiers
with M > 500 and zero classifiers with M ≤ 500, CM>500,A=0 is
three and CM ≤500,A=0 is zero. In the set on the right-hand side,
CM>500,A=1 is zero andCM ≤500,A=1 is three, because theMs of all
three classifiers are less than 500.

XCS-CR2 determines the EP from CRA=a0 , CRA=a1 ,
CM>500,A=a0 ,CM>500,A=a1 ,CM ≤500,A=a0 , andCM ≤500,A=a1 , where
the actions are either a0 or a1.

CRA=a0 > CRA=a1 .
CM>500,A=a0 > CM ≤500,A=a0 .
CM>500,A=a1 < CM ≤500,A=a1 .

(15)

When all the above conditions are satisfied, the cl .EP=1000 is in-
cremented by one if the action of the classifiers cl ∈ [A] is zero,
whereas the cl .EP=0 is incremented by one if the action of the clas-
sifiers cl ∈ [A] is one. Thus,

CRA=a0 ≤ CRA=a1 .
CM>500,A=a0 < CM ≤500,A=a0 .
CM>500,A=a1 > CM ≤500,A=a1 .

(16)

When all of the above conditions are satisfied, cl .EP=0 is incre-
mented by one if the action of the classifiers cl ∈ [A] is zero,
while cl .EP=1000 is incremented by one if the action of the clas-
sifiers cl ∈ [A] is one. However, cl .EP=P is not updated if neither
of the sets satisfy some of the above conditions. XCS-CR2 repeats
this updating process each time [A] is generated.

4.2.2 DeterminingMaxϵ . First, this subsubsection describes the
process of calculation of ϵ . XCS-CR2 updates CP=P based on the
collective rewards CRA=a0 and CRA=a1 . Besides, the cl .CP=1000 is
increased by one when theCR of the action of the classifiers in [A]
is relatively high, whereas the cl .CP=0 is increased by one other-
wise. Furthermore, XCS-CR2 calculates the mean of the acquired
reward of the classifier cl .M , and ϵ as in Equation (11) by using the
above CP=P .
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Next, XCS-CR2 determines Maxϵ by using ϵ of the classifiers
that satisfy the following conditions.{

cl .exp > 2number of # × θRE .
cl .exp > θLL .

(17)

The first condition in Equation (17) is the same as the condition of
XCS-CR; however, the second condition indicates the lower limit
of the experience of the classifier. The maximum value of ϵ of the
classifiers satisfying the above conditions is the Maxϵ . The other
updating processes such as subsumption condition are the same as
for XCS-CR.

5 PROBLEM DESCRIPTION
This paper simulates real-world problems that have uncertainties
as input, output, and reward noise added to the l-Multiplexer prob-
lem. This section explains the l-Multiplexer problem as well as the
added noise.

5.1 Multiplexer problem
The l-Multiplexer problem is a common benchmark problem of
LCS because all inputs are expressed with a few numbers of gen-
eralized rules. Moreover, the l-Multiplexer problem classifis l bits
input (b0b1...bl−1) into two classes (0 and 1), where l satisfies l =
k+2k . The firstk bits (b0b1...bk−1) of the input are converted into a
decimal numberd . The value of the k+d-th bit (bk+d ) is the correct
answer, while the other value of the k+d-th bit is the incorrect an-
swer. In the 11-Multiplexer problem where the input length is 11
(i.e., k = 3), for example, b0b1b2 (“011”) is converted into d = 3
when the input is given as “01100100000,” and b3+3 = b6 = 0 is the
correct answer.

Since the value of the correct answer is determined only from
the first k bits (b0b1...bk−1) and the (k +d)-th bit (bk+d ), the other
bits in this input have no meaning. Furthermore, XCS can gener-
alize the input of the l-Multiplexer problem by replacing the other
bits with # as shown in the example below.

(if) 011###0#### (then) 0.

The set of maximally generalized classifiers is called the optimal
subset [O]. For example, in the 11-Multiplexer problem, [O] con-
sists of 32 generalized classifiers. It is worthy of note that, although
the classifiers in [O] can cover all of the input-output space, the
subset of classifiers in which the number of the # symbols is the
same and the address bits are generalized (e.g. (if) #11###0###0
(then) 0) cannot cover part of the input-output space.

5.2 Input, output, and reward noise
This paper added noise to the 11-Multiplexer problem in a simi-
lar fashion as in [11–14]. We briefly describe the process in this
subsection.
• Input and output noise: Since the l-Multiplexer problem
is a binary classification problem, even if the input and out-
put change slightly, there will be a change only between the
two discrete states, that is, the case where the correct class
is changed and where the answer is not changed. However,
this paper considers only discrete changes in input and out-
put. The input noise inverts the bits of each input attribute

with the probability PI , while the output noise inverts the
action with the probability PO .
• Reward noise: It is known that if the reward changes
slightly, the accuracy of the classifiers (of XCS) will be re-
duced. This paper incorporated continuous noise into the
reward. Besides, the rewards are random numbers that fol-
low a Gaussian distribution with mean 0 and variance σ 2

R .

6 EXPERIMENTS
This paper compares the learning performance of XCS, XCS-MR,
XCS-RR, XCS-CR, and XCS-CR2 in the 11-Multiplexer environ-
ments without noise in the input, output, and reward noise. The
magnitude of the input, output, and reward noise is PI = 0.05, PO =
0.1, and σ 2

R = 2002, respectively. In XCS-RR, it is assumed that the
range of rewards acquired by the accurate classifiers is narrow;
however, the range of acquired reward by the accurate classifiers
and that by the inaccurate classifiers are the same (from 0 to 1000).
In this paper, we did not apply XCS-RR to environments with input
and output noise. Additionally, in XCS-CR, it is assumed that the
acquired rewards at the time of accurate and inaccurate answer are
exactly one value each, 1000 and 0, respectively. When the reward
noise is added, the reward takes various values different from 0 and
1000. However, we did not apply XCS-CR to an environment with
the reward noise.

6.1 Evaluation criteria and parameters
In this paper, we adopted the evaluation criteria utilized in [11–
14]. The evaluation criteria were performance, population size, and
the number of trials of the acquired optimal subset [O], which are
explained below.
• Performance. This criterion evaluates the rate of
outputting the correct answer for the latest 100 inputs with-
out noise; a higher correct rate is preferred to a lower one.
In these experiments, the term “performance” corresponds
to the correct rate. This criterion is the average value of the
50 trials.
• Population size. The population size is the number of
macro-classifiers in [P]. This criterion evaluates the rule gen-
eralization performance. In order to reduce the population
size, it is necessary to evaluate the accuracy of the classifiers
stably and correctly. A smaller population size is preferred
to a larger one because in that case, the required memory
size becomes relatively small. In this paper, this criterion is
the average value of the 50 trials.
• Number of trials of the acquired optimal subset [O].
This criterion evaluates the 32 optimal classifiers in the 11-
Multiplexer problem, and it consists of two measures. The
first measure is the percentage of the trials where all 32 op-
timal classifiers [O] are in [P] at the end of the trial in the 50
trials. The second measure is the percentage of the trials in
which the 32 classifiers, having the largest fitness F among
[P], are the 32 optimal classifiers [O] in the 50 trials. In this
paper, we call the second measure top 32. It is preferred to
have more trials to acquire [O].

However, it should be noted that the performance and the popula-
tion size to be utilized in comparing XCSs is the average of the last
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Table 1: Number of trials of the acquired [0] in no noise en-
vironment.

Method Acquisition [O] Acquisition [O] (top 32)
XCS 50 (100%) 50 (100%)

XCS-MR 50 (100%) 50 (100%)
XCS-CR 50 (100%) 50 (100%)
XCS-RR 50 (100%) 50 (100%)
XCS-CR2 50 (100%) 50 (100%)

Table 2: Number of trials of the acquired [0] in an input noise
environment.

Method Acquisition [O] Acquisition [O] (top 32)
XCS 0 (0%) 0 (0%)

XCS-MR 49 (98%) 41 (82%)
XCS-CR 49 (98%) 46 (92%)
XCS-CR2 50 (100%) 50 (100%)

100 iterations of the learning in the 50 trials. The correct rate and
population size are significantly verified by the Kruskal-Wallis test
and Brunner-Munzel test. Moreover, in this paper, the significance
level is 1%.

We implemented XCS base on [1] and adopted the parameters
utilized in [7]. We also implemented XCS-MR, XCS-RR, and XCS-
CR and adopted their corresponding parameters based on [14],
[13], and [12], respectively. There fore, we adopted the follow-
ing parameters for XCS: ϵ0 = 38.34, β = 0.099, and θsub = 49.
While we adopted the parameters employed in [14], [13], and [12]
(ϵ0 = 10, β = 0.2,θsub = 20) as the parameter of XCS-MR, XCS-
RR, XCS-CR, and XCS-CR2. For the common parameters of XCSs,
we have N = 800, µ = 0.04, P# = 0.35, Pexplr = 1.0, χ = 0.8,ν =
5,θGA = 25, and θdel = 20. The value of θLL , which is newly es-
tablished in this paper for XCS-CR2, is 25. Besides, each trial ran
for 300,000 exploit iterations.

6.2 Results
Figure 6, 7, 8, and 9 show the correct rate and population size of
XCS, XCS-MR, XCS-RR, XCS-CR, and XCS-CR2. In these figures,
the horizontal axis represents the number of iterations, while the
vertical axis indicates the correct rate (in (a) of these figures) or
the population size (in (b) of these figures). Square, triangle, circle,
cross, and Y marks denote the mean value of XCSs. The top and
bottom of the bars respectively indicate the maximum and mini-
mum value of the correct rate or the population size in 50 trials of
each method. Table 1, 2, 3, and 4 show the percentage of the trials
of acquiring the optimal classifiers subset [O]. The left-hand side
of the tables shows the percentage when the object is the whole of
[P], while the right-hand side shows the percentage when the ob-
ject is the top 32 of [P]. Except for the correct rate in the no noise
environment case, the significant differences between the methods
are obtained by Kruskal-Wallis test. A * symbol is added whenever
there is a significant difference among the methods.

In the no noise environment (see Figure 6), all XCSs can select
the correct answer for any inputs. Additionally, all XCSs were able

Table 3: Number of trials of the acquired [0] in an output
noise environment.

Method Acquisition [O] Acquisition [O] (top 32)
XCS 0 (0%) 0 (0%)

XCS-MR 47 (94%) 30 (60%)
XCS-CR 49 (98%) 46 (92%)
XCS-CR2 48 (96%) 47 (94%)

Table 4: Number of trials of the acquired [0] in a rewardnoise
environment.

Method Acquisition [O] Acquisition [O] (top 32)
XCS 0 (0%) 0 (0%)

XCS-MR 50 (100%) 50 (100%)
XCS-RR 50 (100%) 50 (100%)
XCS-CR2 46 (92%) 44 (88%)

to generalize classifiers; however, the population size of XCS-MR,
XCS-CR, and XCS-CR2 is the smallest∗. From Table 1, it is obvi-
ous that all XCSs can acquire [O] in all the trials. The results in
noisy environments (see Figure 7, 8, and 9; Table 2, 3, and 4) are as
follows. XCS could not select the correct answer for some inputs,
and its correct rate is the lowest in all the noisy environments∗.
The converged value of the correct rate and the population size
of XCS-MR, XCS-RR, XCS-CR, and XCS-CR2 in the noisy environ-
ments are almost the same as their values in the no noise environ-
ment. Although the convergence speed of the correct rate and the
population size of these methods decreased, they could acquire [O]
by 300,000 iterations in most trials. However, it was impossible to
acquire [O] in some trials, as shown below. It was found that XCS-
MR has a wide range of the bars in the input and output noise en-
vironments; however, the learning of XCS-MR did not converge at
300,000 iterations. Nevertheless, if more learning data is provided,
XCS-MR can acquire [O] in all trials. Some trials of XCS-CR2 in the
reward noise environment failed to acquire [O]. In one of these tri-
als, it was impossible to acquire [O] even when the learning data
was increased. These results revealed that XCS-CR2 could select
the correct answer and acquire the optimal classifiers subset [O]
in almost all the trials; the same as XCSs in the no noise environ-
ment.

7 DISCUSSIONS
7.1 Introduction of CM>500,A and CM ≤500,A
The leaning policy of XCS-CR2 is the same as that of XCS-CR.
However, in XCS-CR2, it is difficult to clarify whether the varia-
tion of the acquired reward is due to noise or an erroneous (over-)
generalization of the information of the classifier to be evaluated.
The match set [M] includes classifiers that match inputs from the
current input; nevertheless since the classifiers in [M] have a com-
mon attribute that match the current input, these classifiers have
the most information about the current input. In XCSs, classifiers
with a small variation in reward tend to remain in [P], whereas
information (e.g.M,p, and ϵ) on classifiers with a high experience
exp is generally, reliable. Consequently, the collective reward CR,
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(a) Correct rate (b) Population size

Figure 6: Learning performance in no noise environment.

(a) Correct rate (b) Population size

Figure 7: Learning performance in input noise environment.

(a) Correct rate (b) Population size

Figure 8: Learning performance in output noise environment.

(a) Correct rate (b) Population size

Figure 9: Learning performance in reward noise environment.

which is the average of M with exp as weight, is an index that is
hardly affected by erroneous classifier generalization.

Although the experience exp of the classifiers with high gener-
ality (many # symbols) increases rapidly, the collective rewardCR
is strongly influenced by the classifiers with a large number of exp,
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Figure 10: Comparison of p andM .

that is, classifiers that are likely to be over-generalized. XCS-CR2
introduced CM>500,A and CM ≤500,A additionally for the calcula-
tion of EP . However, CM>500,A and CM ≤500,A are indices which
are independent of exp. The classifiers with a low exp are rela-
tively accurate since, in this case, they have low generality. Fur-
thermore, XCS-CR2 increases the value of EP slowly. It is worth
noting that on the premise of a binary classification problem in
which the reward acquired at the time of correct answer is 1000
and that acquired at the time of incorrect answer is 0, 500, which
is the midpoint between 0 and 1000 is set as the threshold.

The disadvantage of the slowly increasing EP is that the EP of
the over-generalized classifiers to be determined as inaccurate are
difficult to increases. In addition, the over-generalized classifiers
have the mean of the acquired reward M to be close to 500 and
also have a large number of exp. Moreover, since it is difficult to
satisfy the Equations (15) and (16), EP hardly increases. Both EP=0
and EP=1000 of the inaccurate classifier should be greater than 0.
However, since either EP=0 or EP=1000 may remain 0, the classifier
is regarded as an accurate classifier candidate, and ϵ of the clas-
sifier is a candidate for the Maxϵ . Furthermore, since the ϵ of the
over-generalized classifier is larger than that of the accurate clas-
sifiers, the ϵ of the letter is adopted as the Maxϵ ; consequently,
ϵ0 is enlarged. The accurate classifiers are subsumed by the over-
generalized classifier that is determined as accurate. This explains
why XCS-CR2 could not select the correct answer in some trials in
the reward noise environment.

7.2 The subsumption condition of XCS-CR2
Equation (17) shows the subsumption condition in XCS-CR2. In
the case where the subsumption condition is only the first condi-
tion common to XCS-CR and XCS-CR2, the low generality classi-
fiers are used to calculate the Maxϵ even if the experience exp is
relatively small. For example, the classifiers that are not general-
ized at all are used for the calculation ofMaxϵ , even if exp is zero.
Furthermore, suppose the classifier is accurate; if exp is small, the
possibility that the number of acquisitions of rewards that take
different values from the original value due to the influence of the
noise is larger than the number of acquisitions of the original re-
ward is sufficiently high. In order to correctly grasp the influence
of noise, a certain number of evaluations are required to be carried
out. XCS-CR2 set a lower limit θLL to exp.

7.3 Adoption of meanM for calculation of
collective reward CR

XCS-CR and XCS-CR2 adopt the mean valueM of acquired reward
instead of the prediction p for calculating the collective reward
CR. In order to acquire correctly generalized classifiers in envi-
ronments to which noise is added, it is critical to understand the
influence of noise on the reward accurately. Furthermore, XCS-CR
and XCS-CR2 adopt an index that can stably and correctly deter-
mine the accuracy of classifiers rather than the speed with which it
is determined. Figure 10 shows the prediction p and the meanM of
an accurate classifier in the output noise (PO = 0.1) environment.
The horizontal axis represents the experience, while the vertical
axis represents p and M . The value of p is calculated by Equation
(2), and it ranges between 600 and 1000. From Equation (2), one
observes that the weight for the p of recently acquired rewards is
relatively large. If the classifier acquires reward 1000, p is close to
1000, while if the classifier acquires reward 0, p will diminish. On
the other hand, the mean M treats all acquired rewards with the
same weight. As the number of acquired rewards used for the cal-
culation ofM increases, the value ofM converges. In this example,
M converges to approximately 900. Based on these observations,
XCS-CR and XCS-CR2 adopt the mean valueM of acquired reward
instead of the prediction p for calculating the collective rewardCR.

Classifiers whose outputs are different from the correct and in-
correct answer, even if one of the inputs matched, are inaccurate.
As the input length increases, classifiers that match more inputs
are generated. However, in environments with long input length,
the difference in theM is relatively small, making it difficult to dis-
tinguish between accurate and inaccurate classifiers. In such envi-
ronments, the p that sensitively reflects the difference in the ac-
quired rewards may be more appropriate than M . Hence; there is
a need to explore more efficient indicators further.

8 CONCLUSION
This paper proposes a new XCS, XCS-CR2 (extended XCS-CR) that
can accurately generalize classifiers in input, output, and reward
noise environments. XCS-CR2 is a method extended to make XCS-
CR learnable even in reward noise environments by using the av-
erage of the reward acquired at the time of correct and incorrect
answer as the threshold. Moreover, XCS-CR2 can acquire general-
ized classifiers without prior knowledge of the type of added noise.

In this paper, we have experimentally shown that XCS-CR2 can
acquire [O] of the 11-Multiplexer problem in environments where
one of input, output, and reward noise was added. XCS-MR and
XCS-CR2 are methods that can acquire [O] in all noise environ-
ments. However, since XCS-CR2 can generalize classifiers faster
than XCS-MR, it can be applied to problemswith less learning data.
Notwithstanding, XCS-MR should be used if the reliability of learn-
ing performance is desired, because XCS-CR2 may not acquire [O]
in several trials.

Critical research in the field needs to be pursued in the future
aimed at the following: (1) improvement of the estimation acquir-
ing reward mechanism to apply to long input length problem; (2)
adaptation to the multi-class classification problems; and (3) adap-
tation to environments with multiple type noise and real-world
problems.
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