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ABSTRACT

EC]J is now 20 years old. Begun as a genetic programming and evo-
lutionary computation library in Java, it has since established itself
as historically one of the most popular EC toolkits worldwide. In
2016 we received a National Science Foundation grant to improve
ECJ in many ways with an eye toward making it a useful toolkit
not just for EC but for the broader metaheuristics community. This
paper is a report on our efforts to this end. We discuss new meta-
heuristics frameworks and representations added to ECJ and the
design challenges that they raise for a general-purpose framework,
as well as testing facilities and other support tools. We conclude
with our future directions for the library.
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1 INTRODUCTION

For 20 years, the ECJ toolkit has provided a unified and widely
used framework for doing research and education with evolution-
ary algorithms, and for solving industrial-strength optimization
problems with these methods. Over its 27 releases, ECJ has empha-
sized a high performance, very orthogonal architecture enabling the
combination, recombination, and mutation of different aspects of
evolutionary algorithms, has been relatively stable and consistent,
and has had good support and documentation.
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EC]J is the subject of a multi-year National Science Foundation
(USA) grant to improve the toolkit in response to community feed-
back [20]. The goal of this grant is to convert ECJ from an evolution-
ary computation-oriented framework into one which could serve
as a unifying nexus for the broader metaheuristics community. This
paper reports on our progress so far towards that goal. Specifically
we report on new or improved support for single-state optimiza-
tion, Lexicase selection, Estimation of Distribution Algorithms, Ant
Colony Optimization, NEAT, multi-objective optimization, and un-
derpinnings of the system, including a testing harness.

EC]J has always emphasized a consistent, orthogonal architecture
for mixing and matching many algorithms and methods; but of
course this is not always possible. Some techniques are restricted
to specific problem domains, genetic representations, or fitness
assessment strategies. Some of the elements we have been adding to
EC]J, or will be adding in the future, present these kinds of challenges
to ECJ’s architectural consistency.

In this paper we will first discuss the added value that general-
purpose software frameworks offer the metaheuristics community,
and some background on the current software landscape and ECJ’s
design in particular. In Section 5 we will then present the features
that we have added to ECJ recently, emphasizing some of the spe-
cial challenges that arise naturally in certain areas — such as code
reusability in Ant Colony Optimization, or the problem of creating
a test harness for highly stochastic software. The paper then ends
with a discussion of future directions (Section 6), and some of the
problems we are looking at tackling in ECJ’s future.

2 WHY A COMMON TOOLKIT?

One consistent criticism of ECJ, and of other similar toolkits (like
EO [17]), is why one should bother to learn an external toolkit at all,
instead of just rolling one’s own code to do experimental research.

Our response is that a unifying framework provides a number of
major advantages to the community. First, while a simple (g, A) ES
is not particularly hard to write by hand, other techniques (GP and
NEAT are good examples) can be very complex. Provided that it is
sufficiently easy to modify and hack — and EC]J strives to make this
so —a common and well-vetted framework can reduce the potential
for software errors in one’s research experimental code. Second, a
common framework makes it much easier to compare and contrast
techniques, to introduce and popularize new approaches, and to
take advantage of the products of the research coding community
ecosystem. Third, given a sufficiently orthogonal framework, one
gets many follow-on features for free. For instance, a researcher
writing code targeting ECJ can automatically take advantage of
ECJ’s considerable massively distributed evaluation, island model,
and asynchronous evolution facilities. Fourth, a common toolkit
makes things simpler for educators who want to introduce a variety
of techniques to students in a short period of time.
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ECJ has another important trick up its sleeve which we think is
increasingly important to good research methodology: it was de-
signed from the start to provide not only high-quality but replicable
or even duplicable experiments given the initial parameters. This
stems from several factors, including ECJ’s consistent low-level
facilities (notably its random number generator), and the fact that
it targets (intentionally primitive) Java.

Our field is heavily empirical and emphasizes random trials and
statistical argument, and such research fields have increasingly
come under fire for replication failure. Often researchers do not
provide code to back up claims, or if they do, the code is convoluted
or esoteric to the point being impossible to understand. As a field,
it is imperative to provide replicable, consistent, open, and legible
code to support one’s research results. ECJ’s replicability, and the
common codebase provided by its unified framework, promise to
help in this regard.

3 BACKGROUND

ECJ has long served as one of the most-used frameworks for evo-
lutionary algorithm development, but the metaheuristics software
landscape is considerably more populated today than when ECJ
was first introduced. Today, most leading programming languages
sport at least one mature, general-purpose EA framework [11, 17],
and a variety of younger frameworks routinely crop up to challenge
their hegemony and to experiment with novel API designs. For Java
developers, examples of newer frameworks that leverage different
design philosophies or newer language features include JCLEC [32]
and Jenetics.!

The way that programmers write and interact with their code
has also changed significantly since ECJ was introduced in 1999.
Java, while still a venerable industry standard, has gone through
a complete boom-bust cycle in terms of industry excitement, and
Python has become the new lingua franca of artificial intelligence
programming. Some EA software maintainers have coped with this
by porting their systems to Python in full. Benitez-Hidalgo et al.,
for example, recently took this leap with the jMetal framework [5].
Python-native packages such as DEAP [11], are increasing in popu-
larity in no small part because of the rapidness and ease with which
new algorithm prototypes can be assembled. Moreover, special-
purpose modules like TPOT exploit Python’s standard ecosystem
of scientific tools to offer out-of-the-box EA solutions to specific
data science problems (such as optimizing machine learning algo-
rithms) [27].

We recognize the benefits that the Python ecosystem has brought,
and in particular SciPy and NumPy, but Java toolkits also offer im-
portant advantages: Java has enabled ECJ’s high performance, ease
of massive distribution, and interoperability with the considerable
Java ecosystem at large. In this way we hope EC]J strikes a “happy
medium" along the performance to ease-of-use continuum.

4 ARCHITECTURE OVERVIEW

EC]J has historically supported many EA methods and represen-
tations, including most “classic” EA architectures, coevolutionary
facilities, DE and PSO, multi-objective optimization, spatial EAs,
many vector-based and rule-based representations, island models,

Ihttp://jenetics.io/
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massively distributed evaluation, meta-EAs, and an extensive ge-
netic programming package. To put later discussion in context, it is
worth providing a brief overview of the architecture that ECJ has
used to support this diversity. For more detailed discussion, see [19]
and [20].

An ECJ experiment, in the form of one or more metaheuris-
tics runs, is contained entirely within a single top-level subclass,
EvolutionState. This allows EC]J to serialize the entire state of an
experiment to a file, move it to another machine, and then restart
it as if nothing had happened. It also allows EC]J to run many ex-
periments in parallel, or to straightforwardly perform a meta-EA
by performing runs inside other ECJ experiments.

EvolutionState contains or defines two broad categories of ob-
jects which together form most of a run. First there are the nouns,
that is, stateful objects. Specifically, a Population contains one or
more Subpopulations, which each contain one or more Individuals.
These in turn contain (in addition to their genomes) some kind of
Fitness. Individuals’ genomes may themselves contain additional
nouns: for example, tree-based GP individuals contain GPTrees
and GPNodes. The division of a Population into Subpopulations
allows ECJ to use multiple Subpopulations as an internal island
model, or as separate populations for competitive or cooperative
coevolution.?

Some nouns share features in common: for example, many In-
dividuals may have the same exact parameters which define them.
To reduce its memory footprint, ECJ uses the Flyweight design
pattern: groups of Individuals all share a common storage object,
a subclass of Species. This is independent of the grouping class
(Subpopulation). Consider a Population with three Subpopulations.
Subpopulations 0 and 1 might hold tree-based Individuals which
all share a single GPSpecies object, while Subpopulation 2 might
hold vector Individuals sharing a different FloatVectorSpecies object.
Flyweight patterns are also used with certain other nouns.

To do the actual optimization, ECJ relies on various verb objects.
The top-level verb is the EvolutionState subclass itself, which de-
fines the optimization loop broadly written. ECJ provides default
EvolutionState subclasses for generational, steady-state, or single-
state (hill-climbing etc.) optimization methods. EvolutionState con-
tains more verbs to flesh out these details: various Initializers and
Finishers to initialize or clean up the Population, Breeders to produce
a new Population from an old one, Evaluators to assess the fitness
of Individuals, Exchangers to talk to other islands either internally
or over a network, and a Statistics object to output results.

In most EA scenarios, an ECJ Breeder can parallelize the process
of producing new individuals by assigning one thread each to a
Breeding Pipeline. This is an assembly line (a directed acyclic graph)
of selection objects and modification objects (crossover, mutation,
etc.). ECJ’s Breeding Pipelines are highly flexible; indeed, to imple-
ment all of Simulated Annealing, ECJ simply relies on a custom
set of Breeding Pipeline operators. Similarly, the Evaluator can
parallelize the evaluation process through multiple Problem objects:
one per thread. A Problem subclass defines the fitness assessment
procedure for one or a group of Individuals. The Evaluator can
also distribute the evaluation process among many machines by

2Note that because there is only one subdivision, this means that it is awkward for
ECJ to do internal island models and coevolution at the same time. This is an example
of an orthogonality failure in ECJ’s structure.
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replacing the Problem with a special MasterProblem, which ships
Individuals off to be evaluated via Problems managed by Slaves on
remote machines.

Essentially all of these objects (all nouns and verbs, Breeding
Pipeline objects, Problems) are customizable through subclassing or
parameter modification. These objects and subclasses, their param-
eters, and indeed the entire object graph, are defined by a Parameter
Database loaded from parameters on the command line or speci-
fied in text files. ECJ objects are generally not constructed in the
Java-standard way, that is, via the “new” keyword and a constructor
method. Instead, they are first built at runtime via Java’s reflection
facility, and then each is passed the Parameter Database as input,
via a special setup(...) method, to construct itself. In the process
of construction, objects ask the Parameter Database to load other
objects specified in the database and call setup(...) recursively on
them. The parameter database defines all the classes, parameters,
and the structure of the entire ECJ experiment, and so it is common
to build an entire ECJ experiment without writing any Java code.
More often, the only Java code the experimenter must write is the
class which defines his domain-specific assessment procedure.

5 RECENT FEATURES

The ECJ NSF grant [20] proposed a variety of changes to the system
in response to community feedback. At this point we have imple-
mented a significant number of these changes, plus others. In this
section we discuss changes made to ECJ during this period.

5.1 Single-State Optimization

This is the term we use for methods in which a single individ-
ual is updated and maintained at a time. Techniques in this vein
include hill-climbing variants, simulated annealing, tabu-search,
and iterated local search. In the past, ECJ could do implementa-
tions of hill-climbing with or without replacement by performing
(1,4), (1 + ), or of course (1 + 1). This required use of ECJ’s evo-
lution strategies toolkit, and consequently all of the overhead of
ECJ’s generation-based population facility and statistics output.

EC]J features a dedicated single-state optimization framework
complete with its own specialized Breeder and EvolutionState sub-
classes designed to significantly speed up the performance of these
algorithms. The package contains examples for several hill-climbing
variants and for simulated annealing.

5.2 Estimation of Distribution Algorithms

ECJ now sports four Estimation of Distribution Algorithms: PBIL [2],
CMA-ES, iAMaLGaM-IDEA [6], and DOVS; and so its package struc-
ture has been made more abstract to accommodate them.

At first glance it would seem that EDAs pose a small challenge
to ECJ, as most have no “population” at all during breeding, and so
would have no use for ECJ’s Breeding Pipelines. In fact this is not
problematic: it simply means that each such EDA must provide its
own custom Breeder which takes an existing Population, revises
the EDA’s internal model, and then resamples a new Population
from this model. Everything else can use standard EC]J facilities,
including massively distributed evaluation.

An EDA does need to maintain model parameters: these are
stored in a custom Species object. Indeed, as Species objects can
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produce new random individuals, they hold nearly the entirety of
an EDA’s resampling procedure: in each case, the EDA’s Breeder is
largely syntactic sugar.

5.3 Ant Colony Optimization

All of the metaheuristics historically supported by ECJ have relied
on operations that work with complete candidate solutions: whole
solutions are mutated, mated, or sampled from a distribution, and
only whole solutions are evaluated for their quality. The beauty
of this class of metaheuristics is that they are easy to decouple
from the specifics of a particular application domain. Code for the
evolutionary population model, performance metrics, selection and
variation, architectures for parallelization, etc., can be reused across
myriad applications and recombined in new ways with little to no
modification. The majority of the time, the only custom code a user
needs to write for a new application is the fitness function.

Algorithms based on constructive heuristics, by contrast, pose
interesting design challenges for a general-purpose framework.
Constructive methods work with partial solutions by adding to
them component-by-component, and they often rely on lower-level,
problem-specific heuristic information and neighborhood structure
at every step of this process. This makes it difficult to describe
the details of an Ant Colony Optimization (ACO) algorithm, for
example, independently of the structure of the specific problem it
is being applied to. Of the many dozens of ACO implementations
publicly accessible on GitHub at the time of writing, in fact, the
vast majority are hard-coded to operate on Traveling Salesmen
Problems, and most of the remainder are hard-coded for some other
domain (such as a particular data mining task, etc.). One exception
is the Java Ant Colony Optimization Framework (JACOF),> which
reuses code across algorithms that solve TSP, knapsack, quadratic
assignment, and next release problem instances. JACOF turns out
to be the exception that proves the rule, however: it still makes the
strong assumption that every problem’s structure can be modeled
as a graph, and that solutions are constructed by traversing (and
laying down pheromones along) edges that connect pairs of nodes
on a graph structure. This assumption, which comes out of ACO’s
strong tradition as a TSP solver, is not well-suited to say, knapsack
tasks — where it is individual components, rather than pairwise links
between them, that have heuristic value.

Our objective in writing an ACO framework within ECJ is to
provide a framework that is as generally useful as possible, which
performs well, and which plays well with ECJ’s existing paralleliza-
tion and distribution facilities. To achieve this within a system that
was originally built for population-based methods, we follow a
high-level design that resembles an EDA architecture: we again
create a custom Ant Breeder implementation that takes a Population
at each step, updates its internal model (now a pheromone table),
and then resamples a new Population using the updated pheromone
concentrations. The basic similarity between our ACO and EDA im-
plementations is no accident — it has long been observed that these
two algorithm families have fundamental structural commonalities,
wherein ACO’s table of pheromones act much like the parameters
of a probability distribution [9, p. 57]. In both cases, individuals in
the Population are made up of whole solutions (i.e. the solutions

Shttps:/github.com/thiagodnf/jacof
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that are constructed by ACO’s “ants”). This Population object is
compatible with ECJ’s evaluation system, which permits fitness
evaluation across multiple cores or a distributed network via a
master-slave model.

A graphical overview of our experimental ACO architecture is
shown in Figure 1. These components are ultimately governed by
the aforementioned Ant Breeder object. Most members of the ACO
algorithm family can be defined by implementing concrete ver-
sions of the Update Rule and Construction Rule classes. EC]J offers
an Ant System Update Rule implementation, for example, that im-
plements the well-known ANT-CYCLE, ANT-DENSITY, and ANT-
QUANTITY pheromone deposition strategies.

The intent is that users will select the algorithm components
that they desire and then, at a minimum, define problem-specific at-
tributes of their application in a Constructive Problem Form object. A
Constructive Problem Form defines a fitness function for the appli-
cation (as usual), but it also defines additional kinds of information
that are required by constructive heuristics: a pool of Component
objects that solutions may be built from, a neighborhood function
and further constraints that define the set of Components that are
permissible to add to any given partial solution, and a predicate
function that indicates whether a solution is “complete” (as op-
posed to partial). Depending on the application, Components may
be complex objects with many attributes — but at a minimum, every
component has a cost( ) attribute which conveys its heuristic value.

On a knapsack problem, for example, the Components in play
are items that can be added to the knapsack — defined by a size
attribute and a cost( ) attribute. A knapsack Problem implementation
would define a fitness function to maximize the total values of
the items in a solution, a neighborhood function that allows any
item to be added to the sack at any time so long as it doesn’t
cause the solution to exceed to the total sack capacity, and an
isCompleteSolution( ) predicate that returns true when no more
items can fit in the sack. Most applications will proceed along
similar lines, but it will sometimes be necessary to also augment the
representation of whole or partial solutions with some additional
auxiliary information. Implementing a TSP problem, for example,
may require extending the Constructive Individual representation to
include an attribute that remembers, say, the most recently visited
city in a partial solution.

All this problem-specific information is exploited by a Construc-
tion Rule, which is responsible for executing “ants” — i.e. construct-
ing whole solutions out of basic Components. ECJ offers a Simple
Construction Rule that should be suitable for most purposes, which
applies a Component Selector strategy to incrementally build solu-
tions. For example, ECJ’s Proportionate Component Selector imple-
ments the classic probabilistic transition function used by the Ant
System algorithm:

a, b
TiiMij P
—2L A ifjeN;
pij = ZueNi T,-‘fﬂfu / l (1)
0 ifj¢N;

This textbook-style equation brings together problem-specific cost(
) and neighborhood information from the Constructive Problem
Form (n;j and Nj, respectively) with data from the Pheromone
Table (7;) to define the probability that a Component represented
by the ordered pair (i, j) is added to a solution.

1394

Eric O. Scott and Sean Luke

Species . . Subpopulation - . Individual Breeder
n
Ant . Constructive Ant
Species | species Individual &breeds Breeder
[3 A
makes 1
1
n
Update Pheromone __| Construction
Rule updates »| Table |<&— uses Rule Component
T
uses n
v 1
Component Constructive
Selector Problem Form

Figure 1: UML class diagram of the ECJ’s basic ACO objects.
Standard EC]J objects are in dashed boxes.

Altogether, while constructive heuristics do take considerably
more problem-specific investment to get off the ground, this frame-
work seems to do a good job of decomposing domain-specific im-
plementations from more reusable, meta-level components. We
reached out to a number of researchers who have published papers
on ACO algorithms within the past three years, and our informal
survey suggests that the classic three methods — Ant System, Ant
Colony System, and Max-Min Ant System [7, 8, 30] — are still among
the most important and current methodologies in the field. To date
we have implemented Ant System, and we aim to implement the
other two soon, tweaking the framework’s design as necessary to
maximize the flexibility of the architecture.

5.4 NEAT

NeuroEvolution of Augmenting Topologies, or NEAT, is a popular
method for developing basic graph structures for neural networks
and other applications [29]. ECJ has a basic implementation of
NEAT, but not its sibling, HyperNEAT.

The basic NEAT genotype consists of two variable-length vectors
of “genes”: node genes and connection genes (which define edges
between nodes) respectively. During fitness assessment, a graph
structure is assembled from the instructions encoded in these genes
and is then evaluated.

Figure 2 shows the basic structure of ECJ’s NEAT classes. EC] im-
plements NEAT individuals by borrowing from ECJ’s vector package,
which contains Individuals and Species for a variety of traditional
vector genotypes, such as vectors of integers, boolean, floats, and so
on. One particular Individual, Gene Vector Individual, holds a vector
of arbitrary objects which subclass from the abstract class Gene.
This Individual is used when more per-gene flexibility is needed
than simple numbers. NEAT subclasses Gene Vector Individual to
form NEATIndividual, and uses the superclass’s original vector to
store connection genes (as NEATGene), then adds an additional
vector to store node genes (as NEATNode). An appropriate Species,
NEATSpecies, handles many of the sundry NEAT parameters re-
quired by the Individuals.

NEAT explicitly requires a particular form of speciation to en-
courage diversity in its individuals. In NEAT this is handled using
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a special object called (not surprisingly) a “species.” This is called
a NEATSubspecies in ECJ, it already uses the term “species” in a
different way. NEAT also guarantees diversity among its connec-
tion genes by assigning each an innovation number. ECJ] combines
this number, plus certain other factors of the connection used to
determine similarity, in an object called a NEATInnovation.

NEAT comes with an elaborate breeding procedure which is
difficult to orthogonalize with classic breeding methods. At present,
EC]J provides a NEATBreeder, which does some minor bookkeeping,
then generates individuals via NEATSpecies (which does the heavy
lifting). We hope to work to eliminate the need for NEATBreeder
in the future, but it may prove difficult.

5.5 Lexicase Selection

ECJ now offers a Lexicase selection operator for use in problems
where an Individual’s fitness can be decomposed into multiple
components [14]. In the past, ECJ had used a variety of ad-hoc
techniques to assemble a fitness value out of multiple trials. This
need has surfaced in Meta-EAs, coevolution, and certain GP test
problems, for example. To develop Lexicase we have developed a
trials attribute as part of the Fitness object; trials can themselves
have subtrials, and so on. We are now working to convert our
former ad-hoc approaches to all use trials instead.

5.6

We have begun work on adding additional multi-objective optimiza-
tion algorithms to ECJ. To this end, we have added NSGA-III to
the existing NSGA-II and SPEA2. We plan to add more algorithms
still. ECJ’s multi-objective optimization facility also has its own
Statistics subclass: we have augmented this class to compute and
export multi-objective hypervolume statistics.

NSGA-III does not differ in major ways from NSGA-II: it largely
sports an improved sparsity facility. However, it is worth mention-
ing that the process of making it consistent with NSGA-II, and
making both of them more consistent with ECJ’s elitism facility,
required a tedious refactoring process which introduced a number
of bugs identified by our user community.

Multiobjective Optimization

5.7 Dependency Management

While much of Al research has seen a trend toward making experi-
ments more reproducible in recent years, some authors continue
to float the idea that we suffer from a general “reproducibility
crisis” [15, 16]. Even outside the scientific community, the impor-
tance of reproducibility is increasingly becoming recognized as an
essential component of effective software deployment. Ensuring
that software is run with the specific stack of dependencies it was
constructed for makes up a big part of that goal [10].

ECJ has historically instructed users to manually install a handful
of dependencies into their Java CLASSPATH environment variable
before compiling the software with GNU Make — not an unusual
request for Java veterans, but a somewhat tedious task for new
students. We now offer Apache Maven as a build tool in addition
to GNU Make in an effort to make this process more streamlined.
Maven automatically downloads project dependencies from estab-
lished repositories — namely the Maven Central Repository — and
ensures that the correct versions of dependencies are configured for
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Figure 2: UML class diagram of ECJ’s basic NEAT objects.
Standard EC]J objects are in dashed boxes.

your individual application. Much like the “virtual environments”
that are popular among Python developers, Maven helps bolster
one aspect of reproducibility by ensuring that correct libraries are
available at compile time, and that we don’t fall into versioning
conflicts with other application stacks installed on the same system.
Dependency management of this kind is not a complete solution to
reproducibility by itself (as we will discuss below), and it introduces
a strong reliance on access to external package repositories over
the Internet, but it offers one step in the right direction.

5.8 Test Harness

EC]J was originally developed with little to no automated testing
facility. This oversight grew into a glaring weakness as automated
testing became established as an industry norm in the early 2000s.
Testing methodology is often overlooked by the scientific commu-
nity as a whole, with the result that code may easily be "riddled
with tiny errors that do not cause the program to break down, but
may drastically change the scientific results that it spits out" [24].
While ECJ has been fortunate enough to exhibit few major bugs
over the years, due diligence is called for, and a test harness will
be necessary for ECJ to expand its feature set, integrate third-party
code contributions, and to continue to be of value to the community.
Adding a test harness to a large, pre-existing software project can be
challenging, and our efforts here are ongoing. We have approached
this from several directions, but two in particular: unit testing and
a system test approach.

5.8.1 Unit Tests. First, we are writing unit tests for new func-
tionality, and also when we modify old code or otherwise revisit
it to check for bugs. This is our first and arguably best line of de-
fense against faults in metaheuristics software. It seems that unit
testing occupies an especially pivotal position, moreover, in con-
texts where complex numerical calculations are the norm. Many of
the errors that most often creep into scientific work involve silent
mistakes — an EA with a bug won’t always crash outright or give
any obvious indication to the user that something is amiss. Such
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mistakes in other fields have occasionally led to high-profile work
being retracted [26]. Moreover, because evolutionary algorithms
are nonlinear dynamical systems, it is not typically possible to char-
acterize and verify their overall expected behavior at a high level
(i.e. at the level of system tests). The only way to ensure that a com-
plex algorithm is working correctly is often to break it down into
its subroutines (data structures, selection operators, breeding loops,
etc.) and to verify these individually on example data — which is to
say, to write a unit test suite.

The ubiquity of stochastic behavior in EA components, however,
often poses an impediment to unit testing. Compared to other soft-
ware domains (and even other sub-fields of artificial intelligence),
evolutionary algorithms present an unusually high frequency of
methods that make use of pseudo-random numbers to generate
complex output distributions. These stochastic procedures then
tend to be chained together into even more complex pipelines.
While a great deal of research has investigated stochastic methods
for generating test cases for software systems [12, 28, 31, 33], as
well as how to handle so-called “flaky tests” which sometimes fail
probabilistically [23], the problem of testing stochastic software
proper has received relatively little attention from the software
engineering research community.

We have adopted the straightforward approach of using statis-
tical distribution tests (such as Pearson’s y? test) in our unit tests
where necessary. For example, to test our implementation of Lex-
icase selection [14], we run the selection operator 1000 times on
a test population, count the number of times that each individual
was selected, and then apply a y? test to determine whether the
distribution of counts deviates significantly from the theoretically
expected distribution.

Statistical tests of this kind are costly (the unit under test must be
executed hundreds of times to ensure sufficient statistical power),
and they are flaky: type I and type II errors may occur. To minimize
false alarms, we have opted to use relatively low p values as our
threshold for detecting test failures (ex. p > 0.01 or even lower).
This has served us well to date, but as the number of these flaky
tests grows, the chance of at least one test exhibiting a type I error
(i.e. a false test failure) increases rapidly. EA projects with high test
coverage and many stochastic units of code may benefit from using
more advanced techniques for detecting true test failures [4].

To date, our unit testing efforts have reached only about 10%
statement coverage (9% branch coverage) — see Figure 3. While
statement coverage is far from a perfect measure of test suite qual-
ity [1], it is a valuable rough indicator, and we hope to considerably
increase our coverage ratio as this work continues.

5.8.2  System Tests. While many of the most pernicious errors
in scientific software fail silently and are difficult to identify, plenty
of bugs do cause systems to crash, and these easily sneak into un-
exercised code. While our unit test coverage is still getting off the
ground, then, we've turned to system-level tests as a quick and
effective way to help ensure that changes that we introduce into
one part of ECJ don’t inadvertently cause some applications to
completely fail. Our system test harness is very simple: we take
every complete parameter file from ECJ’s 39 built-in example ap-
plications and execute it for exactly two generations. The test is
successful if and only if this two-generation experiment completes
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Figure 3: ECJ’s test coverage has improved incrementally
over the past two years.

successfully (without crashing or throwing an exception). These
simple system tests are surprisingly effective at helping catch major
bugs that might otherwise go unnoticed for months until a user
observes that a particular application is no longer functioning. The
examples alone exercise approximately 40% of the code base, giving
us surprisingly comprehensive coverage for minimal test construc-
tion effort. This knowledge will incentivize us to construct new
examples going forward to improve our system test coverage.

5.9 Parameter Macro Expansion

EC]J is infamous for its parameter files. These files free the experi-
menter from having to define (and compile) experiments as Java
code, which in turn allows a high degree of flexibility in scripting
EC]J experiments. However this results in a lot of parameters. ECJ’s
parameters are also organized in a namespace hierarchy of the form
foo.bar.baz... = ..., resulting in tedious parameter declarations like
pop.subpop.0.species.construction-rule.component-selector.alpha = 1.0.
ECJ has a number of basic facilities designed to reduce the tedium
and wrist strain of repetitive, long parameter strings. However, we
have recently introduced a new parameter macro expansion facility
to dramatically reduce this work.

Specifically, a experimenter can introduce an alias macro pa-
rameter, such as pop.subpop.0.species.alias = foo which permits her
to rewrite the above example as foo.construction-rule.component-
selector.alpha; and similarly any other related parameters. A re-
lated macro parameter enables wildcards: pop.subpop.n.default = bar
would permit bar.species.construction-rule.component-selector.alpha
regardless of the the value of n. These expansion rules are applied
recursively, allowing for dramatic reductions.

Apart from this macro facility, we considered moving to a JSON
file format to offer a more user-friendly representation of hierarchi-
cal parameters, and developed a prototype of the same. We found,
however, that JSON representations of deep parameter hierarchies
tend to be difficult to read and considerably less compact than ECJ’s
existing parameter language. This and other complications — such
as JSON’s lack of support for comments — persuaded us against
making JSON configurations a standard part of ECJ’s interface.
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ECJ’s parameter database facility is independent of the rest of the
code, and can (and has) been used for many unrelated open-source
projects, such as MASON [21]: we hope these changes will be of
broad benefit.

6 DISCUSSION AND FUTURE WORK

There are certain portions of the proposed work which have not yet
been completed, and are worth discussion here, along with other
future directions in which we hope to move the framework.

6.1 Hybrid Metaheuristics

Hybrid metaheuristics, sometimes called memetic algorithms, en-
compass a broad array of approaches to hybridization of different
optimization strategies. One classic approach is to perform local
improvement during fitness evaluation via hill-climbing, gradient
ascent, etc. Another approach is to switch between different meth-
ods depending on generation: for example, the Learnable Evolution
Model (LEM) switches back and forth between a classic genetic algo-
rithm and a technique more resembling an estimation of distribution
algorithm [25]. Still another approach involves a meta-optimizer of
some sort, such as a meta-EA, or iterated local search (ILS) [18].

There are still more approaches beyond this, and their combina-
tions are many. ECJ cannot directly support all of these techniques,
but we hope to provide hooks for many of them, including the three
discussed above. To effect many of these techniques we can take
advantage of ECJ’s self-contained nature to provide EAs within
EAs. We note that meta-EAs are already well-supported in ECJ, and
have been stress-tested in an experiment with over 14.2 million
separate evolutionary runs [22]. However, running ECJ runs within
ECJ runs is an inefficient way to do ILS, LEM, or local improve-
ment: these will require dedicated methods and possibly significant
restructuring of ECJ’s core architecture.

6.2 User Environment

We also plan on improving ECJ’s user support. ECJ has historically
been a command-line tool with a limited GUL Our immediate goal is
to improve this in four ways. First we will provide integration with
Eclipse in the form of wizards to walk the experimenter through
the task of setting up common metaheuristics methods and their
related parameters, ultimately resulting in a set of parameter files
and a skeleton for a Problem class to fill out. Second, we intend to
significantly revise the GUI to provide a fuller set of automatically-
generated publication-quality charts and graphs, and to improve the
GUT’s job-handling facilities to make large runs easier to perform.

Third, we will add facilities to dump statistics to files that can
be easily parsed by or run in R, and add various statistical analyses
special to metaheuristics and machine learning, including coevolu-
tionary relative-quality measures and generalization methods (such
as K-fold validation). We also may directly integrate well-vetted
Java implementations of common statistical tests (T-tests, Bonfer-
roni adjustments, etc.), but we are hesitant to do this given the
high-quality statistics facilities available elsewhere.

Fourth, and perhaps most importantly, we intend to add more
benchmark applications. ECJ already has a large collection of bench-
marks and test problems, but it could use more for two reasons.
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First, many benchmarks have been established since our last sig-
nificant effort in this direction, including a great many problems
for floating-point vector representations. One obvious source here
is the BBOB Benchmark Workshop [13], which we have borrowed
from in the past. Second, we have introduced techniques (ACO,
NEAT) which come with their own classic benchmarks and demos.

6.3 Containerization

ECJ’s use of Maven ensures that the correct dependencies are on
hand for the software at compile time (provided that access to the
Maven Central Repository remains reliable). But other problems
with the deployment environment can still arise over time: Oracle’s
recent release of JDK 11 temporarily broke ECJ’s build, for exam-
ple, because a version of the code coverage measurement library
that we use for our test suites was only compatible with Java ver-
sions 10 and lower. The software development industry is rapidly
moving toward containerization as a means of mitigating these
problems and improving reproducibility. As industrial norms settle
around deploying production applications inside Docker containers
managed by cluster services like RedHat OpenShift, the scientific
community (and thus ECJ and/or its users) should also consider
using containerization to guarantee reproducibility of algorithmic
experiments [3].

6.4 Cluster Computing

ECJ’s distributed evaluation facilities are scalable and well-used,
but require manual effort to set up master and slave instances on
a variety of machines. Most users today access high-performance
computing resources either through cloud services like Amazon
Web Services, or through batch-cluster resources that are available
through academic networks. At a minimum, we should like to
provide tutorials or example scripts to help users deploy ECJ in
these environments. If larger modification to ECJ’s features will
prove useful here, we will explore that too.

6.5 Language and Interface

Another significant trend is the widespread adoption of executable
notebooks (such as Jupyter Notebook and R Markdown) for both
exploratory experimentation and the presentation of polished sci-
entific analysis. These environments combine a convenient REPL
interface for interpreted languages with commentary, LaTeX equa-
tions, and inline plots, collecting what used to be several different
steps of the experimental process into a single unified interface.
While nothing prevents ECJ from being launched externally as
part of a custom notebook workflow, its reliance on standalone
parameter files and compiled executables — rather than interpreted,
programmatic instantiation of algorithms — makes it slightly more
cumbersome to incorporate into a Jupyter session. One option for
future work might be to write a Python wrapper for launching and
parameterizing EC]J sessions and retrieving their output — making
it easier for students to get up and running with a complete ECJ]
experiment-analysis cycle. This approach would fit comfortably in
the tradition of using Python as language for “glue code" that holds
a heterogeneous project together.
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7 CONCLUSION

We have offered a justification for ECJ as a common toolkit, have
placed it in the context of other current systems, and have provided
a brief overview of its architecture. We have also offered an update
on the features added during the NSF grant period so far, and some
of the general design challenges that our attempts to create orthog-
onal frameworks for metaheuristics work have raised. We welcome
collaboration and user feedback going forward with this effort to
create a unifying platform for quality metaheuristics research work.
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