
An Analysis of Dimensionality Reduction Techniques for
Visualizing Evolution

Andrea De Lorenzo
DIA - Università di Trieste
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ABSTRACT
We consider the problem of visualizing the population dynamics
along an evolutionary run using a dimensionality reduction tech-
nique for mapping individuals from the original search space to
a 2-D space. We quantitatively assess four of these techniques in
terms of their ability to preserve useful information about (a) popu-
lation movements and (b) exploration-exploitation trade-o�. We
propose two compact visualizations aimed at highlighting these
two aspects of population dynamics and evaluate them qualitatively.
�e results are very promising as the proposed framework is indeed
able to represent crucial properties of population dynamics in a
way that is both highly informative and simple to understand.
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1 INTRODUCTION AND RELATEDWORKS
Visualizing the positions in the search space of individuals which
are being evolved may be of great help to Evolutionary Compu-
tation (EC) practitioners and researchers. Di�erent tasks related
to the analysis and debugging of an evolutionary run may be per-
formed more easily and intuitively if the reasoning is supported by
a visualization: e.g., verifying if there is a diversity issue, analyzing
the exploration-exploitation trade-o�, checking if the population
gets trapped in (multiple) local optima. Indeed, several visualiza-
tions with these aims have been proposed or used in the literature
[1–4, 6, 7, 9, 12, 13, 15, 16, 19, 21, 25, 31], but they are mostly spe-
ci�c to single Evolutionary Algorithms (EAs) or limited to speci�c
representations (with the exception of [6]).

One way to make a visualization method or tool applicable to
a larger class of EAs is to �rst employ a dimensionality reduction
technique to map individuals from high-dimensional search spaces
(be it continuous or discrete) to a Cartesian plane and then visual-
ize them in that plane. In the past, several methods have already
used dimensionality reduction techniques for visualization pur-
poses. For example, [16] employs simple projections to selected
coordinates of the search space producing separate sca�er plots and
entire sca�er plot matrices. Other approaches have utilized more
sophisticated mappings on continuous search spaces, such as Prin-
cipal Component Analysis (PCA) [4], Sammon mapping [11, 14, 24],
Self-Organizing Maps (SOMs) [1], and, most recently, t-Distributed
Stochastic Neighbor Embedding (t-SNE) [22]. For discrete spaces,
in [27] the projection to a Cartesian plane is done by means of
quadcodes, while [8] uses Sammon mapping on binary strings.

In this work, we propose a general framework which may, in
principle, work with any dimensionality reduction technique and
support di�erent visualizations. We experimentally compare four of
these techniques and di�erent design options for the visualization.
We evaluate the resulting visualization variants in terms of their
ability to highlight two speci�c aspects of the population dynamics:
(a) where and how the population moves and (b) if it is doing
exploration or exploitation, two antagonistic cornerstones of search
based optimization [5].

We applied each variant to a discrete optimization problem and
a continuous optimization problem, each tunable in the number of
optima and dimensionality of the search space. We quantitatively
assessed the dimensionality reduction techniques in terms of the
two aspects mentioned above and we qualitatively evaluated the
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resulting plots along the same axes. �e results are very promising,
in particular when using Multidimensional Scaling (MDS) [30] for
dimensionality reduction. �e proposed framework is indeed able
to represent crucial properties of population dynamics in a way
that is both highly informative and simple to understand.

2 OVERVIEW OF OUR METHODOLOGY
Let S be the search space where individuals are de�ned. A dimen-
sionality reduction functionm : Sh → (R ×R)h takes a sequence of
h points in S and outputs a sequence of h points in R × R. Many
functions of this form may be de�ned. �ose considered in this
work will be presented in the next section, along with their proper-
ties. An important characteristic shared by all these functions is
that their de�nition depends on the full set of points to be mapped,
i.e., given a point s ∈ S , its mapping in R × R depends on the entire
set of points in S that have to be mapped.

Our methodology consists of two phases. In the �rst phase, we
consider the full evolutionary run and map each individual that has
existed during the evolution in the 2-D space (i.e., R × R). In the
second phase, we visualize the collected information in a compact
(and possibly interactive) form.

In detail, the �rst phase is as follows. (i) We execute the full
evolutionary run and keep track of all the individuals that have
existed along with their corresponding �tness. (ii) Let Pi be the
sequence of individuals (i.e., the population) at the i-th generation
sorted based on some total order, usually the �tness of its individu-
als and let i ∈ {1, . . . ,ngen}, ngen being the number of generations
of the evolutionary run. We build P as the sequence of individ-
uals obtained by concatenating all the sequences of individuals
P1, . . . , Pngen , sorted by increasing generation index. (iii) We map
P to a sequence Y = m(P) ∈ (R × R) |P | of 2-D points applying
the dimensionality reduction techniquem. (iv) We split Y in ngen
sequences of 2-D points Y1, . . . ,Yngen such that ∀i, |Yi | = |Pi |.

In the visualization phase, we build an interactive visualization
of the evolution using the data in Y1, . . . ,Yngen , the �tness of in-
dividuals, and, possibly, other ancillary information as, e.g., the
ancestry. In each i-th frame corresponding to the i-th generation,
points from Yi are plo�ed on a Cartesian plane. �e bounds of the
Cartesian plane are the same for all the frames and are chosen by
considering all the points in Y . Color is used to denote the �tness of
the individuals. Before mapping them to a color, the �tness values
are normalized according to the best and worst �tness values of
all individuals in P . In addition to the current generation i , we can
choose to show on the same i-th frame also some information on
the previous generations. For example, we can visualize (a) points
fromYi−1 (using a di�erent color/size/transparency to discern them
from the points from Yi ), (b) ancestry between the individuals from
the previous generation and the current generation by connecting
“parent points” fromYi−1 to the “o�spring points” fromYi , (c) points
from Yj for all j < i (again using a di�erent color/size/transparency
to discern them from the points from Yi ), or (d) the mapped tra-
jectory of the best individual in the population for generations
j, 1 ≤ j ≤ i .

Consecutive frames can be viewed as a series of 2-D visualiza-
tions for di�erent generations or can be stacked vertically to form a
single 3-D visualization with the �rst generation on the bo�om. In

the la�er case, points from previous generations are placed to their
corresponding frames and there is no need to denote them di�er-
ently to the ones from the i-th generation. By changing the current
generation i , the user can simultaneously explore the i-th frame of
the 2-D visualization as well as all stacked frames j, 1 ≤ j ≤ i , in
the 3-D visualization.

2.1 Dimensionality reduction
�e rationale of dimensional reduction is to preserve the structures
of a high-dimensional space in a lower dimensional space. Di�erent
techniques may di�er in the kind of structures they a�empt to
preserve [17]. In these terms, dimensional reduction techniques
can be roughly divided into two categories: (a) those that focus on
preserving the structure concerning distant points and (b) those
that seek to preserve the structure of nearby points. In our se�ings,
we are in principle interested in both. On the one hand, we want
to highlight distances between di�erent (groups of) individuals
which explore di�erent regions of the search space. On the other
hand, we are also interested in showing “slow dri�s” of (groups of)
individuals which converge towards an optimum.

We considered 4 techniques, evenly divided in the two categories:
PCA [10] and MDS [30] in the former, t-Distributed t-SNE [17] and
Uniform Manifold Approximation and Projection (UMAP) [18] in
the la�er. All but PCA require that a dissimilarity function d :
S × S → R+ is de�ned in the search space, according to which the
larger d(s1, s2), the less similar the two individuals s1 and s2. On
the other hand, PCA is applicable only if the original search space
is numerical (i.e., if S = Rl ).

Other dimensionality techniques other than the four here consid-
ered could have been used (e.g., Sammon mapping [26], Isomap [29],
low-dimensional Euclidean embedding (LDEE) [22])—we leave this
investigation to future work.

3 TEST CASES
We wanted to verify the applicability of the methodology described
in Section 2 to di�erent representations, EAs, and problems. To
this end, we considered two synthetic optimization problems with
tunable representation and a simple tunable EA. �e representation
can be tuned in terms of whether the optimization problem is
discrete or continuous and in terms of the dimensionality of the
search space. �e EA can be tuned in terms of the exploration-
exploitation trade-o�, by means of a diversity promotion scheme.
�e problems can be tuned also in the number of optima.

3.1 Bit string optimization
In this problem, an individual x is a bit string of l bits, i.e., x ∈ {0, 1}l .
�e �tness of an individual is de�ned as the distance d from the
closest optimum among a prede�ned set X? = {x?1 , . . . , x

?
n } of

n optima, where x?i = (x
?
i,1, . . . ,x

?
i,l ) and x?i, j = 1, if l i−1

n < j ≤

l in , and x?i, j = 0, otherwise. Hence, the �tness f (x) ∈ R+ of
an individual x is f (x) = minx?∈X? d(x ,x?) and the goal is to
minimize its value.

�e parameters of this problem are the individual size l , the
number n of optima, and the distance function d . It can be seen
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that, when n = 1 and d is the Hamming distance, this problem
essentially corresponds to the One Max problem.

3.2 Continuous optimization
�is problem resembles the one of Section 3.1, but the search space
is continuous. An individual x is a numerical vector of size l , i.e.,
x ∈ Rl . �e �tness of an individual is de�ned as the distance d from
the closest optimum among a prede�ned set X? = {x?1 , . . . , x

?
n }

of n optima. �e optima of X? lie on a l-dimensional hypersphere
with radius r = 1 and centered in 0, i.e, for x?i = (x

?
i,1, . . . ,x

?
i,l ):

x?i, j =


cos

(
i 2π
n

) (
sin

(
i 2π
n

)) j−1
if j , l(

sin
(
i 2π
n

)) j−1
otherwise

(1)

�e �tness f (x) ∈ R+ of an individual x is f (x) = minx?∈X? d(x ,x?)
and the goal is to minimize its value.

�e parameters of this problem are the individual size l , the
number n of optima, and the distance function d .

3.3 Evolutionary Algorithm
We considered a simple EA with a non-overlapping generational
model which evolves a �xed-size population of npop individuals
for ngen generations. Selection for reproduction is done using a
tournament of size ntour.

�e population initialization procedure and the genetic opera-
tors are di�erent for bit string and continuous optimization. �e
population initialization procedure consists, in both cases, in ran-
domly generating npop individuals: in the bit string optimization
problem, each gene xi, j of an individual xi is randomly set to 0 or
1 with equal probability; in the continuous optimization problem,
each gene xi, j is set by randomly sampling the interval [−1, 1] with
uniform probability (i.e., xi, j ∼ U (−1, 1)).

Concerning the genetic operators, we used the bit �ip mutation
(with probability equal to 1

l ) and the uniform crossover for the bit
string optimization problem and the Gaussian mutation and line
recombination [23] for the continuous optimization problem. �e
Gaussian mutation consists in adding a random noise sampled from
N (0,σ ) to each element of the individual; the line recombination
corresponds in taking a random point on the (extended) segment
connecting the two parents, i.e., crossover(x1, x2) = x1+λ(x2−x1),
where λ ∼ U (−pcross, 1+pcross). We used σ = 0.01 andpcross = 0.25.

3.3.1 Diversity promotion. In order to be�er investigate to which
degree the visualization tool captures the exploration-exploitation
trade-o� in an evolutionary run, we augmented the EA of Sec-
tion 3.3 with a diversity promotion scheme. We adopted a �tness
sharing scheme [28] in which the �tness of an individual is rescaled
based on how densely populated is the region of the search space
in which the individual is placed.

More precisely, the rescaled �tness f ′(x) of an individual x is
de�ned as:

f ′(x) =
f (x)

1 +
∑
x′∈K d(x, x′)

(2)

where K ⊂ Pi is the set of the nNN individuals (of the same i-th
generation to which x belongs) closest to x, i.e., its nNN nearest
neighbors. �e larger the distance from the closest individuals, the
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Figure 1: Fitness (mean across the 10 repetitions for each
problem) of the best individual during the evolution for the
two problems with di�erent values of l and n = 1, nNN = 0:
bit string optimization on le� and continuous optimization
on right.

larger the value of the denominator, and hence the lower f ′(x)—
recall that we are considering minimization problems.

It can be seen that, when nNN = 0, no diversity promotion
actually occurs, since K is empty and the �tness is not rescaled.

4 EXPERIMENTAL EVALUATION
We aimed at answering the following research questions concerning
the proposed methodology for visualizing an evolution:

RQ1 Which dimensionality reduction technique is the best in
capturing the movements of the population in the search
space?

RQ2 Which dimensionality reduction technique is the best in
capturing the exploration-exploitation trade-o�?

RQ3 What information can be meaningfully plo�ed? How?
To this end, we executed several evolutionary runs by varying

some of the parameters of the problems and the EA. Namely, con-
cerning the problems, we experimented with l ∈ {16, 20, 24, 32}
for the bit string optimization and with l ∈ {2, 5, 10, 15} for the
continuous optimization and varied n in {1, 2, 3, 4}. Concerning
the EA, we varied nNN in {0, 1, 2, 3, 4} and set npop = 50, ngen = 50,
and ntour = 3. As for the distances, we used the relative Hamming
distance (i.e., the Hamming distance divided by length l of the bit
string) for the bit string optimization problem and the Euclidean
distance for the continuous optimization problem. In both cases,
we used the same distance function for computing the �tness func-
tion, in the diversity promotion scheme, and for the dimensionality
reduction, when applicable.

To provide an overview of the considered problems, Figure 1
shows the �tness of the best individual (mean across 10 independent
evolutionary runs) during the evolution for di�erent values of l
and with n = 1, nNN = 0 (i.e., one single optimum and no diversity
promotion) for the two cases: bit string (le�) and continuous (right)
optimization.

Figure 1 highlights that the size of the individual l has an impact
on the speed of convergence in both cases: the larger the individual,
the slower the convergence. Moreover, the �gure also suggests that
in the bit string optimization the convergence is less smooth than
in the continuous optimization problem, i.e., there are noticeable,
yet small, variations in the �tness of the best individual during the
entire evolution. We recall that our EA employs a non-overlapping
generational model: monotony in the trend of the �tness of the
best individual is hence not guaranteed.
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Figure 2: Scatter plot of the inter-generation best distances
in the search space (δx) and the 2-D space (δy) for two runs
on the continuous opt. problem: n = 1, l = 10, nNN = 1 with
MDS (le�) and n = 1, l = 5, nNN = 1 with t-SNE (right).

4.1 RQ1: Population movements
Ideally, by observing a plot of an evolution, it should be possible
to see precisely where, in the search space, are the individuals
at each generation during the evolution. In practice, some loss
of that information occurs while performing the dimensionality
reduction which, however, allows to obtain a compact and practical
visualization. Measuring exactly how much of that information is
lost and to which degree the loss a�ects the possibility of observing
population movements is di�cult and can vastly vary for di�erent
consumers of the visualization.

Rather than a�empting to quantify the loss of information or
computing the trustworthiness of a dimensionality reduction tech-
nique (see [32]), we veri�ed if the movements in the search space
along the evolution of one signi�cant individual (the one with the
best �tness) are well described in the 2-D space. To this end, we pro-
ceeded as follows. (i) We considered the sequence x∗,1, . . . , x∗,ngen

of ngen best individuals (i.e., the best individual for each generation)
and the corresponding sequence y∗,1, . . . , y∗,ngen of 2-D points—the
two sequences corresponding to the trajectories of the best individ-
ual in the search space and in the 2-D space. (ii) We obtained the
inter-generation best distances, i.e., in each of the two spaces, the
sequences ∆x = (δx1 , . . . ,δ

x
ngen−1) and ∆y = (δ

y
1 , . . . ,δ

y
ngen−1) of the

distance between the best individual at the i-th generation and the
best individual at the (i +1)-th generation, with δxi = d(x

∗,i+1, x∗,i )
and δ

y
i = ‖y

∗,i+1 − y∗,i ‖, where d is the distance function in the
search space S . (iii) We measured the Pearson’s correlation between
∆x and ∆y: the closer correlation to one, the stronger the linear
dependence of the inter-generation best distance in the 2-D space
on that in the search space.

We repeated the procedure above for all the runs, problems,
values of nNN, and dimensionality reduction techniques.

Figure 2 shows, in the form of sca�er plots, the collected inter-
generation best distances for two di�erent evolutionary runs with
the continuous optimization problem: n = 1, l = 10, nNN = 1 with
MDS (le�) and n = 1, l = 5, nNN = 1 with t-SNE (right). Values are
plo�ed using log scales.

It can be seen that in the �rst case (with MDS) there is a good cor-
relation, the actual value being 0.96, between the inter-generation
best distance in the search space and in the 2-D space: the trajec-
tory of the best individual during the evolution is hence likely a

good approximation of the actual trajectory in the search space.
Di�erently, for the run with t-SNE, the correlation is lower (0.43).

Table 1 shows the value of the Pearson’s correlation of inter-
generation best distances for the problems with n = 1 and nNN = 0,
i.e., one single optimum and no diversity promotion. For brevity,
we omit the other results: the qualitative �ndings are similar.

It can be seen from the table that MDS (and PCA, for the contin-
uous problems) deliver much be�er results than t-SNE and UMAP,
the di�erence being consistent over all the combinations. Moreover,
by observing the standard deviation of the correlation across the
independent runs for each combination, it can be seen that the
variability of this index is lower for MDS and PCA than for t-SNE
and UMAP.

4.2 RQ2: Exploration-exploitation trade-o�
Exploration and exploitation are two antagonistic cornerstones of
search-based optimization: in the former, new regions of the search
space are visited, whereas in the la�er regions where good solu-
tions already exist are the focus of the search [5]. Although this
de�nition is intuitive and well established, it does not corresponds
to a single and widely accepted practical procedure for objectively
determining if, or to which extent, an evolution is “doing” explo-
ration or exploitation. It follows that it is not easy to assess the
ability of our proposed visualization to reveal if an evolution is in
the exploration or exploitation phase.

We here apply the operative de�nition of exploration/exploitation
proposed in [5]. In brief, the tendency to exploration/exploitation
is �rst measured at the level of the single birth: then, an aggre-
gate measure is obtained for each generation by considering all
the corresponding births. For determining if a birth corresponds
to exploration or exploitation, Črepinšek et al. proposed in [5] to
compare the distance of the new individual to the closest individual
in the history of evolution up to the previous generation with a
prede�ned threshold. We applied this procedure both in the search
space and in the 2-D space and compare the results.

In detail, given an evolutionary run, we proceeded as follows.
(i) At each birth of an individual x occurring at the i-th generation,
we measured its (dis)Similarity1 to the Closest Neighbor in the
search space SCNx(x) = minj<i minx′∈Pj d(x, x′), where d is the
distance function in the search space and Pj is the population at
the j-th generation. We did the same in the 2-D space, obtaining
SCNy(y) = minj<i miny′∈Yj ‖y − y′‖, where Yj is the set of 2-
D points corresponding to the population at the j-th generation.
Note that for SCNy we took the distance ‖y − y′‖ to the closest
neighbor y′ in the 2-D space, rather than the distance to the 2-D
point corresponding to the closest neighbor in the search space: the
reason is that we wanted to verify if the exploration/exploitation
trade-o� which is perceived by observing the points in the 2-D space
is a good proxy for the actual exploration/exploitation trade-o� in
the search space. (ii) We computed the medians SCNx and SCNy

of the values of SCNx and SCNy, respectively, for all the births of
the evolutionary runs. (iii) For each i-th generation, we measured
the exploration rate τ xi in the search spaces as the rate of births of
that generation for which SCNx > SCNx: the larger τ xi ∈ [0, 1],

1Although the name includes “similarity”, the SCN index proposed by Črepinšek et al.
in [5] is large for dissimilar individuals and hence measures dissimilarity.

1867



Dimensionality Reduction Techniques for Visualizing Evolution GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Bit string optimization Continuous optimization
l = 16 l = 20 l = 24 l = 32 l = 2 l = 5 l = 10 l = 15

Dim. red. µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ

PCA 1.00±0.000 0.98±0.013 0.93±0.072 0.92±0.065
MDS 0.95±0.043 0.91±0.092 0.95±0.049 0.93±0.040 1.00±0.000 0.96±0.031 0.94±0.041 0.93±0.086
t-SNE 0.59±0.135 0.58±0.074 0.63±0.175 0.71±0.090 0.71±0.179 0.22±0.146 0.39±0.209 0.44±0.247
UMAP 0.35±0.108 0.52±0.207 0.59±0.187 0.56±0.166 0.65±0.181 0.21±0.112 0.43±0.198 0.43±0.168

Table 1: Pearson’s correlation (mean µ and standard deviation σ across the 10 repetitions for each problem) of the inter-
generation best distances measured in the search space and in the 2-D space, for the two problems and n = 1, nNN = 0: the
closer to 1, the better. For each problem and value of l , the best mean value is highlighted in bold.

0 20 40
0.2
0.4
0.6
0.8

1

Generation

τ

τ xi τ
y
i

0 20 40
Generation

τ xi τ
y
i

Figure 3: Exploration rate in the search space (τ xi ) and in the
2-D space (τ yi ), during the evolution, for two evolutionary
runs on the continuous optimization: l = 15, n = 1, nNN = 1
with MDS (le�) and l = 15, n = 2, nNN = 2 with t-SNE (right).

the more the evolution at the i-th generation is exploring, rather
than exploiting. We repeated the same procedure in the 2-D space
for obtaining τ

y
i . (iv) We measured the root-mean square error

between the values of τ xi and τ
y
i during the evolutionary run:

RMSE =

√√√√
1

ngen

i=ngen∑
i=1

(
(τ xi )

2 − (τ yi )
2
)

(3)

We remark that the choice of the median SCNx used for computing
the exploration rate τ xi is arbitrary. Choosing an appropriate thresh-
old value for discriminating between exploration and exploitation
is not trivial [5]: we think that, for the purpose of evaluating the
visualization methodology here proposed, our choice is sound.

We repeated the procedure above for all the runs, problems,
values of nNN, and dimensionality reduction techniques.

Figure 3 shows the collected τ xi and τ xi values for two di�erent
evolutionary runs with the continuous optimization problem: l =
15, n = 1, nNN = 1 with MDS (le�) and l = 15, n = 2, nNN = 2 with
t-SNE (right).

By looking at the “actual” exploration rate τ xi (blue line) in both
cases, it can be seen that the index follows a reasonable trend: at
the beginning of the evolution (i.e., within the ≈ 15-th generation)
there is more exploration than exploitation (τ xi > 0.5); therea�er,
the exploration rate decreases and stays steadily below 0.5, suggest-
ing that the evolution is doing exploitation, rather than exploration.
While being similar in the trend of τ xi , the two plots of Figure 3
di�er in τ

y
i , i.e., in the exploration rate measured in the 2-D space

(red line). With MDS, τ yi appears to be a qualitatively good approx-
imation of τ xi , capturing its general trend. In contrast, with t-SNE
the values of τ yi during the evolution do not highlight the presence
of the two stages of the evolution (exploration with decreasing
exploration rate and then exploitation).

Table 2 shows the results for the problems with n = 1 and
nNN = 0 (above) and with n = 4 and nNN = 4 (below). We chose
to include the results in two se�ings (one optimum, no diversity
promotion and many optima with diversity promotion) to verify if
the RMSE of the exploration rate varies when conditions related to
the exploration/exploitation trade-o� vary.

�e �gures in Table 2 show that, as for the Pearson’s correlation
of the inter-generation best distances, PCA and MDS deliver the
be�er results. For bit string optimization MDS is always the best
option among the dimensionality reduction techniques. For con-
tinuous optimization, MDS gives the lowest RMSE in 5 on 8 cases.
�e di�erence in RMSE are, however, less apparent than those ob-
served for the Pearson’s correlation of the inter-generation best
distances (see Table 1). Interestingly, t-SNE looks e�ective, in terms
of RMSE of the exploration rate, for large continuous optimization
problems (l = 15). We think that further experimentation is needed
to con�rm or refute this hypothesis.

All in all, the experiments we conducted to answer RQ1 and RQ2
suggest that MDS is the dimensionality reduction technique which
best addresses, among the 4 techniques we considered, the needs
related to the visualization of evolutionary runs in a 2-D space.

4.3 RQ3: Visualization choices
We developed two interactive visualizations: the �rst shows one 2-
D frame per generation and the second visualizes all generations up
to the current one in a single 3-D plot. In both, the individuals from
the current generation are represented as points whose position
on the Cartesian plane is obtained by means of dimensionality
reduction and whose color denotes their �tness. In addition, the
third coordinate of the 3-D visualization encodes the generation
number. �e user can interact with the visualization by changing
the current generation by means of a slider: the 2-D and 3-D plots
can be placed side to side and controlled with a single slider. For
3-D plots, the user can also freely rotate the space for changing the
point of view.
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Bit string optimization Continuous optimization
l = 16 l = 20 l = 24 l = 32 l = 2 l = 5 l = 10 l = 15

Dim. red. µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ µ ± σ

n
=

1
n

N
N
=

0

PCA 0.00±0.000 0.47±0.160 0.57±0.152 0.61±0.148
MDS 0.43±0.083 0.29±0.107 0.23±0.211 0.55±0.085 0.00±0.000 0.45±0.147 0.56±0.130 0.60±0.127
t-SNE 0.49±0.139 0.46±0.122 0.47±0.125 0.58±0.115 0.50±0.124 0.56±0.129 0.57±0.123 0.56±0.113
UMAP 0.54±0.116 0.53±0.109 0.56±0.114 0.64±0.118 0.55±0.132 0.63±0.125 0.66±0.119 0.66±0.116

n
=

4
n

N
N
=

4

PCA 0.00±0.000 0.43±0.192 0.49±0.162 0.54±0.151
MDS 0.37±0.108 0.37±0.171 0.36±0.207 0.54±0.093 0.01±0.036 0.41±0.173 0.49±0.150 0.55±0.134
t-SNE 0.48±0.136 0.49±0.130 0.49±0.125 0.57±0.127 0.51±0.118 0.59±0.132 0.61±0.123 0.54±0.128
UMAP 0.53±0.116 0.56±0.118 0.56±0.116 0.63±0.121 0.56±0.123 0.65±0.131 0.68±0.122 0.65±0.123

Table 2: RMSE (mean µ and standard deviation σ across the 10 repetitions for each problem) of the exploration rate τ yi in the
2-D space with respect to the one τ xi in the search space, for the two problems with n = 1 and nNN = 0 (above) and with n = 4
and nNN = 4 (below): the lower, the better. For each problem, l , n, and nNN values, the best mean value is highlighted in bold.

Visualizing population dynamics requires to show not only the
current generation but also some information on the previous gen-
eration(s). While this is already achieved by the 3-D visualization
(see Figure 4), there are several ways to add such information to
a 2-D visualization (see Figure 5). Let i be the current generation
number. We have explored visualizing the points from Yi−1 that
correspond to individuals from the previous generation using (a) a
single color (light gray) that is di�erent from the colors used to
denote the points from Yi , (b) smaller points than the ones used
to visualize points from Yi , and (c) transparency in contrast to the
non-transparent points from Yi . Additionally, by connecting the
points from Yi−1 with those from Yi based on their ancestry using
a gray line, we provide additional information that can be useful
when, for example, investigating how genetic operators are acting.
We have furthermore experimented with extending such represen-
tations to include all previous Yj , 1 ≤ j ≤ i , and additionally with
visualizing the trajectory of the best individual in the population
for generations j, 1 ≤ j ≤ i , using a red line.

Next, we showcase 3-D visualizations for the four dimensionality
reduction techniques in Figure 4 and the di�erent representations
used in 2-D visualizations in Figure 5.

4.3.1 3-D visualization. �e plots of Figure 4 show how the 3-D
visualization based on MDS (second column), which resulted the
most suitable technique according the experiments discussed in pre-
vious sections, can highlight the di�erent aspects of an evolutionary
run concerning population dynamics.

In the �rst problem (top row), there is a fast convergence toward
the single optimum and the shape of the cloud of points obtained
with MDS re�ects this outcome of the evolution: a thin “column”
in dark colors is visible with the best individual trajectory being
“inside” the column. In the second problem, with diversity promo-
tion and a larger l , the convergence is slower (see also Figure 1) and
this is re�ected in the taller and wider base of the column, slower
change of color than in the top row and the longer trajectory of the
best individual. Finally, in the third problem, the 3-D plot shows
that at the beginning of the evolution the population is pursuing
two optima and a�er ≈ 20 generations it crowds around only one
optimum.

While PCA-based 3-D plots are visually similar to the corre-
sponding MDS-based plots, those based on t-SNE and UMAP are
not. Figure 4 shows how these two techniques tend to “magnify”
the regions of the space which are more crowded (an e�ect that
PCA and MDS, being linear, do not achieve). Although this ability
could, in principle, be useful for visualizing an evolution (see, e.g.,
the sharply separated “short column” in the UMAP plot for the third
problem, which corresponds to an optimum which is abandoned
by the population a�er ≈ 20 generations), it turns out from our
experiments that it negatively impacts on both our goals: showing
population movements and revealing the exploration-exploitation
trade-o�.

4.3.2 2-D visualization. Figure 5 presents 2-D plots at di�erent
generations of an evolutionary run of the continuous problem with
l = 15, n = 3, nNN = 4 and MDS (the 3-D visualization of this
example can be found in the second plot in the middle row of Fig-
ure 4). Each row in the �gure uses a di�erent representation for
points from previous generations. �e top row shows the previous
generation in gray, while the second row shows it using smaller
points (and additionally provides ancestry information by connect-
ing o�spring to their two parents). �e gray color helps to discern
the two generations more easily than the use of smaller points.
On the other hand, the information on the �tness of the previous
individuals is lost if all points use the same color. Using together
both small points and ancestry connections makes it possible to, for
example, visually con�rm that the low performing individuals from
the previous population were not used as parents in the current one
(see second plot in the second row). �e next two rows visualize
all generations up to the current one either using gray (third row)
or transparency (bo�om row). Again, while gray makes a be�er
distinction between the current and previous generations, using
transparent points keeps some information on their �tness values.

�e usefulness of the listed representations depends mainly on
the purpose of the visualization. For example, the movement of the
population is clearer when using a di�erent color for denoting pre-
vious populations. Finally, independently of the visualization style
we can see from the colors of the points in the current generation
that at the beginning of the evolution, the �tness of the population
worsens and generation 10 does not contain be�er individuals than

1869



Dimensionality Reduction Techniques for Visualizing Evolution GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

cont.,
l = 2,
n = 1,
nNN = 0

0.0
0.5

1.0
1.5 −1.0

−0.5
0.0

0.5
1.0

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

PCA

−2.0−1.5−1.0−0.5
0.0

−1.0
−0.5

0.0
0.5

1.0

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

MDS

−50−25
0

25
50

−50
0

50
100

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

t-SNE

−5
0

5
10

15

−5
0

5
10

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

UMAP

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

cont.,
l = 15,
n = 3,
nNN = 4

−1
0

1
2

−1

0
1

2

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

PCA

−2
0

2 −3
−2
−1

0
1

2

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

MDS

−40−20
0

20
40 −100

−50
0

50
100

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

t-SNE

−5
0

5 −10

−5

0

5

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

UMAP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

binary,
l = 16,
n = 3,
nNN = 4

−0.2
0.0

0.2
0.4

0.6
−0.4
−0.2

0.0
0.2

0.4

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

MDS

−60−40−20
0

20
40

−40
−20

0
20

40
60

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

t-SNE

−20−10
0

10
20 −10

0

10

20

G
en

er
at

io
n

s

0

10

20

30

40

50

y1

y2

UMAP

0.00

0.05

0.10

0.15

0.20

0.25

Figure 4: 3-D visualizations of entire evolutionary runs using four dimensionality reduction techniques (columns) on three
di�erent problems (rows): continuous opt. with l = 2, n = 1, nNN = 0 (top row), continuous opt. with l = 15, n = 3, nNN = 4
(middle row), and the bit string opt. with l = 16, n = 3, nNN = 4 (bottom row). �e red line shows the best trajectory.

the initial generation (but generation 30 does). �is is probably due
to the employed diversity preserving mechanism (nNN = 4), which
favors exploration to exploitation.

Comparing 3-D visualizations to 2-D ones, we can notice that the
3-D visualizations provide a nice overview of the entire evolution,
while details can be be�er viewed in the 2-D plots. Because of this,
both should be used simultaneously to facilitate acquiring insights
from an evolutionary run.

4.4 Computational e�ort
We investigated the time taken to apply our methodology, i.e., to
produce one visualization out of an evolutionary run. �e largest
computational e�ort is in the �rst phase (see Section 2), i.e., the
dimensionality reduction. We hence measured the time taken by
the di�erent techniques.

We performed this phase using the appropriate Python libraries
(scikit-learn for PCA, MDS, and t-SNE and the reference imple-
mentation for UMAP, at h�ps://github.com/lmcinnes/umap); we
run the code on AWS EC2 and on the CINECA HPC cluster. On
EC2, we used the c4.8xlarge instances (36 vCPU based on 2.9 GHz
Intel Xeon E5-2666, 60 GB RAM) and the m5.metal instances (96
vCPU based on 3.1 GHz Intel Xeon Platinum 8175, 384 GB RAM).
On CINECA HPC cluster, we used the nodes of the Galileo partition
(18 cores on 2 2.3 GHz Intel Xeon E5-2697 v4, 128 GB RAM).

For the sake of brevity, we report here only the mean time taken
by the 4 techniques on the m5.metal AWS EC2 instances for the
continuous optimization problems with l = 2 and l = 15, which
were 6 s and 6 s for PCA, 265 s and 620 s for MDS, 21 s and 22 s for t-
SNE, and 12 s and 12 s for UMAP. �ese �gures show that MDS is by
far the most expensive technique: depending on the actual practical
se�ings, waiting some minutes to obtain a visualization might or
might not be acceptable. It can also be seen that MDS takes much
longer with larger values of l than the other techniques. Among
the techniques which are not limited to continuous optimization
problems, UMAP is the fastest, the di�erence with respect to t-SNE
being larger for the continuous optimization problems.

5 CONCLUDING REMARKS AND FUTURE
WORK

We considered the problem of visualizing the population dynamics
along an evolutionary run. We proposed a visualization in a 2-D
space obtained by applying a dimensionality reduction technique to
individuals in their original search space. An evolutionary run may
be visualized either by a sequence of 2-D frames, one representing
the population at each generation, or by a 3-D representation with
one 2-D plane for each generation.
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Figure 5: 2-D visualizations of an evolutionary run of the continuous problem with l = 15, n = 3, nNN = 4 with MDS (corre-
sponding to the second plot in the middle row of Figure 4). Columns show current generations (1, 5, 10, and 30), while the
rows exhibit four ways to include information on previous generations: only the most recent previous generation in gray (top
row), the most recent previous generation with smaller points and ancestry shown with gray lines (second row), all previous
generations in gray (third row), and all previous generations with high transparency (bottom row). In all plots, the red triangle
denotes the current best individual while the red line shows its trajectory through the generations.

We assessed numerous variants of the resulting framework and
focused on the ability of the various dimensionality reduction tech-
niques to preserve meaningful information about the population
dynamics despite the unavoidable loss of information. �e results
are very promising as the proposed framework is indeed able to
represent such crucial properties as population movements and
exploration-exploitation trade-o� in a way that is both highly in-
formative and simple to understand.

As future work, we plan to extend the present work along three
directions: (1) by including other dimensionality reduction tech-
niques in the comparison (e.g., the one proposed very recently
in [22]) and enlarging the set of considered problems (e.g., with
symbolic regression with tree-based GP); (2) by investigating the
possibility of using intrinsic dimensionality [20] for improving both

the visualization and its analysis; (3) by releasing an implementa-
tion of our framework usable by EC practitioners and researchers.
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