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ABSTRACT 
Many complex real-world problems such as bin-packing are 
optimised using evolutionary computation (EC) techniques. 
Involving a human user during this process can avoid producing 
theoretically sound solutions that do not translate to the real 
world but slows down the process and introduces the problem of 
user fatigue. Gamification can alleviate user boredom, 
concentrate user attention, or make a complex problem easier to 
understand. This paper explores the use of gamification as a 
mechanism to extract problem-solving behaviour from human 
subjects through interaction with a gamified version of the bin-
packing problem, with heuristics extracted by machine learning. 
The heuristics are then embedded into an evolutionary algorithm 
through the mutation operator to create a human-guided 
algorithm. Experimentation demonstrates that good human 
performers augment EA performance, but that poorer 
performers can be detrimental to it in certain circumstances. 
Overall, the introduction of human expertise is seen to benefit 
the algorithm. 

CCS CONCEPTS 
Computing methodologies → Machine learning → Machine 
learning approaches → Bio-inspired approaches → Genetic 
algorithms;  

Applied computing → Operations research → Decision 
analysis → Multi-criterion optimization and decision-making 

KEYWORDS 
Business planning and operations research, Games, Heuristics, 
Interactive evolution, Machine learning 

1 INTRODUCTION 
There are many complex operational research problems 

arising from the areas of cutting and packing [1]. Problems with 
real world applications often requiring the use of optimisation 
techniques to solve. One such problem is bin-packing [2], which 
consists of a number of container objects (bins) and a fixed 
number of items that need to be stored in them (boxes). The bins 
are usually a large fixed size but can also vary, while the boxes 
are almost always an assortment of smaller sizes. The objective 
is to fit the boxes into as few bins as possible without violating 
the bin size constraints. The problem can have various 
dimensions and rises in complexity as the dimensionality 
increases. 

Early attempts to solve the bin-packing problem examined 
several approximation algorithms, often based on very simple 
rules such as first fit (packing each box into the first bin it will fit 
into) [3]. Additional algorithms have been created based on 
heuristics derived from observation, analysis, or speculation, and 
the performance of these algorithms has been tested against the 
simple approximation algorithms by various studies [4, 5]. A 
branch-and-bound algorithm making use of some of these 
heuristics also proved effective at finding good approximations 
[6]. However, none of these approximation algorithms are 
guaranteed to provide an exact solution to an instance of the 
problem. 

Evolutionary algorithms (EAs) are a tried and tested method 
for solving complex problems for which it is computationally 
infeasible to generate an exact solution. The generalisation of 
EAs allows them to be applied to many problems to generate 
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good approximate solutions. They use simple automated 
processes requiring no human input after the initial encoding of 
the problem representation. 

Due to the capabilities of EAs many attempts have been made 
to apply them to the bin-packing problem with various degrees 
of success. Several of these studies found that an EA by itself 
often performs poorly unless combined with other techniques. 
These include combining a grouping genetic algorithm with a 
local optimisation technique that obtained results superior to 
using either technique in isolation [7]. Another study used a 
biased random key genetic algorithm combined with some 
simple heuristics to obtain solutions to both 2D and 3D bin-
packing problems [8]. Combining a genetic algorithm with a best 
fit decreasing approximation algorithm to avoid infeasible 
solutions [9] was also investigated. 

Burke et al. [10] used genetic programming to create an 
effective algorithm to solve bin-packing problems, allowing for 
algorithms to be evolved based on the state of the bins. An 
interesting result of this study was that the best of the obtained 
evolved algorithms behaved almost identically to the first fit 
approximation algorithm. This demonstrated how useful 
heuristics can be derived from attempts to solve instances of the 
bin-packing problem. Combining automatically generated rule-
based and data-based heuristics with a multi-objective 
optimisation problem was also found to be effective, though this 
was not applied to bin-packing [11]. 

Metaheuristics, such as EAs, are problem agnostic and good 
at reaching a goal but can often take a long period of time or 
require significant processing power to do so. Heuristics tend to 
be problem specific and rely on an understanding of the problem 
or the solution, or an approach that is known to be effective. 
Though heuristics can often offer quicker and easier ways of 
doing things, they might not always reach their goal. 

Hyper-heuristics make use of a variety of metaheuristic and 
heuristic methods to try to take advantage of the benefits of both 
approaches. Hyper-heuristics have been used to generate 
heuristics that can be turned into readable algorithms [12] and 
have been applied to bin-packing with some success [13, 14]. 
Hyper-heuristics can encounter a couple of problems in their 
application, chiefly the extra resources required to decide which 
heuristic to make use of under what circumstances and 
providing the hyper-heuristic with a full library of different 
heuristics to select from. 

Effective heuristics can be derived from human approaches to 
solving a problem. This has been achieved with limited success 
through simple techniques that capture human behaviours to 
apply to robots [15], and to analyse the heuristics from human 
participants used in optimising routing problems [16].  

Human-guided search has been investigated by Klau et al. 
[17], who applied it to a variety of optimization problems 
including a type of packing problem. Murawski and Bossaerts 
[18] investigated the heuristics used by participants presented 
with the knapsack problem, a problem of a similar nature to bin-
packing. Murawski and Bossaerts were able to recognise a 
common human approach of applying a heuristic similar to the 

greedy algorithm followed by a heuristic similar to a branch-
and-bound algorithm. 

To best take advantage of human generated heuristics, it is 
important to understand that not all individuals are equally good 
at solving problems. Therefore, the best heuristics would 
presumably be generated by those with expertise or domain 
specific knowledge of the problem at hand. While this expertise 
could be assessed prior to trying to capture any heuristic the 
user applies to the problem, this could also be decided either 
during or after the process by scoring the user on their 
performance. This would involve giving the user feedback 
through a scoring system and an interactive visual 
representation of the problem, which would involve gamification 
of the bin-packing problem. 

In applying gamification to the problem of linking gene 
patterns to predicted breast cancer outcomes, Good et al. [19] 
were able to make use of a crowd of both expert and non-expert 
users to test their hypothesis. Their game was able to capture 
useful knowledge from their expert players, which was then 
used to train a decision tree classifier. They also found that the 
players without domain specific knowledge performed less well. 
This was due to the representation of the problem needing to be 
kept complex for the experts to have a chance to take advantage 
of their expertise, making the game much harder to play for the 
non-experts. 

To capture human derived heuristics a gamified version of 
the bin-packing problem is proposed here. This game captures 
the problem state and human input at each stage as the user 
solves a simple 2D version of the bin-packing problem. After the 
problem is solved, machine learning techniques are then applied 
to this data and the heuristics employed by the human user are 
derived. These derived heuristics are then used in place of or 
alongside of the mutation operator in an EA to determine if they 
improve the performance of the optimisation algorithm. 

2 EXPERIMENTAL AND COMPUTATIONAL 
DETAILS 

2.1 Problem Definition 
For the purpose of this paper the bin-packing problem will be 

defined as follows. The problem consists of a fixed number of 
bins and exactly twice that number of boxes, the number of 
which determines the level of difficulty. Each bin has two 
dimensions, labelled as size and weight, the capacities of which 
are fixed and identical. The boxes have the same two 
dimensions, but their values are randomised. This is done in 
such a way that the sum of the weights and sizes of the boxes is 
enough to exactly fill half of the bins. The approach taken is to 
randomly generate the boxes by splitting half of the bins into 
slices and then shuffling and distributing them evenly between 
all the bins. 

The objective is to minimise the number of bins being used, 
while the user interacts with the problem by selecting a single 
box from any bin and choosing which bin to move it to. The size 
and weight capacities of the bins act as constraints that can be 
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temporarily violated to generate an infeasible solution. However, 
if a bin is already over-capacity in either dimension, no more 
boxes can be moved into it. The user is not allowed to submit an 
infeasible solution to be assessed and scored, and, due to the way 
in which the problem is generated, there is always a guaranteed 
optimal solution. 

The scoring is calculated based on the number of full and 
empty bins, followed by the distribution of boxes between the 
partially-filled bins. This is to encourage the user to try to fill 
bins exactly while using as few as possible. The optimum score 
for a problem is calculated by multiplying the total number of 
bins by the sum of the maximum size and weight capacities 

 
𝑆𝑐𝑜𝑟𝑒𝑀𝑎𝑥 =  𝑁𝑜𝑂𝑓𝐵𝑖𝑛𝑠(𝑆𝑖𝑧𝑒𝑀𝑎𝑥 + 𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑥). (1) 
 
All other scores are calculated by summing the individual totals 
for each bin, with the score per bin decided by a conditional 
statement. If the size and weight of the boxes contained in a bin 
is zero or equals both maximum capacities then the bin scores 
the sum of the maximum size and weight capacities. Otherwise, 
the bin score is calculated as the sum of the absolute difference 
from half the size capacity and half the weight capacity and then 
the bin scores are all summed to determine the problem score 
 

𝑆𝑐𝑜𝑟𝑒 = ∑ {

𝑆𝑖𝑧𝑒𝑀𝑎𝑥 + 𝑊𝑒𝑖𝑔ℎ𝑡
𝑀𝑎𝑥

, 𝑖𝑓 𝐵𝑖𝑛𝑐𝑎𝑝 = 𝐶𝑎𝑝
𝑀𝑎𝑥

 𝑜𝑟 𝐵𝑖𝑛𝑐𝑎𝑝 = 0

|
𝑆𝑖𝑧𝑒𝑀𝑎𝑥

2
− 𝐵𝑖𝑛𝑆| + |

𝑊𝑒𝑖𝑔ℎ𝑡
𝑀𝑎𝑥

2
− 𝐵𝑖𝑛𝑊|                          (2)

𝑛

𝐵𝑖𝑛=1

 

 
In these equations 𝑆𝑖𝑧𝑒𝑀𝑎𝑥 is the maximum size capacity of a 

bin and 𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑥 is the maximum weight capacity of a bin. 
𝐵𝑖𝑛𝑆 is the filled size of the current bin, 𝐵𝑖𝑛𝑊 is the filled weight 
of the current bin, 𝐵𝑖𝑛𝑐𝑎𝑝 is the filled capacity of the current bin 

in both size and weight, 𝐶𝑎𝑝𝑀𝑎𝑥 is the maximum capacity of the 
bin for either size or weight, and 𝑛 is the number of bins. 

A value of 500 was decided upon for the bin size capacity 
based on the screen size of the object in pixels, and the bin 
weight capacity was set to match to keep the two dimensions 
equal. After a few trials the number of bins and boxes were set to 
4 and 8 respectively for a problem that players solved easily (the 
easy problem), and 6 and 12 for a more difficult problem (the 
medium problem). A third, harder problem with 8 bins was also 
created but because of poor user performance on the easier two 
problems it was not taken further. 

This version of the problem differs from many other 
implementations by not allowing new bins to be created, and by 
starting the problem with the boxes already distributed between 
the bins. This brings it closer to real world equivalents of the 
problem to allows users to employ their knowledge and 
expertise in solving it. 

2.2 Gamification and Implementation 
Development of the bin-packing game was carried out using 

C# and the Unity Game Engine. The game screen consisted of a 
plain background with visual representations of the bins and 

boxes in an isometric view in the centre of the screen and a small 
number of user interface (UI) elements (Fig. 1). 

A ‘weight’ symbol on each box showed the numerical weight 
value of that box. Additionally, as can be seen in Figure 2 five 
colours were used to show the weight of the box relative to the 
minimum and maximum box weight values. 

Each bin displayed underneath itself the total current weight 
held by that bin as a numerical value out of the maximum bin 
weight capacity. The size of each box could only be judged by 
sight, as the screen size of each box in pixels directly related to 
the size value of that box. The bin size capacity was shown by an 
unmarked scale adjacent to the side of the bin with a white bar 
indicating fullness. Whenever a box was selected it would be 
removed from the bin it was in and a transparent ‘ghost’ image 
of the box would highlight how it would change the bin capacity 
of any bin the box hovered over as the user moved it around. 

If a bin was exactly filled in size, a lid would appear on it 
(Fig. 2; A, B, G), while if it was exactly filled in weight the text 
underneath would turn yellow (Fig. 2; A, C, F); if both then the 
bin would also be surrounded by a yellow box (Fig. 2; A). 
Conversely, the bin would be surrounded by a grey box if it 
violated the constraints (Fig. 2; F, G, H, I, J).  

If the size constraint was violated (i.e. the boxes in the bin 
had a total combined size greater than 500) then the scale to the 
right of the bin would turn grey (Fig. 2; F, H, J). If the weight 
constraint was violated then the text underneath the bin would 
turn grey (Fig. 2; G, I, J), and if both were violated then both 

Figure 1: The Bin-Packing game in progress 

Figure 2: All possible bin states during gameplay. 
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would happen (Fig. 2; J). If the constraints of any bin in the 
game were violated then the solution was considered infeasible. 

The user was told the optimum score before they played and 
encouraged to compete with other players by achieving it in the 
minimum number of moves. The game state and score at each 
move was then logged in a text file.  

 The game was demonstrated to prospective undergraduate 
students and their family members who were then encouraged to 
play it. Several individuals attempted the game, with a total of 
ten users playing and successfully completing the easy 4-bin 
game, three of which then also completed the medium 6-bin 
game. 
Table 1: Inputs and output for the decision tree regressor. 
Input (i) Input (ii) Input (iii) Input (iv) Output 
Box Size Maximum 

Space 
Remaining 

Minimum 
Space 
Remaining 

Mean Space 
Remaining 

Bin Space 
Remaining 

2.3 Machine Learning 
When deciding what to learn from the gathered data several 

decisions needed to be made, the first of which was how best to 
represent the problem. This needed to be carried out in a way 
that allowed any problem-solving heuristic captured from the 
data to be generalisable rather than only applicable to this 
specific problem instance. This also needed to be done in such a 
way that it took best advantage of the player capabilities. 

 Each move of a box could be broken down into two parts; 
target box selection followed by target bin selection. This could 
however be confused by composite moves, in which a box might 
be moved such that it temporarily makes the problem worse but 
overall allows the user to solve the problem more quickly and 
efficiently. 

 However, the easy 4-bin problem could be solved in as little 
as 6 or 7 moves which would make recognising composite moves 
difficult. This is also confounded by players moving boxes back 

and forth between the bins while deciding where to place them. 
Given this, it was felt best to only look at single moves in the 
current study. 

The box selected could be decided at random and any 
heuristic would theoretically still apply. The opposite might not 
be true, so it was decided to use machine learning to capture 
which bin a chosen box would be put into rather than which box 
was selected. 

 In this initial experiment, only moves that improved the 
score were included in the dataset for training. This ignored bad 
moves made by players learning how to play the game or players 
who struggled, but still allowed any good move to aid the 
learning process. To generalise the problem representation only 
relative properties (rather than specifics) could be used for 
learning, and the two dimensions were combined into a single 
total. 

Several potential machine learning approaches were 
considered for this task, and the decision tree regressor was 
selected. The main reason was its ability to generate human-
understandable models of the players’ behaviour. This allows for 
the tree to be sense-checked to ensure that it has captured a 
reasonable approximation of human problem solving in this task. 

Figure 3: Simple Tree. This was created by limiting leaf 
size and depth before running the decision tree regressor. 

Figure 4: Complex Tree. The unconstrained tree is too detailed to be easily readable (included to aid visualisation). 
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The sklearn decision tree regressor from Scikit-learn [20] was 
used to generate the trees that were used for this task. 

The decision was made to use four inputs to train a decision 
tree regressor with the combined total remaining bin space and 
weight capacity of the target bin as the output. The four inputs 
consisted of: (i) the total size of the selected box, given as a total 
of box size plus box weight, (ii) the maximum bin space available 
in any single bin as a combined total of size and weight (but not 
including empty bins), (iii) the minimum bin space available in 
any bin (but not including full bins or infeasible bins), and (iv) 
the mean bin space available across all partially-filled bins. 

Two versions of the decision tree were generated, a simplified 
and more generalised shallow tree limited to a maximum depth 
of three and a minimum leaf size of three (Fig. 3) and a more 
complex and complete tree with no restrictions (Fig. 4). The 
simplified tree was expected to be more robust when given 
problems of different complexities, though the complex tree 
might well perform better on problems that are very similar to 
the training problem. 

 Once the trees were generated, they were used in a mutation 
function as part of a genetic algorithm (GA), as an alternative to 
the standard mutation operator. This function operated by 
selecting a box at random and removing it from the bin it was 
located in. The state of the problem was then analysed for the 
four tree inputs and the tree queried. This returned the amount 
of available space to look for in a bin and found the bin that most 
closely matched this value. The box was then added to that bin. 

The GA used was a standard Genetic Algorithm function 
from the Platypus library for Python [21]. This used a population 
size of 100 solutions coded as lists of integer strings, with 
simulated binary crossover (SBX) and tournament selection with 
a tournament size of 2. The standard mutation operator made 
use of the problem encoded as Gray code to perform a bit flip 
mutation with a probability equal to 1/n where n is the 
chromosome length. This results in, on average, one member of 
the population being mutated at a single point each generation. 

Whether the GA should use the standard mutator or the 
human-derived mutator (HDM) was determined by probability, 
with three different probabilities tested after initial trial runs. 
The three probabilities used were a control condition in which 
no human-derived mutation was used (No HDM), one in which 
10% of human-derived mutation was used (HDM 0.1), and one in 
which 40% of human-derived mutation was used (HDM 0.4).  

Although the games had consisted of 4-bin, 6-bin, and 8-bin 
problems these were too small to be a good test of the 
methodology. The proposed size of the problem for the EA to 
solve was determined as a problem that would be unfeasible for 
a human to solve, but not so large as to require a supercomputer 
to run the genetic algorithm. After some test runs a problem size 
of 600 boxes with 300 bins was decided upon. This was 50 times 
the size of the medium 6-bin problem that only a handful of the 
players had completed.  

In order to make a fair test, and given the stochastic nature of 
GA, each condition was run 30 times. After a trial run it was 
seen that the GA only started finding feasible solutions after 
10,000 function evaluations, so it was decided to let the GA run 

for 40,000 function evaluations each run with a population of 
100. 

During the testing phase an additional tree was generated 
and tested that used only input from the poorer players, but (as 
expected) this achieved worse results and generated fewer 
feasible solutions so this was not pursued further.  

The average score and the best scoring solution among the 
population, and the number of feasible solutions (i.e. those that 
do not violate the problem constraints) were recorded each run. 

3 RESULTS AND DISCUSSION 

3.1 Simple Tree 
The first experimental results from running the GA with a 

mutator based on the simple tree are shown in Figure 5. For 
each run the average (mean) score across the feasible population, 
the best score in the population, and the percentage of feasible 
solutions were recorded. The 30 runs were then averaged and 
compared. 

In this test it was found that the No HDM condition 
converged faster than the other two conditions both based on 
the average population score and the best population score (Fig. 
5). However, none of the three conditions found a feasible 
solution until after at least 10,000 function evaluations. 

While the No HDM convergence contrasted strongly with 
the HDM 0.4 condition, it was far less noticeable when 
compared against the HDM 0.1 condition. However, the HDM 
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0.1 condition overtook the No HDM condition before the full 
run had finished and ended with better results in both categories. 

From looking at more detailed results after all runs were 
ended (Table 2) it is apparent that with regards to both mean 
and minimum average score and best score HDM 0.1 was 
consistently better across the 30 runs than both No HDM and 
HDM 0.4. Although HDM 0.4 was able to achieve both the 
highest maximum average score and maximum best score, it also 
achieved the lowest minimum scores in both categories as well 
showing the greatest variance. 

 
Table 2: Simple Tree End Results 

 Average 
Score 

Best  
Score 

% Feasible 
Solutions 

No 
HDM 

Mean 137,034 139,317 45 
Max 142,379 145,314 59 

Min 130,897 133,340 31 

HDM 
0.1 

Mean 139,365 141,554 51 
Max 144,952 147,540 61 
Min 133,456 135,430 36 

HDM 
0.4 

Mean 135,189 136,922 70 
Max 148,354 149,382 84 

Min 113,816 116,652 36 
The most interesting difference apparent in Table 2 stems 

from the percentage of feasible solutions in the final population; 
as the amount of human-derived mutation increases the run 
produces a larger percentage of feasible solutions. 

For each of the three factors (Average Score, Best Score, and 
Percentage Feasible Solutions) across the three groups (No 
HDM, HDM 0.1, and HDM 0.4) in each data set of 30 runs a 
single factor ANOVA was carried out, all of which found the 
results differed significantly (Average Score p = .026; Best Score 
p = .009; Percentage Feasible Solutions p < .001). 

F-Tests were used to reveal any unequal variances before 
two-sample t-Tests were carried out. These revealed significant 
differences between No HDM and HDM 0.1 for Average Score 
(t(58) = -2.96, p = .004), Best Score (t(58) = -2.89, p = .005), and 
Percentage Feasible Solutions (t(58) = -3.29, p = .002). 

When comparing No HDM with HDM 0.4 significant 
differences were only found between the Percentage Feasible 
Solutions (t(51) = -10.86, p < .001), while comparing HDM 0.1 
with HDM 0.4 found significant differences in Average Score 
(t(36) = 2.33, p = .025)), Best Score (t(36) = 2.66, p = .012), and 
Percentage Feasible Solutions (t(47) = -8.76, p < .001). 

The tests showed HDM 0.1 to have performed significantly 
better in all three areas over the No HDM standard GA after 
40,000 function evaluations, while HDM 0.4 had a significantly 
greater percentage of feasible solutions in the population pool. 

3.2 Complex Tree 
The complex tree results showed a similar pattern to the 

simple tree, though less pronounced with regards to HDM 0.4. 
As can be seen in Figure 6 the No HDM condition converged 
faster than the other two groups both with regards to best score 
and average score, though only marginally faster than HDM 0.1. 

As with the simple tree, the HDM 0.1 condition performed in 
a very similar way to the standard GA (No HDM). The average 
end results across the 30 runs after the 40,000 evaluations can be 
seen in Table 3. 

Single factor ANOVA were carried out for each of the three 
factors (Average Score, Best Score, and Percentage Feasible 
Solutions) across the three groups (No HDM, HDM 0.1, and 
HDM 0.4), and again all three found significant differences in 
the means (Average Score p < .001; Best Score p < .001; 
Percentage Feasible Solutions p < .001). 

 
Table 3: Complex Tree End Results 

 Average 
Score 

Best 
Score 

% Feasible 
Solutions 

No 
HDM 

Mean 135,841 137,929 44 
Max 141,996 144,170 56 

Min 130,135 132,116 32 

HDM 
0.1 

Mean 136,842 138,950 50 
Max 143,213 144,986 60 
Min 131,380 133,540 35 

HDM 
0.4 

Mean 128,658 131,068 66 
Max 142,821 144,534 80 

Min 113,162 117,424 26 
After testing for unequal variance between each pair of 

conditions two-sample t-Tests were run. They found no 
significant difference between the Average Score and Best Score 
of the No HDM and HDM 0.1 groups (t(58) = -1.34, p = .19 and 
t(58) = -1.37, p = .17 respectively), though Percentage Feasible 

Figure 6:  Complex Tree Average and Best Scores. Score 
was the mean across 30 runs with a max score of 300,000. 
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Solutions (t(58) = -3.85, p < .001) did differ significantly in favour 
of HDM 0.1. 

When comparing No HDM against HDM 0.4 all three 
factors differed significantly; Average Score (t(35) = 4.31, p < 
.001)) and Best Score (t(36) = 4.57, p < .001) in favour of No 
HDM, and Percentage Feasible Solutions (t(36) = -7.36, p < .001) 
in favour of HDM 0.4. 

The comparison between HDM 0.1 and HDM 0.4 yielded 
similar results, with HDM 0.1 having a significantly higher 
Average Score (t(36) = 4.86, p < .001) and Best Score (t(38) = 5.18, 
p < .001) but a significantly lower Percentage Feasible Solutions 
(t(39) = -5.25, p < .001). 

3.3 Simple Tree vs Complex Tree 
The results from the simple tree runs were then compared to 

the equivalent results from the complex tree. No significant 
difference was found between the Percentage Feasible Solutions 
when comparing both the HDM 0.1 (t(58) = 0.54, p = .59) and 
HDM 0.4 (t(50) = 1.10, p = .27) conditions against themselves. 

When looking at the Average Score, the simple tree 
performed significantly better in both the HDM 0.1 (t(58) = 3.07, 
p = .003) and HDM 0.4 (t(58) = 2.82, p = .007) conditions. This 
was also the case with regards to the Best Score, with the simple 
tree HDM 0.1 (t(58) = 3.22, p = .002) and HDM 0.4 (t(58) = 2.70, 
p = .009) conditions outperforming the complex tree. 

Both heuristics that derived from the simple tree 
outperformed those derived from the complex tree. From looking 
at a graphical comparison of the average and best solution value 
(Fig. 7) over function evaluations, simple tree HDM 0.1 
condition has the fastest convergence after the No HDM 
baseline condition, while simple tree HDM 0.4 has the slowest. 

3.4 Effect of Problem Size 
Given the scale of the problem and the limited number of 

function evaluations used, it was decided to see how the 
different techniques performed on a range of problem sizes. The 
initial problem size was set at 4 bins, the same size that the users 
had played, and then doubled until reaching almost halfway 
towards the 300-bin problem size tested above. The 4-bin 
problem with 8 boxes has an easily enumerable search space of 
48 = 65,536 possible combinations, but each doubling in size 
causes the problem space to grow exponentially. 

To give a greater chance to find the optimum each condition 
used 200,000 function evaluations and ran 50 times instead of 30. 
The simple tree was selected due to performance, and a fourth 
condition involving the use of 100% human-derived mutation 
was added, HDM 1.0. The maximum score for each problem is 
known, so the scores were normalised to allow comparison 
between problem sizes. 

On the smaller problems increased use of the human-derived 
mutation generates higher average scores (Fig. 8, top), but the 
performance of the HDM 1.0 algorithm soon drops off. Both the 
HDM 0.1 and HDM 0.4 algorithms outperform No HDM across 
all problem sizes with regards to average score. 

HDM 1.0 struggles to find the best score (Fig. 8, bottom) 
across all problems, while the other three do very well with the 
smallest two problems and then drop into a gradual decline. No 
HDM, HDM 0.1, and HDM 0.4 all found the 4-bin optimum 
every run, while HDM 0.4 was also able to find the optimum for 
the 8-bin problem every run. From the 16-bin problem onwards 
none of them were able to come close to reaching the optimum. 

3.5 Discussion 
The game presented the players with a simplified version of 

the bin-packing problem, due to the limitations of user fatigue 
and attention. Despite this, the heuristics derived from 
gamification of this problem and analysis of the gameplay has 
been shown to improve the quality of solutions discovered by an 
evolutionary algorithm on a much larger problem. This suggests 
the learned heuristics are scalable beyond the initial problem 
formulations and indicate significant promise for the method to 
be used on real-world scale operational research problems. 

The simple tree outperformed the complex tree and it is 
possible that this is due to overfitting of the initial problems by 
the complex tree, which could potentially lead to less scalability. 

The rate of application of HDM revealed a synergy between 
HDM and the standard mutation that was not expected before 
the experiments began. Increased usage of HDM (i.e. 40%) results 
in a greater number of feasible solutions, but the quality of the 
solutions overall is poorer than with the smaller 10% mutation. 

The users that generated the data for the trees were 
encouraged by the framing of the game to keep their solutions 
feasible, which could explain why using the human-derived 
mutation kept a larger percentage of feasible solutions in the 
population. 

Having a larger number of feasible solutions favours the 
production of feasible offspring, but sometimes precludes the use 

Figure 7: Complex Tree vs Simple Tree Score 
Comparison 
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of infeasible solutions in the short term to generate better 
feasible solutions in the long term. Given the formulation of the 
problem a single move can switch between a good and an 
infeasible solution. 

As a natural function of the problems generated for the game 
the human-derived mutation was mainly obtained from the 
middle parts of the problem-solving process. Different processes 
might be employed by the users near the start or end of the 
solution of a problem. A better approach could be to derive 
algorithms for various stages of the problem and switch to them 
as the state of the population changes, though this could also add 
further complexity and make the approach less robust. 

The simple tree gave a more generalised and approximate 
output than the complex tree, and this worked better in almost 
every area. This is not too surprising a result given the dangers 
of overfitting that could come from using the complex tree. 

It is worth noting that the 300-bin problem has an achievable 
maximum score of 300,000 and none of the results within 40,000 
function evaluations were able to reach even half of that. This is 
not surprising given the size of the search space (300600) and the 
limited number of function evaluations used. It could be seen 
when looking at the effect of the problem size on performance 
that even relatively small problems proved too difficult to reach 
even 70% of the global optimum. 

The HUGS system mentioned in [17] combined human 
input/expertise with a version of a stock-cutting/bin-packing 
problem. However, this was done by the user actively guiding 
the optimisation process by assigning priority to areas of the 
problem space and then running a problem-specific heuristic to 

optimise the problem based on that guidance. This process 
would then be repeated by the user until they were happy with 
the result. 

Capturing heuristics was done through observation of user 
interactions rather than any systematic process and was used to 
improve existing problem-solving heuristics rather than generate 
new ones. This makes it difficult to compare the HUGS approach 
to the approach taken in this paper, as it would be human 
involvement during the optimisation process vs. an automated 
approach taking advantage of human expertise. Creating a fair 
comparison of time and function evaluations in these 
circumstances would not be possible. 

In future work the human-derived heuristic used in the 
mutation operator could be tested against the standard 
algorithms normally employed to solve the bin-packing problem. 

4 CONCLUSIONS 
In this paper a bin-packing game was proposed and created, 

designed to capture human problem-solving heuristics. Data 
captured from players of the game was processed to train a 
decision tree regressor. This tree learned which bin to put a 
given box into based on the general state of the problem at that 
time. The general problem state was defined by mean, minimum, 
and maximum available space across all partially-filled bins. 

Two versions of this human-derived tree generated by the 
machine learning process were then used within a mutation 
operator for a GA, and for a varying percentage of the time to 
make three different conditions; No HDM in which the human-
derived mutation was not used, HDM 0.1 in which the human-
derived mutation was used 10% of the time, and HDM 0.4 in 
which the human-derived mutation was used 40% of the time. 

After running each condition 30 times for 40,000 function 
evaluations for each tree it was found that using a simple tree for 
10% of the time instead of the standard mutation operator 
achieved significantly better results both by score and feasibility 
than using just the standard mutation operator or using the 
human-derived mutation 40% of the time. 

The use of gamification and machine learning to capture 
human problem-solving behaviour for use within an 
evolutionary algorithm raises the prospect of other human-EA 
hybrids that can make use of the intuition and domain expertise 
of humans with the fast-global search of the evolutionary 
approach. The fact that behaviours discovered by non-experts on 
small problems could be translated to a large-scale problem to 
improve performance is particularly worthy of mention. 
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