
Human-Evolutionary Problem Solving through Gamification of
a Bin-Packing Problem

Nicholas D. F. Ross
University of Exeter

Exeter, EX4 4QF
United Kingdom

nr339@exeter.ac.uk

Matthew B. Johns
University of Exeter

Exeter, EX4 4QF
United Kingdom

M.B.Johns@exeter.ac.uk

Edward C. Keedwell
University of Exeter

Exeter, EX4 4QF
United Kingdom

E.C.Keedwell@exeter.ac.uk

Dragan A. Savic
University of Exeter/KWR

Exeter/Nieuwegein
United Kingdom/Netherlands

D.Savic@exeter.ac.uk

ABSTRACT
Many complex real-world problems such as bin-packing are
optimised using evolutionary computation (EC) techniques.
Involving a human user during this process can avoid producing
theoretically sound solutions that do not translate to the real
world but slows down the process and introduces the problem of
user fatigue. Gamification can alleviate user boredom,
concentrate user attention, or make a complex problem easier to
understand. This paper explores the use of gamification as a
mechanism to extract problem-solving behaviour from human
subjects through interaction with a gamified version of the bin-
packing problem, with heuristics extracted by machine learning.
The heuristics are then embedded into an evolutionary algorithm
through the mutation operator to create a human-guided
algorithm. Experimentation demonstrates that good human
performers augment EA performance, but that poorer
performers can be detrimental to it in certain circumstances.
Overall, the introduction of human expertise is seen to benefit
the algorithm.

CCS CONCEPTS
Computing methodologies → Machine learning → Machine
learning approaches → Bio-inspired approaches → Genetic
algorithms;

Applied computing → Operations research → Decision
analysis → Multi-criterion optimization and decision-making

KEYWORDS
Business planning and operations research, Games, Heuristics,
Interactive evolution, Machine learning

1 INTRODUCTION
There are many complex operational research problems

arising from the areas of cutting and packing [1]. Problems with
real world applications often requiring the use of optimisation
techniques to solve. One such problem is bin-packing [2], which
consists of a number of container objects (bins) and a fixed
number of items that need to be stored in them (boxes). The bins
are usually a large fixed size but can also vary, while the boxes
are almost always an assortment of smaller sizes. The objective
is to fit the boxes into as few bins as possible without violating
the bin size constraints. The problem can have various
dimensions and rises in complexity as the dimensionality
increases.

Early attempts to solve the bin-packing problem examined
several approximation algorithms, often based on very simple
rules such as first fit (packing each box into the first bin it will fit
into) [3]. Additional algorithms have been created based on
heuristics derived from observation, analysis, or speculation, and
the performance of these algorithms has been tested against the
simple approximation algorithms by various studies [4, 5]. A
branch-and-bound algorithm making use of some of these
heuristics also proved effective at finding good approximations
[6]. However, none of these approximation algorithms are
guaranteed to provide an exact solution to an instance of the
problem.

Evolutionary algorithms (EAs) are a tried and tested method
for solving complex problems for which it is computationally
infeasible to generate an exact solution. The generalisation of
EAs allows them to be applied to many problems to generate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.

GECCO '19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6748-6/19/07…$15.00
https://doi.org/10.1145/3319619.3326871

1465

mailto:Permissions@acm.org

GECCO’19, July 13-17, 2019, Prague, Czech Republic N. D. F. Ross et al.

2

good approximate solutions. They use simple automated
processes requiring no human input after the initial encoding of
the problem representation.

Due to the capabilities of EAs many attempts have been made
to apply them to the bin-packing problem with various degrees
of success. Several of these studies found that an EA by itself
often performs poorly unless combined with other techniques.
These include combining a grouping genetic algorithm with a
local optimisation technique that obtained results superior to
using either technique in isolation [7]. Another study used a
biased random key genetic algorithm combined with some
simple heuristics to obtain solutions to both 2D and 3D bin-
packing problems [8]. Combining a genetic algorithm with a best
fit decreasing approximation algorithm to avoid infeasible
solutions [9] was also investigated.

Burke et al. [10] used genetic programming to create an
effective algorithm to solve bin-packing problems, allowing for
algorithms to be evolved based on the state of the bins. An
interesting result of this study was that the best of the obtained
evolved algorithms behaved almost identically to the first fit
approximation algorithm. This demonstrated how useful
heuristics can be derived from attempts to solve instances of the
bin-packing problem. Combining automatically generated rule-
based and data-based heuristics with a multi-objective
optimisation problem was also found to be effective, though this
was not applied to bin-packing [11].

Metaheuristics, such as EAs, are problem agnostic and good
at reaching a goal but can often take a long period of time or
require significant processing power to do so. Heuristics tend to
be problem specific and rely on an understanding of the problem
or the solution, or an approach that is known to be effective.
Though heuristics can often offer quicker and easier ways of
doing things, they might not always reach their goal.

Hyper-heuristics make use of a variety of metaheuristic and
heuristic methods to try to take advantage of the benefits of both
approaches. Hyper-heuristics have been used to generate
heuristics that can be turned into readable algorithms [12] and
have been applied to bin-packing with some success [13, 14].
Hyper-heuristics can encounter a couple of problems in their
application, chiefly the extra resources required to decide which
heuristic to make use of under what circumstances and
providing the hyper-heuristic with a full library of different
heuristics to select from.

Effective heuristics can be derived from human approaches to
solving a problem. This has been achieved with limited success
through simple techniques that capture human behaviours to
apply to robots [15], and to analyse the heuristics from human
participants used in optimising routing problems [16].

Human-guided search has been investigated by Klau et al.
[17], who applied it to a variety of optimization problems
including a type of packing problem. Murawski and Bossaerts
[18] investigated the heuristics used by participants presented
with the knapsack problem, a problem of a similar nature to bin-
packing. Murawski and Bossaerts were able to recognise a
common human approach of applying a heuristic similar to the

greedy algorithm followed by a heuristic similar to a branch-
and-bound algorithm.

To best take advantage of human generated heuristics, it is
important to understand that not all individuals are equally good
at solving problems. Therefore, the best heuristics would
presumably be generated by those with expertise or domain
specific knowledge of the problem at hand. While this expertise
could be assessed prior to trying to capture any heuristic the
user applies to the problem, this could also be decided either
during or after the process by scoring the user on their
performance. This would involve giving the user feedback
through a scoring system and an interactive visual
representation of the problem, which would involve gamification
of the bin-packing problem.

In applying gamification to the problem of linking gene
patterns to predicted breast cancer outcomes, Good et al. [19]
were able to make use of a crowd of both expert and non-expert
users to test their hypothesis. Their game was able to capture
useful knowledge from their expert players, which was then
used to train a decision tree classifier. They also found that the
players without domain specific knowledge performed less well.
This was due to the representation of the problem needing to be
kept complex for the experts to have a chance to take advantage
of their expertise, making the game much harder to play for the
non-experts.

To capture human derived heuristics a gamified version of
the bin-packing problem is proposed here. This game captures
the problem state and human input at each stage as the user
solves a simple 2D version of the bin-packing problem. After the
problem is solved, machine learning techniques are then applied
to this data and the heuristics employed by the human user are
derived. These derived heuristics are then used in place of or
alongside of the mutation operator in an EA to determine if they
improve the performance of the optimisation algorithm.

2 EXPERIMENTAL AND COMPUTATIONAL
DETAILS

2.1 Problem Definition
For the purpose of this paper the bin-packing problem will be

defined as follows. The problem consists of a fixed number of
bins and exactly twice that number of boxes, the number of
which determines the level of difficulty. Each bin has two
dimensions, labelled as size and weight, the capacities of which
are fixed and identical. The boxes have the same two
dimensions, but their values are randomised. This is done in
such a way that the sum of the weights and sizes of the boxes is
enough to exactly fill half of the bins. The approach taken is to
randomly generate the boxes by splitting half of the bins into
slices and then shuffling and distributing them evenly between
all the bins.

The objective is to minimise the number of bins being used,
while the user interacts with the problem by selecting a single
box from any bin and choosing which bin to move it to. The size
and weight capacities of the bins act as constraints that can be

1466

Human-Evolutionary Gamification of a Bin-Packing Problem GECCO’19, July 13-17, 2019, Prague, Czech Republic

 3

temporarily violated to generate an infeasible solution. However,
if a bin is already over-capacity in either dimension, no more
boxes can be moved into it. The user is not allowed to submit an
infeasible solution to be assessed and scored, and, due to the way
in which the problem is generated, there is always a guaranteed
optimal solution.

The scoring is calculated based on the number of full and
empty bins, followed by the distribution of boxes between the
partially-filled bins. This is to encourage the user to try to fill
bins exactly while using as few as possible. The optimum score
for a problem is calculated by multiplying the total number of
bins by the sum of the maximum size and weight capacities

𝑆𝑐𝑜𝑟𝑒𝑀𝑎𝑥 = 𝑁𝑜𝑂𝑓𝐵𝑖𝑛𝑠(𝑆𝑖𝑧𝑒𝑀𝑎𝑥 + 𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑥). (1)

All other scores are calculated by summing the individual totals
for each bin, with the score per bin decided by a conditional
statement. If the size and weight of the boxes contained in a bin
is zero or equals both maximum capacities then the bin scores
the sum of the maximum size and weight capacities. Otherwise,
the bin score is calculated as the sum of the absolute difference
from half the size capacity and half the weight capacity and then
the bin scores are all summed to determine the problem score

𝑆𝑐𝑜𝑟𝑒 = ∑ {

𝑆𝑖𝑧𝑒𝑀𝑎𝑥 + 𝑊𝑒𝑖𝑔ℎ𝑡
𝑀𝑎𝑥

, 𝑖𝑓 𝐵𝑖𝑛𝑐𝑎𝑝 = 𝐶𝑎𝑝
𝑀𝑎𝑥

 𝑜𝑟 𝐵𝑖𝑛𝑐𝑎𝑝 = 0

|
𝑆𝑖𝑧𝑒𝑀𝑎𝑥

2
− 𝐵𝑖𝑛𝑆| + |

𝑊𝑒𝑖𝑔ℎ𝑡
𝑀𝑎𝑥

2
− 𝐵𝑖𝑛𝑊| (2)

𝑛

𝐵𝑖𝑛=1

In these equations 𝑆𝑖𝑧𝑒𝑀𝑎𝑥 is the maximum size capacity of a

bin and 𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑥 is the maximum weight capacity of a bin.
𝐵𝑖𝑛𝑆 is the filled size of the current bin, 𝐵𝑖𝑛𝑊 is the filled weight
of the current bin, 𝐵𝑖𝑛𝑐𝑎𝑝 is the filled capacity of the current bin

in both size and weight, 𝐶𝑎𝑝𝑀𝑎𝑥 is the maximum capacity of the
bin for either size or weight, and 𝑛 is the number of bins.

A value of 500 was decided upon for the bin size capacity
based on the screen size of the object in pixels, and the bin
weight capacity was set to match to keep the two dimensions
equal. After a few trials the number of bins and boxes were set to
4 and 8 respectively for a problem that players solved easily (the
easy problem), and 6 and 12 for a more difficult problem (the
medium problem). A third, harder problem with 8 bins was also
created but because of poor user performance on the easier two
problems it was not taken further.

This version of the problem differs from many other
implementations by not allowing new bins to be created, and by
starting the problem with the boxes already distributed between
the bins. This brings it closer to real world equivalents of the
problem to allows users to employ their knowledge and
expertise in solving it.

2.2 Gamification and Implementation
Development of the bin-packing game was carried out using

C# and the Unity Game Engine. The game screen consisted of a
plain background with visual representations of the bins and

boxes in an isometric view in the centre of the screen and a small
number of user interface (UI) elements (Fig. 1).

A ‘weight’ symbol on each box showed the numerical weight
value of that box. Additionally, as can be seen in Figure 2 five
colours were used to show the weight of the box relative to the
minimum and maximum box weight values.

Each bin displayed underneath itself the total current weight
held by that bin as a numerical value out of the maximum bin
weight capacity. The size of each box could only be judged by
sight, as the screen size of each box in pixels directly related to
the size value of that box. The bin size capacity was shown by an
unmarked scale adjacent to the side of the bin with a white bar
indicating fullness. Whenever a box was selected it would be
removed from the bin it was in and a transparent ‘ghost’ image
of the box would highlight how it would change the bin capacity
of any bin the box hovered over as the user moved it around.

If a bin was exactly filled in size, a lid would appear on it
(Fig. 2; A, B, G), while if it was exactly filled in weight the text
underneath would turn yellow (Fig. 2; A, C, F); if both then the
bin would also be surrounded by a yellow box (Fig. 2; A).
Conversely, the bin would be surrounded by a grey box if it
violated the constraints (Fig. 2; F, G, H, I, J).

If the size constraint was violated (i.e. the boxes in the bin
had a total combined size greater than 500) then the scale to the
right of the bin would turn grey (Fig. 2; F, H, J). If the weight
constraint was violated then the text underneath the bin would
turn grey (Fig. 2; G, I, J), and if both were violated then both

Figure 1: The Bin-Packing game in progress

Figure 2: All possible bin states during gameplay.

1467

GECCO’19, July 13-17, 2019, Prague, Czech Republic N. D. F. Ross et al.

4

would happen (Fig. 2; J). If the constraints of any bin in the
game were violated then the solution was considered infeasible.

The user was told the optimum score before they played and
encouraged to compete with other players by achieving it in the
minimum number of moves. The game state and score at each
move was then logged in a text file.

 The game was demonstrated to prospective undergraduate
students and their family members who were then encouraged to
play it. Several individuals attempted the game, with a total of
ten users playing and successfully completing the easy 4-bin
game, three of which then also completed the medium 6-bin
game.
Table 1: Inputs and output for the decision tree regressor.
Input (i) Input (ii) Input (iii) Input (iv) Output
Box Size Maximum

Space
Remaining

Minimum
Space
Remaining

Mean Space
Remaining

Bin Space
Remaining

2.3 Machine Learning
When deciding what to learn from the gathered data several

decisions needed to be made, the first of which was how best to
represent the problem. This needed to be carried out in a way
that allowed any problem-solving heuristic captured from the
data to be generalisable rather than only applicable to this
specific problem instance. This also needed to be done in such a
way that it took best advantage of the player capabilities.

 Each move of a box could be broken down into two parts;
target box selection followed by target bin selection. This could
however be confused by composite moves, in which a box might
be moved such that it temporarily makes the problem worse but
overall allows the user to solve the problem more quickly and
efficiently.

 However, the easy 4-bin problem could be solved in as little
as 6 or 7 moves which would make recognising composite moves
difficult. This is also confounded by players moving boxes back

and forth between the bins while deciding where to place them.
Given this, it was felt best to only look at single moves in the
current study.

The box selected could be decided at random and any
heuristic would theoretically still apply. The opposite might not
be true, so it was decided to use machine learning to capture
which bin a chosen box would be put into rather than which box
was selected.

 In this initial experiment, only moves that improved the
score were included in the dataset for training. This ignored bad
moves made by players learning how to play the game or players
who struggled, but still allowed any good move to aid the
learning process. To generalise the problem representation only
relative properties (rather than specifics) could be used for
learning, and the two dimensions were combined into a single
total.

Several potential machine learning approaches were
considered for this task, and the decision tree regressor was
selected. The main reason was its ability to generate human-
understandable models of the players’ behaviour. This allows for
the tree to be sense-checked to ensure that it has captured a
reasonable approximation of human problem solving in this task.

Figure 3: Simple Tree. This was created by limiting leaf
size and depth before running the decision tree regressor.

Figure 4: Complex Tree. The unconstrained tree is too detailed to be easily readable (included to aid visualisation).

1468

Human-Evolutionary Gamification of a Bin-Packing Problem GECCO’19, July 13-17, 2019, Prague, Czech Republic

 5

The sklearn decision tree regressor from Scikit-learn [20] was
used to generate the trees that were used for this task.

The decision was made to use four inputs to train a decision
tree regressor with the combined total remaining bin space and
weight capacity of the target bin as the output. The four inputs
consisted of: (i) the total size of the selected box, given as a total
of box size plus box weight, (ii) the maximum bin space available
in any single bin as a combined total of size and weight (but not
including empty bins), (iii) the minimum bin space available in
any bin (but not including full bins or infeasible bins), and (iv)
the mean bin space available across all partially-filled bins.

Two versions of the decision tree were generated, a simplified
and more generalised shallow tree limited to a maximum depth
of three and a minimum leaf size of three (Fig. 3) and a more
complex and complete tree with no restrictions (Fig. 4). The
simplified tree was expected to be more robust when given
problems of different complexities, though the complex tree
might well perform better on problems that are very similar to
the training problem.

 Once the trees were generated, they were used in a mutation
function as part of a genetic algorithm (GA), as an alternative to
the standard mutation operator. This function operated by
selecting a box at random and removing it from the bin it was
located in. The state of the problem was then analysed for the
four tree inputs and the tree queried. This returned the amount
of available space to look for in a bin and found the bin that most
closely matched this value. The box was then added to that bin.

The GA used was a standard Genetic Algorithm function
from the Platypus library for Python [21]. This used a population
size of 100 solutions coded as lists of integer strings, with
simulated binary crossover (SBX) and tournament selection with
a tournament size of 2. The standard mutation operator made
use of the problem encoded as Gray code to perform a bit flip
mutation with a probability equal to 1/n where n is the
chromosome length. This results in, on average, one member of
the population being mutated at a single point each generation.

Whether the GA should use the standard mutator or the
human-derived mutator (HDM) was determined by probability,
with three different probabilities tested after initial trial runs.
The three probabilities used were a control condition in which
no human-derived mutation was used (No HDM), one in which
10% of human-derived mutation was used (HDM 0.1), and one in
which 40% of human-derived mutation was used (HDM 0.4).

Although the games had consisted of 4-bin, 6-bin, and 8-bin
problems these were too small to be a good test of the
methodology. The proposed size of the problem for the EA to
solve was determined as a problem that would be unfeasible for
a human to solve, but not so large as to require a supercomputer
to run the genetic algorithm. After some test runs a problem size
of 600 boxes with 300 bins was decided upon. This was 50 times
the size of the medium 6-bin problem that only a handful of the
players had completed.

In order to make a fair test, and given the stochastic nature of
GA, each condition was run 30 times. After a trial run it was
seen that the GA only started finding feasible solutions after
10,000 function evaluations, so it was decided to let the GA run

for 40,000 function evaluations each run with a population of
100.

During the testing phase an additional tree was generated
and tested that used only input from the poorer players, but (as
expected) this achieved worse results and generated fewer
feasible solutions so this was not pursued further.

The average score and the best scoring solution among the
population, and the number of feasible solutions (i.e. those that
do not violate the problem constraints) were recorded each run.

3 RESULTS AND DISCUSSION

3.1 Simple Tree
The first experimental results from running the GA with a

mutator based on the simple tree are shown in Figure 5. For
each run the average (mean) score across the feasible population,
the best score in the population, and the percentage of feasible
solutions were recorded. The 30 runs were then averaged and
compared.

In this test it was found that the No HDM condition
converged faster than the other two conditions both based on
the average population score and the best population score (Fig.
5). However, none of the three conditions found a feasible
solution until after at least 10,000 function evaluations.

While the No HDM convergence contrasted strongly with
the HDM 0.4 condition, it was far less noticeable when
compared against the HDM 0.1 condition. However, the HDM

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

A
ve

ra
ge

 S
co

re

Number of Function Evaluations

Simple Tree Average Scores

No HDM

HDM 0.1

HDM 0.4

Figure 5: Simple Tree Average and Best Scores. Score
was the mean across 30 runs across the population, out
of a maximum score possible of 300,000.

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

B
es

t
Sc

o
re

Number of Function Evaluations

Simple Tree Best Scores

No HDM

HDM 0.1

HDM 0.4

1469

GECCO’19, July 13-17, 2019, Prague, Czech Republic N. D. F. Ross et al.

6

0.1 condition overtook the No HDM condition before the full
run had finished and ended with better results in both categories.

From looking at more detailed results after all runs were
ended (Table 2) it is apparent that with regards to both mean
and minimum average score and best score HDM 0.1 was
consistently better across the 30 runs than both No HDM and
HDM 0.4. Although HDM 0.4 was able to achieve both the
highest maximum average score and maximum best score, it also
achieved the lowest minimum scores in both categories as well
showing the greatest variance.

Table 2: Simple Tree End Results

 Average
Score

Best
Score

% Feasible
Solutions

No
HDM

Mean 137,034 139,317 45
Max 142,379 145,314 59

Min 130,897 133,340 31

HDM
0.1

Mean 139,365 141,554 51
Max 144,952 147,540 61
Min 133,456 135,430 36

HDM
0.4

Mean 135,189 136,922 70
Max 148,354 149,382 84

Min 113,816 116,652 36
The most interesting difference apparent in Table 2 stems

from the percentage of feasible solutions in the final population;
as the amount of human-derived mutation increases the run
produces a larger percentage of feasible solutions.

For each of the three factors (Average Score, Best Score, and
Percentage Feasible Solutions) across the three groups (No
HDM, HDM 0.1, and HDM 0.4) in each data set of 30 runs a
single factor ANOVA was carried out, all of which found the
results differed significantly (Average Score p = .026; Best Score
p = .009; Percentage Feasible Solutions p < .001).

F-Tests were used to reveal any unequal variances before
two-sample t-Tests were carried out. These revealed significant
differences between No HDM and HDM 0.1 for Average Score
(t(58) = -2.96, p = .004), Best Score (t(58) = -2.89, p = .005), and
Percentage Feasible Solutions (t(58) = -3.29, p = .002).

When comparing No HDM with HDM 0.4 significant
differences were only found between the Percentage Feasible
Solutions (t(51) = -10.86, p < .001), while comparing HDM 0.1
with HDM 0.4 found significant differences in Average Score
(t(36) = 2.33, p = .025)), Best Score (t(36) = 2.66, p = .012), and
Percentage Feasible Solutions (t(47) = -8.76, p < .001).

The tests showed HDM 0.1 to have performed significantly
better in all three areas over the No HDM standard GA after
40,000 function evaluations, while HDM 0.4 had a significantly
greater percentage of feasible solutions in the population pool.

3.2 Complex Tree
The complex tree results showed a similar pattern to the

simple tree, though less pronounced with regards to HDM 0.4.
As can be seen in Figure 6 the No HDM condition converged
faster than the other two groups both with regards to best score
and average score, though only marginally faster than HDM 0.1.

As with the simple tree, the HDM 0.1 condition performed in
a very similar way to the standard GA (No HDM). The average
end results across the 30 runs after the 40,000 evaluations can be
seen in Table 3.

Single factor ANOVA were carried out for each of the three
factors (Average Score, Best Score, and Percentage Feasible
Solutions) across the three groups (No HDM, HDM 0.1, and
HDM 0.4), and again all three found significant differences in
the means (Average Score p < .001; Best Score p < .001;
Percentage Feasible Solutions p < .001).

Table 3: Complex Tree End Results

 Average
Score

Best
Score

% Feasible
Solutions

No
HDM

Mean 135,841 137,929 44
Max 141,996 144,170 56

Min 130,135 132,116 32

HDM
0.1

Mean 136,842 138,950 50
Max 143,213 144,986 60
Min 131,380 133,540 35

HDM
0.4

Mean 128,658 131,068 66
Max 142,821 144,534 80

Min 113,162 117,424 26
After testing for unequal variance between each pair of

conditions two-sample t-Tests were run. They found no
significant difference between the Average Score and Best Score
of the No HDM and HDM 0.1 groups (t(58) = -1.34, p = .19 and
t(58) = -1.37, p = .17 respectively), though Percentage Feasible

Figure 6: Complex Tree Average and Best Scores. Score
was the mean across 30 runs with a max score of 300,000.

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

A
ve

ra
ge

 S
co

re

Number of Function Evaluations

Complex Tree Average Scores

No HDM

HDM 0.1

HDM 0.4

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

B
es

t
Sc

o
re

Number of Function Evaluations

Complex Tree Best Scores

No HDM

HDM 0.1

HDM 0.4

1470

Human-Evolutionary Gamification of a Bin-Packing Problem GECCO’19, July 13-17, 2019, Prague, Czech Republic

 7

Solutions (t(58) = -3.85, p < .001) did differ significantly in favour
of HDM 0.1.

When comparing No HDM against HDM 0.4 all three
factors differed significantly; Average Score (t(35) = 4.31, p <
.001)) and Best Score (t(36) = 4.57, p < .001) in favour of No
HDM, and Percentage Feasible Solutions (t(36) = -7.36, p < .001)
in favour of HDM 0.4.

The comparison between HDM 0.1 and HDM 0.4 yielded
similar results, with HDM 0.1 having a significantly higher
Average Score (t(36) = 4.86, p < .001) and Best Score (t(38) = 5.18,
p < .001) but a significantly lower Percentage Feasible Solutions
(t(39) = -5.25, p < .001).

3.3 Simple Tree vs Complex Tree
The results from the simple tree runs were then compared to

the equivalent results from the complex tree. No significant
difference was found between the Percentage Feasible Solutions
when comparing both the HDM 0.1 (t(58) = 0.54, p = .59) and
HDM 0.4 (t(50) = 1.10, p = .27) conditions against themselves.

When looking at the Average Score, the simple tree
performed significantly better in both the HDM 0.1 (t(58) = 3.07,
p = .003) and HDM 0.4 (t(58) = 2.82, p = .007) conditions. This
was also the case with regards to the Best Score, with the simple
tree HDM 0.1 (t(58) = 3.22, p = .002) and HDM 0.4 (t(58) = 2.70,
p = .009) conditions outperforming the complex tree.

Both heuristics that derived from the simple tree
outperformed those derived from the complex tree. From looking
at a graphical comparison of the average and best solution value
(Fig. 7) over function evaluations, simple tree HDM 0.1
condition has the fastest convergence after the No HDM
baseline condition, while simple tree HDM 0.4 has the slowest.

3.4 Effect of Problem Size
Given the scale of the problem and the limited number of

function evaluations used, it was decided to see how the
different techniques performed on a range of problem sizes. The
initial problem size was set at 4 bins, the same size that the users
had played, and then doubled until reaching almost halfway
towards the 300-bin problem size tested above. The 4-bin
problem with 8 boxes has an easily enumerable search space of
48 = 65,536 possible combinations, but each doubling in size
causes the problem space to grow exponentially.

To give a greater chance to find the optimum each condition
used 200,000 function evaluations and ran 50 times instead of 30.
The simple tree was selected due to performance, and a fourth
condition involving the use of 100% human-derived mutation
was added, HDM 1.0. The maximum score for each problem is
known, so the scores were normalised to allow comparison
between problem sizes.

On the smaller problems increased use of the human-derived
mutation generates higher average scores (Fig. 8, top), but the
performance of the HDM 1.0 algorithm soon drops off. Both the
HDM 0.1 and HDM 0.4 algorithms outperform No HDM across
all problem sizes with regards to average score.

HDM 1.0 struggles to find the best score (Fig. 8, bottom)
across all problems, while the other three do very well with the
smallest two problems and then drop into a gradual decline. No
HDM, HDM 0.1, and HDM 0.4 all found the 4-bin optimum
every run, while HDM 0.4 was also able to find the optimum for
the 8-bin problem every run. From the 16-bin problem onwards
none of them were able to come close to reaching the optimum.

3.5 Discussion
The game presented the players with a simplified version of

the bin-packing problem, due to the limitations of user fatigue
and attention. Despite this, the heuristics derived from
gamification of this problem and analysis of the gameplay has
been shown to improve the quality of solutions discovered by an
evolutionary algorithm on a much larger problem. This suggests
the learned heuristics are scalable beyond the initial problem
formulations and indicate significant promise for the method to
be used on real-world scale operational research problems.

The simple tree outperformed the complex tree and it is
possible that this is due to overfitting of the initial problems by
the complex tree, which could potentially lead to less scalability.

The rate of application of HDM revealed a synergy between
HDM and the standard mutation that was not expected before
the experiments began. Increased usage of HDM (i.e. 40%) results
in a greater number of feasible solutions, but the quality of the
solutions overall is poorer than with the smaller 10% mutation.

The users that generated the data for the trees were
encouraged by the framing of the game to keep their solutions
feasible, which could explain why using the human-derived
mutation kept a larger percentage of feasible solutions in the
population.

Having a larger number of feasible solutions favours the
production of feasible offspring, but sometimes precludes the use

Figure 7: Complex Tree vs Simple Tree Score
Comparison

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

A
ve

ra
ge

 S
co

re

Number of Function Evaluations

Complex vs Simple Tree
Average Scores

No HDM

Complex HDM 0.1

Complex HDM 0.4

Simple HDM 0.1

Simple HDM 0.4

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

B
es

t
Sc

o
re

Number of Function Evaluations

Complex vs Simple Tree
Best Scores

No HDM

Complex HDM 0.1

Complex HDM 0.4

Simple HDM 0.1

Simple HDM 0.4

1471

GECCO’19, July 13-17, 2019, Prague, Czech Republic N. D. F. Ross et al.

8

of infeasible solutions in the short term to generate better
feasible solutions in the long term. Given the formulation of the
problem a single move can switch between a good and an
infeasible solution.

As a natural function of the problems generated for the game
the human-derived mutation was mainly obtained from the
middle parts of the problem-solving process. Different processes
might be employed by the users near the start or end of the
solution of a problem. A better approach could be to derive
algorithms for various stages of the problem and switch to them
as the state of the population changes, though this could also add
further complexity and make the approach less robust.

The simple tree gave a more generalised and approximate
output than the complex tree, and this worked better in almost
every area. This is not too surprising a result given the dangers
of overfitting that could come from using the complex tree.

It is worth noting that the 300-bin problem has an achievable
maximum score of 300,000 and none of the results within 40,000
function evaluations were able to reach even half of that. This is
not surprising given the size of the search space (300600) and the
limited number of function evaluations used. It could be seen
when looking at the effect of the problem size on performance
that even relatively small problems proved too difficult to reach
even 70% of the global optimum.

The HUGS system mentioned in [17] combined human
input/expertise with a version of a stock-cutting/bin-packing
problem. However, this was done by the user actively guiding
the optimisation process by assigning priority to areas of the
problem space and then running a problem-specific heuristic to

optimise the problem based on that guidance. This process
would then be repeated by the user until they were happy with
the result.

Capturing heuristics was done through observation of user
interactions rather than any systematic process and was used to
improve existing problem-solving heuristics rather than generate
new ones. This makes it difficult to compare the HUGS approach
to the approach taken in this paper, as it would be human
involvement during the optimisation process vs. an automated
approach taking advantage of human expertise. Creating a fair
comparison of time and function evaluations in these
circumstances would not be possible.

In future work the human-derived heuristic used in the
mutation operator could be tested against the standard
algorithms normally employed to solve the bin-packing problem.

4 CONCLUSIONS
In this paper a bin-packing game was proposed and created,

designed to capture human problem-solving heuristics. Data
captured from players of the game was processed to train a
decision tree regressor. This tree learned which bin to put a
given box into based on the general state of the problem at that
time. The general problem state was defined by mean, minimum,
and maximum available space across all partially-filled bins.

Two versions of this human-derived tree generated by the
machine learning process were then used within a mutation
operator for a GA, and for a varying percentage of the time to
make three different conditions; No HDM in which the human-
derived mutation was not used, HDM 0.1 in which the human-
derived mutation was used 10% of the time, and HDM 0.4 in
which the human-derived mutation was used 40% of the time.

After running each condition 30 times for 40,000 function
evaluations for each tree it was found that using a simple tree for
10% of the time instead of the standard mutation operator
achieved significantly better results both by score and feasibility
than using just the standard mutation operator or using the
human-derived mutation 40% of the time.

The use of gamification and machine learning to capture
human problem-solving behaviour for use within an
evolutionary algorithm raises the prospect of other human-EA
hybrids that can make use of the intuition and domain expertise
of humans with the fast-global search of the evolutionary
approach. The fact that behaviours discovered by non-experts on
small problems could be translated to a large-scale problem to
improve performance is particularly worthy of mention.

ACKNOWLEDGMENTS
This work was supported by Skipworth Engelhardt Asset
Management Strategists Limited (SEAMS) and the Human-
Computer Optimisation for Water Systems Planning and
Management (HOWS) project funded by the Engineering and
Physical Sciences Research Council (EPSRC) - grant
EP/P009441/1.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 16 32 64 128

N
o

rm
al

is
ed

 S
co

re

Problem Size

Mean Best Score

No HDM HDM 0.1

HDM 0.4 HDM 1.0

0.3

0.4

0.5

0.6

0.7

0.8

4 8 16 32 64 128

N
o

rm
al

is
ed

 S
co

re

Problem Size

Mean Average Score

No HDM HDM 0.1

HDM 0.4 HDM 1.0

Figure 8: Mean Average and Best Scores as problem size
increases. The problem size axis uses a base 2 log scale.

1472

Human-Evolutionary Gamification of a Bin-Packing Problem GECCO’19, July 13-17, 2019, Prague, Czech Republic

 9

REFERENCES
[1] G. Wäscher, H. Haußner, and H. Schumann, ‘An improved typology of cutting

and packing problems’, European Journal of Operational Research, vol. 183, no.
3, pp. 1109–1130, Dec. 2007.

[2] D. S. Johnson, ‘Fast algorithms for bin packing’, Journal of Computer and
System Sciences, vol. 8, no. 3, pp. 272–314, Jun. 1974.

[3] J. O. Berkey and P. Y. Wang, ‘Two-Dimensional Finite Bin-Packing
Algorithms’, J Oper Res Soc, vol. 38, no. 5, pp. 423–429, May 1987.

[4] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali, ‘Approximation and
online algorithms for multidimensional bin packing: A survey’, Computer
Science Review, vol. 24, pp. 63–79, May 2017.

[5] E. G. Coffman, M. R. Garey, and D. S. Johnson, ‘Approximation Algorithms for
Bin-Packing — An Updated Survey’, in Algorithm Design for Computer System
Design, Springer, Vienna, 1984, pp. 49–106.

[6] S. Martello and D. Vigo, ‘Exact Solution of the Two-Dimensional Finite Bin
Packing Problem’, Management Science, vol. 44, no. 3, pp. 388–399, Mar. 1998.

[7] E. Falkenauer, ‘A hybrid grouping genetic algorithm for bin packing’, J
Heuristics, vol. 2, no. 1, pp. 5–30, Jun. 1996

[8] J. F. Gonçalves and M. G. C. Resende, ‘A biased random key genetic algorithm
for 2D and 3D bin packing problems’, International Journal of Production
Economics, vol. 145, no. 2, pp. 500–510, Oct. 2013.

[9] M. A. Kaaouache and S. Bouamama, ‘Solving bin Packing Problem with a
Hybrid Genetic Algorithm for VM Placement in Cloud’, Procedia Computer
Science, vol. 60, pp. 1061–1069, Jan. 2015.

[10] E. K. Burke, M. R. Hyde, and G. Kendall, ‘Evolving Bin Packing Heuristics
with Genetic Programming’, in Parallel Problem Solving from Nature - PPSN IX,
Springer, Berlin, Heidelberg, 2006, pp. 860–869.

[11] X. Li, K. Deb, and Y. Fang, ‘A derived heuristics based multi-objective
optimization procedure for micro-grid scheduling’, Engineering Optimization,
vol. 49, no. 6, pp. 1078–1096, Jun. 2017.

[12] P. Ryser-Welch, J. F. Miller, and S. Asta, ‘Generating Human-readable
Algorithms for the Travelling Salesman Problem Using Hyper-Heuristics’, in
Proceedings of the Companion Publication of the 2015 Annual Conference on
Genetic and Evolutionary Computation, New York, NY, USA, 2015, pp. 1067–
1074.

[13] E. López-Camacho, H. Terashima-Marin, P. Ross, and G. Ochoa, ‘A unified
hyper-heuristic framework for solving bin packing problems’, Expert Systems
with Applications, vol. 41, no. 15, pp. 6876–6889, Nov. 2014.

[14] K. Sim, E. Hart, and B. Paechter, ‘A Lifelong Learning Hyper-heuristic Method
for Bin Packing’, Evolutionary Computation, vol. 23, no. 1, pp. 37–67, Feb. 2014.

[15] C. Tijus et al., ‘Human Heuristics for a Team of Mobile Robots’, in 2007 IEEE
International Conference on Research, Innovation and Vision for the Future,
2007, pp. 122–129.

[16] G. Kefalidou, G. Kefalidou, and T. C. Ormerod, ‘The Fast and the Not-So-
Frugal: Human Heuristics for Optimization Problem Solving’, p. 7.

[17] G. W. Klau, N. Lesh, J. Marks, and M. Mitzenmacher, ‘Human-guided search’,
J Heuristics, vol. 16, no. 3, pp. 289–310, Jun. 2010.

[18] C. Murawski and P. Bossaerts, ‘How Humans Solve Complex Problems: The
Case of the Knapsack Problem’, Scientific Reports, vol. 6, p. 34851, Oct. 2016.

[19] B. M. Good, S. Loguercio, O. L. Griffith, M. Nanis, C. Wu, and A. I. Su, ‘The
Cure: Design and Evaluation of a Crowdsourcing Game for Gene Selection for
Breast Cancer Survival Prediction’, JMIR Serious Games, vol. 2, no. 2, Jul. 2014.

[20] F. Pedregosa et al., ‘Scikit-learn: Machine Learning in Python’, Journal of
Machine Learning Research, vol. 12, p. 2825−2830, Oct. 2011.

[21] ‘Platypus - Multiobjective Optimization in Python — Platypus
documentation’. [Online]. Available:
https://platypus.readthedocs.io/en/latest/#. [Accessed: 06-Feb-2019].

1473

https://platypus.readthedocs.io/en/latest/

