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ABSTRACT

Border detection of melanoma and other skin lesions from
images is an important step in the medical image processing
pipeline. Although this task is typically carried out manually
by the dermatologists, some recent papers have applied evo-
lutionary computation techniques to automate this process.
However, these works are only focused on the polynomial
case, ignoring the more powerful (but also more difficult)
case of rational curves. In this paper, we address this problem
with rational Bézier curves by applying the bat algorithm,
a popular bio-inspired swarm intelligence technique for opti-
mization. Experimental results on two examples of medical
images of melanomas show that this method is promising, as
it outperforms the polynomial approach and can be applied
to medical images without further pre/post-processing.

CCS CONCEPTS

• Theory of computation → Bio-inspired optimiza-
tion; • Computing methodologies → Artificial intelli-
gence; • Applied computing → Health informatics;
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1 INTRODUCTION

1.1 Motivation

Cancer is one of the most critical and important concerns
of public and private medical and healthcare systems world-
wide. Some simple figures to put the problem into a proper
perspective: one in 5 men and one in 6 women worldwide will
develop cancer during their lifetime, and one in 8 men and
one in 11 women will die from the disease. It has also been re-
ported that more than 90 million people has been affected by
cancer in 2015, with more than 15 million cases arising every
year. The effects of cancer are devastating, with more than
9 million deaths annually and medical costs of more than
1.3 trillion USD in 2015. According to a recent report from
the International Agency for Research Cancer of the World
Health Organization1, these figures are still raising consis-
tently, with 18.1 million new cases and 9.6 million deaths in
2018.

This increasing cancer burden is due to several factors, in-
cluding population growth and ageing as well as the chang-
ing prevalence of certain causes of cancer related to economic
development and new social customs. For instance, the pop-
ularity of sunlight exposure is linked to a dramatic increase
in the number of cases of skin cancer and other skin diseases.
According to a report from the Australian Cancer Coun-
cil2: “Almost all skin cancers (approximately 99% of non-
melanoma skin cancers and 95% of melanoma) are caused
by too much UV radiation from the sun or other sources
such as solaria (solariums, sunbeds, and sun lamps).”

As a matter of fact, the number of cases of skin cancer
and other skin diseases is dramatically increasing in recent
years. As a consequence, healthcare systems are increasingly

1Web site: www.who.int/cancer
2Web site: www.cancercouncil.com.au
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demanded for diligent and accurate diagnosis and treatment
of skin lesions. Time is a key factor in this process, since early
detection is critical for an efficient treatment of melanoma
and other malignant skin lesions. It has been widely reported
that the five-year survival rate is about 99% for stage 0
melanoma (in situ), when the tumor is confined to the epider-
mis, while it is only 7% ∼ 20% for stage 4 melanoma, when
the cancer has spread to other parts of the body. These fig-
ures are a clear evidence of the important role of prompt
detection and accurate diagnosis.

The most common diagnostic procedure for skin lesions is
the visual inspection by a specialist. However, several types
of skin cancer such as melanoma are difficult to discriminate
visually from other skin lesions. Other diagnosis procedures
include the popular ABCDE method, the Menzies scale, the
7-point checklist, and different types of biopsy [10, 24]. Un-
fortunately, these procedures rely strongly on the clinical
experience of the specialists. Consequently, the diagnostic
procedures are time-consuming and the results are prone to
errors, due to the difficulty and subjectivity of human diagno-
sis. Other kind of procedures involve imaging tests, including
X-ray, computer tomography (CT) scan, magnetic resonance
imaging (MRI) scan, positron emission tomography (PET)
scan and others. In most cases, these procedures are used
to track the possible spread of melanoma to other parts of
the body rather than for early identification. Also, there is
still some subjectivity related to the visual perception of im-
ages. This makes the use of advanced computer-aided image
processing techniques a very useful tool as a second indepen-
dent diagnosis to improve the decision-making procedures
and workflow by clinicians, and for many other purposes. As
a result, the computerized analysis of medical images is be-
coming a very active area of research in the biomedical and
healthcare fields.

A major goal in computer-aided medical image process-
ing for dermatology is to develop reliable computer tools for
accurate identification and classification of melanoma and
other skin lesions. This is also the motivation of this work.
Obviously, this is a herculean task that cannot be addressed
in a single paper. In this work, we will restrict ourselves to a
particular task of the full image processing pipeline, namely,
the computation of the border curves of melanoma and other
skin lesions from medical images for image segmentation. We
refer the interested readers to [20, 25] for two interesting and
comprehensive reviews on techniques and algorithms for gen-
eral computer-aided diagnosis of skin lesions.

1.2 Computer-aided methods for medical

image processing in dermatology

Two commonly used image acquisition methods for early
diagnosis of skin lesions are macroscopic images and der-
moscopy. The former consists of taking a close picture of
the skin lesion with a standard digital camera and send it to
the specialist for remote examination. This option is of great
help for patients with difficult access to a dermatologist, such

as those living in remote areas or handicapped people. Der-
moscopy is more precise and reduces screening errors as it
enhances discrimination between real melanoma and other
skin lesions [1, 4]. Of course, both methods depend on the
human factor for accurate diagnosis. Although removing the
human factor in diagnostic procedures entirely is neither con-
venient nor desirable, it turns out that reliable and accurate
automatic methods could arguably help to alleviate the work
load on human specialists and reduce diagnostic errors.

The standard approach in automatic medical image pro-
cessing of skin lesions consists of three stages: 1) image seg-
mentation; 2) feature extraction and feature selection; and 3)
lesion classification. Image segmentation aims to identify the
area of the skin lesion and separate it from the background.
This stage is very important, as it represents the starting
point for the whole pipeline and it affects the accuracy of
the next stages. Popular segmentation approaches include
thresholding methods [5, 15], edge-based methods [2], clus-
tering methods [27, 37], level set methods [23] and active
contours [22], among others.

An important task in image segmentation is border de-
tection, which means computing the border between the
skin lesion and the surrounding healthy skin area. This bor-
der curve is very helpful for diagnosis, because it provides
valuable information for several tests (for instance, irregular
borders are a good indicator of possible malignant tumors).
Usually, the border detection is performed manually by the
dermatologists, who select a set of feature points by simple
visual inspection. Such feature points are then joined with
a polygonal line to enclose the area of the lesion. However,
this procedure does not represent the real process accurately,
since the border of skin lesions rarely happens to be linear.
In addition, interpolation schemes enforce the border to pass
through all feature points, even if they are simple outliers
due to measurement noise or other problems. Approximation
schemes, in which the curve passes near the feature points,
are more advantageous in terms of accuracy, computer mem-
ory, and data storage capacity, as the border can be accu-
rately described by a few tens of parameters even for large
collections of feature points. This is the problem addressed
in this paper, as explained in detail in next section.

2 THE PROBLEM

The problem to be solved in this paper can be formulated as
follows: suppose that we are provided with a sorted collection
of feature points {∆i}i=1,...,κ in R

2 obtained from medical
images by a trained dermatologist. Such feature points corre-
spond to the boundary curve between a skin lesion or tumor
and the skin background. Note that in this paper vectors are
denoted in bold. Since the feature points are collected in a
manual way, they are subjected to measurement noise, irreg-
ular sampling, and other artifacts. Therefore, an approxima-
tion scheme based on a smooth mathematical curve is gen-
erally more suitable for border detection than the linear in-
terpolation given by a polyline connecting the feature points
through simple straight lines. Consequently, our goal is to
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compute a parametric curve Φ(τ ) performing discrete ap-
proximation of the feature points {∆i}i in the least-squares
sense.

Several families of approximation functions can be used
for this task. Among them, the free-form parametric curves
(such as Bézier and B-spline curves) are popular choices, be-
cause of their flexibility and wide applicability in academia
and industrial settings [6, 26]. Some previous papers have
addressed the case of Bézier curves using different swarm in-
telligence methods, such as the bat algorithm [11] and the
cuckoo search algorithm [12]. A very recent paper applies a
hybrid modified firefly algorithm to this problem [13]. How-
ever, in all these cases, only the polynomial case has been
considered, while surprisingly the (more powerful) rational
case has been ignored so far. This paper aims at filling this
gap. In line with this, in this work we focus on the particular
case of rational Bézier curves [8, 26].

Mathematically, a free-form rational Bézier curve Φ(τ ) of
degree η is defined as:

Φ(τ ) =

η
X

j=0

ωjΛjφ
η
j (τ )

η
X

j=0

ωjφ
η
j (τ )

(1)

where Λj are vector coefficients called the poles, ωj are their
scalar weights, φ

η
j (τ ) are the Bernstein polynomials of index

j and degree η, given by:

φ
η
j (τ ) =

 

η

j

!

τ
j (1− τ )η−j with

 

η

j

!

=
η!

j!(η − j)!

and τ is the curve parameter, defined on the finite interval
[0, 1]. By convention, 0! = 1.

Now, our optimization problem consists of computing all
parameters (i.e. poles Λj , weights ωj , and parameters τi as-
sociated with the ∆i, for i = 1, . . . , κ, j = 0, . . . , η) of the
rational Bézier curve Φ(τ ) approximating the feature points
better in the least-squares sense. This means minimizing the
least-squares error, Υ, defined as the sum of squares of the
residuals:
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Now, taking:

ϕ
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η
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Eq. (2) becomes:

Υ = minimize
{τi}i
{Λj}j

{ωj}j
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, (4)

which can be rewritten in matrix form as:

Ω.Λ = Ξ (5)

called the normal equation, where:

Ω = [Ωi,j ] =

2
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Λ = (Λ0, . . . ,Λη)T , for i, j = 0, . . . , η, and (.)T means the
transposition of a vector or a matrix. In general, κ >>

η meaning that the system (5) is over-determined. If val-
ues are assigned to the τi, our problem can be solved as a
classical linear least-squares minimization, with the coeffi-
cients {Λi}i=0,...,η as unknowns. This problem can readily
be solved by standard numerical techniques. On the con-
trary, if the values of τi are treated as unknowns, the prob-
lem becomes much more difficult. Indeed, since the polyno-
mial blending functions φ

η
j (τ ) are nonlinear in τ and so are

the rational blending functions ϕ
η
j (τ ), the least-squares mini-

mization of the errors is a nonlinear continuous optimization
problem. Note also that in many practical cases the number
of data points can be extremely large, meaning that we have
to deal with a large number of unknowns. In other words,
we are dealing with a high-dimensional problem. It is also
a multimodal problem, since there might be more than one
set of parameter values leading to the optimal solution.

To summarize, the interplay among all sets of unknowns
(data parameters, poles, and weights) leads to a very difficult
over-determined, multimodal, multivariate, continuous, non-
linear optimization problem. In this work, we are interested
to solve this general problem. Therefore, instead of making
assumptions about the values of the free parameters, we are
aimed at computing all of them in an integrated way.

Unfortunately, it has been proved that the classical math-
ematical optimization methods are not able to solve this dif-
ficult problem. As a consequence, there has been a great
interest to explore other alternatives, including artificial in-
telligence techniques. Among them, the evolutionary com-
putation methods of biological inspiration are very powerful
tools for continuous optimization [7, 32]. For instance, as
discussed above, swarm intelligence methods have already
been applied to quite close (but simpler) problems, such as
the border detection problem with polynomial curves [11–
13]. Encouraged by these positive results, we follow a similar
strategy here for this (more difficult) rational problem. In
particular, we address our optimization problem by using a
powerful bio-inspired method called bat algorithm and de-
scribed in next section.

3 THE BAT ALGORITHM

The bat algorithm is a bio-inspired swarm intelligence algo-
rithm originally proposed by Xin-She Yang in 2010 to solve
optimization problems [33–35]. The algorithm is based on
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Require: (Initial Parameters)
Population size: P
Maximum number of generations: Gmax

Loudness: A
Pulse rate: r

Maximum frequency: fmax

Dimension of the problem: d

Objective function: φ(x), with x = (x1, . . . , xd)
T

Random number: θ ∈ U(0, 1)
1: g ← 0
2: Initialize the bat population xi and vi, (i = 1, . . . , n)
3: Define pulse frequency fi at xi

4: Initialize pulse rates ri and loudness Ai

5: while g < Gmax do
6: for i = 1 to P do
7: Generate new solutions by adjusting frequency,
8: and updating velocities and locations
9: if θ > ri then

10: sbest ← sg
//select best current solution

11: lsbest ← lsg
//generate local solution around s

best

12: end if
13: Generate a new solution by local random walk
14: if θ < Ai and φ(xi) < φ(x∗) then
15: Accept new solutions
16: Increase ri and decrease Ai

17: end if
18: end for
19: g ← g + 1
20: end while
21: Rank the bats and find current best x∗

22: return x∗

Algorithm 1: Bat algorithm pseudocode

the echolocation behavior of bats. The author focused par-
ticularly on microbats, as they use a type of sonar called
echolocation, with varying pulse rates of emission and loud-
ness, to detect prey, avoid obstacles, and locate their roosting
crevices in the dark.

3.1 Basic rules

The idealization of the echolocation of microbats can be sum-
marized as follows (see [33] for details):

(1) Bats use echolocation to sense distance and distinguish
between food, prey and background barriers.

(2) Each virtual bat flies randomly with a velocity vi

at position (solution) xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for
prey. As it searches and finds its prey, it changes wave-
length (or frequency) of their emitted pulses and ad-
just the rate of pulse emission r, depending on the
proximity of the target.

(3) It is assumed that the loudness will vary from an (ini-
tially large and positive) value A0 to a minimum con-
stant value Amin.

In order to apply the bat algorithm for optimization prob-
lems more efficiently, some additional assumptions are advis-
able. In general, we assume that the frequency f evolves on
a bounded interval [fmin, fmax]. This means that the wave-
length λ is also bounded, because f and λ are related to each
other by the fact that the product λ.f is constant. For practi-
cal reasons, it is also convenient that the largest wavelength
is chosen such that it is comparable to the size of the domain
of interest (the search space, for optimization problems). For
simplicity, we can assume that fmin = 0, so f ∈ [0, fmax].
The rate of pulse can simply be in the range r ∈ [0, 1], where
0 means no pulses at all, and 1 means the maximum rate of
pulse emission.

3.2 The algorithm

With these idealized rules indicated above, the basic pseudo-
code of the bat algorithm is shown in Algorithm 1. Basically,
the algorithm considers an initial population of P individu-
als (bats). Each bat, representing a potential solution of the
optimization problem, has a location xi and velocity vi. The
algorithm initializes these variables (lines 1-2) with random
values within the search space. Then, the pulse frequency,
pulse rate, and loudness are computed for each individual
bat (lines 3-4). Then, the swarm evolves in a discrete way
over generations (line 5), like time instances (line 19) un-
til the maximum number of generations, Gmax, is reached
(line 20). For each generation g and each bat (line 6), new
frequency, location and velocity are computed (lines 7-8) ac-
cording to the following evolution equations:

f
g
i = f

g
min + β(fg

max − f
g
min) (6)

vg
i = vg−1

i + [xg−1

i − x∗] fg
i (7)

xg
i = xg−1

i + vg
i (8)

where β ∈ [0, 1] follows the random uniform distribution,
and x∗ represents the current global best location (solution),
which is obtained through evaluation of the objective func-
tion at all bats and ranking of their fitness values. The su-
perscript (.)g is used to denote the current generation g.

The best current solution and a local solution around it
are probabilistically selected according to some given crite-
ria (lines 8-11). Then, search is intensified by a local ran-
dom walk (line 12). For this local search, once a solution is
selected among the current best solutions, it is perturbed
locally through a random walk of the form:

xnew = xold + ǫAg (9)

where ǫ is a random number with uniform distribution on the
interval [−1, 1] and Ag =< Ag

i >, is the average loudness of
all the bats at generation g.

If the new solution achieved is better than the previous
best one, it is probabilistically accepted depending on the
value of the loudness. In that case, the algorithm increases
the pulse rate and decreases the loudness (lines 13-16). This
process is repeated for the given number of generations. In
general, the loudness decreases once a bat finds its prey (in
our analogy, once a new best solution is found), while the
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rate of pulse emission decreases. For simplicity, the following
values are commonly used: A0 = 1 and Amin = 0, assum-
ing that this latter value means that a bat has found the
prey and temporarily stop emitting any sound. The evolu-
tion rules for loudness and pulse rate are as follows:

Ag+1

i = αAg
i (10)

r
g+1

i = r
0
i [1− exp(−γg)] (11)

where α and γ are constants. Note that for any 0 < α < 1
an any γ > 0 we have:

Ag
i → 0, r

g
i → r

0
i , as g →∞ (12)

In general, each bat should have different values for loud-
ness and pulse emission rate, which can be computationally
achieved by randomization. To this aim, we can take an ini-
tial loudness A0

i ∈ (0, 2) while the initial emission rate r0
i

can be any value in the interval [0, 1]. Loudness and emission
rates will be updated only if the new solutions are improved,
an indication that the bats are moving towards the optimal
solution. As a result, the bat algorithm applies a parameter
tuning technique to control the dynamic behavior of a swarm
of bats. Similarly, the balance between exploration and ex-
ploitation can be controlled by tuning algorithm-dependent
parameters.

Bat algorithm is a very promising method that has already
been successfully applied to several problems, such as mul-
tilevel image thresholding [3], economic dispatch [21], curve
and surface reconstruction [16, 17] optimal design of struc-
tures in civil engineering [19], robotics [28–31], fuel arrange-
ment optimization [18], planning of sport training sessions
[9], fractal image reconstruction [14], and many others. The
interested reader is also referred to the general paper in [36]
for a comprehensive review of the bat algorithm, its variants
and other interesting applications.

4 PROPOSED METHODOLOGY

4.1 Our Method

Our method consists of applying the bat algorithm described
in previous section to the border detection problem described
in Sect. 2. Solving this optimization problem requires to de-
fine some important issues. Firstly, we need an adequate
representation of the problem. Each bat, representing a po-
tential solution, corresponds to a vector of the form: Sg

i =
{Pg

i ,Wg
i }, (i = 1, . . . , NP ) with Pg

i = {τ g
i,1, . . . , τ

g
i,κ} ∈

[0, 1]κ, where the {τ g
i,j}j=1,...,κ are strictly increasing param-

eters, and Wg
i = {ωg

i,0, . . . , ω
g
i,η} ∈ [ωmin, ωmax]η+1, and

the superscript g denotes the generation index. The para-
metric vectors P0

i , W0
i are initialized with random values;

then, the elements in P0
i are sorted in increasing order. Sec-

ondly, we consider the fitness function described by the error
functional in (2). We remark however, that this fitting error
does not take into account the number of data points. To
overcome this drawback, we also compute the RMSE (root-
mean squared error), given by:

RMSE =

r

Υ

κ
(13)

Application of our method according to Algorithm 1 yields
new bats at each generation, representing the new solutions
of our optimization problem. The procedure computes the
final values of feature point parameters and weights. Then,
inserting them into Eq. (3), we apply least-squares minimiza-
tion to compute the values of {Λi}i=0,...,η according to Eq.
(4). The process is performed iteratively for a given number
of iterations Gmax, until the convergence of the minimiza-
tion of the error is eventually achieved. The bat with the
best global value for our fitness function is taken as the final
solution of our problem.

4.2 Parameter Tuning

It is well-known that metaheuristic techniques require proper
parameter tuning for good performance [7]. Unfortunately,
the choice of suitable parameter values is problem-dependent.
Consequently, our choice is mostly based on empirical re-
sults. For the population size we set the value NP = 100, as
larger populations take longer without changing our results
significantly. The method is executed for Gmax iterations. In
our simulations, we found that Gmax = 20, 000 is enough to
reach convergence for our examples. The initial and mini-
mum loudness, fmax, and parameter α are set to 0.5, 0, 2,
and 0.6, respectively. We also set the initial pulse rate and
parameter γ to 0.5 and 0.4, respectively. However, our re-
sults do not change significantly when varying these values
slightly. Finally, the parameters ωmin and ωmax are set to 0.5
and 3, respectively. Unfortunately, a detailed analysis about
how all parameters affect the method is not possible here
because of limitations of space.

4.3 Implementation Details

Regarding the implementation, our computational work has
been performed on a personal PC with a 2.8 GHz Intel Core
i7 processor and 16 GB of RAM. The source code has been
implemented by the authors in the programming language
of the popular numerical program Matlab, version 2015b.

5 EXPERIMENTAL RESULTS

5.1 Benchmark and Results

Our method has been applied to several examples of skin
lesion images obtained from a digital image archive of the
University Medical Center of Groningen, The Netherlands.
In this paper we analyze only two of them (labelled as Exam-
ple I and Example II) because of limitations of space. They
correspond to two medical images of melanomas, displayed in
the (top-left) pictures of Figs. 1 and 2, respectively. From the
images, a collection of 75 and 127 feature points respectively
have been selected by a specialist and joined with a polyline.
The medical images along with the feature points connected
with the polylines are displayed in the (top-right) pictures
of Figs. 1 and 2. We applied our method to these examples
by using rational Bézier curves of different degrees, and se-
lecting those minimizing the least-squares functional in Eq.
(2). The best fitting rational Bézier curves obtained with our
method, corresponding to η = 23 and η = 32 respectively,
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Figure 1: Example I (top-bottom, left-right): original melanoma image; melanoma image and polyline con-
necting the feature points; original and reconstructed feature points; convergence diagram.

are displayed as blue solid lines in the (bottom-left) pictures
of Figs. 1 and 2, respectively. The pictures also display the
original and the reconstructed feature points as empty red
circles and blue stars, respectively. Finally, the convergence
diagram of the RMSE over the generations is shown in the
(bottom-right) pictures of both figures.

From the pictures we can see that the method yields a
good fitting of the feature points for both examples. This fact
is particularly evident in the bottom-left pictures, where the
good matching between the original and the reconstructed
feature points for both examples is clearly visible. Our visual
observations of this good fitting are confirmed by our numer-
ical results, where we obtain an error value of 3.1204 for the
first example and 9.3995 for the second one. We also no-
ticed that the approximation is not optimal yet, as expected
from an approximation method. In particular, the original

data seems to be slightly more oscillating than the recon-
structed curve in both cases. We remark, however, that a
perfect matching between the original and the reconstructed
features points is not actually required for clinical practice.

5.2 Comparative Analysis

It is always convenient to perform a comparative analysis
of our method with other approaches described in the liter-
ature. Unfortunately, no previous references addressed this
problem with rational curves, so our analysis is based on
the comparison with the polynomial case with the bat algo-
rithm. Table 1 shows the values of the RMSE obtained with
the polynomial approach and our rational approach for the
two examples in this paper. For fair comparison, both ap-
proaches are addressed with the bat algorithm for the same
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Figure 2: Example II (top-bottom, left-right): original melanoma image; melanoma image and polyline con-
necting the feature points; original and reconstructed feature points; convergence diagram.

parameter configuration, including the number of iterations
and the degree of the curve. As shown in the table, the ra-
tional approach outperforms the polynomial one for the two
examples in this paper. Although the benchmark used here
is too small to draw firm conclusions on a general basis, these
results have been validated by other examples from the same
digital archive not discussed here because of limitations of
space.

6 CONCLUSIONS & FUTURE WORK

In this paper, we address the problem of computing the ratio-
nal border curve of melanomas and other skin lesions from
medical images. This is an important task for image seg-
mentation with relevant applications in medical diagnosis of
skin diseases. To the best of our knowledge, this is the first
work in the field considering rational functions instead of

Table 1: Comparative results of the RMSE with the
polynomial approach and the rational approach (our
method) for the two examples in this paper.

Example I Example II

Polynomial approach: 5.3613 11.7688

Rational approach: 3.1204 9.3995

the classical (and much simpler) polynomial functions. Our
method is based on the bat algorithm, a popular bio-inspired
swarm intelligence technique for optimization. Experimen-
tal results on two examples of medical images of melanomas
show that the proposed method outperforms the polynomial
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approach and can be applied to medical images without fur-
ther pre/post-processing. We conclude that the method is
promising for this problem.

Future work includes expanding our benchmark for a more
detailed analysis of our method and carrying out a larger
and deeper comparative work including other evolutionary
computation methods in the pool of methods for comparison.
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