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ABSTRACT
We propose a new approach for building recommender systems
by adapting surrogate-assisted interactive genetic algorithms. A
pool of user-evaluated items is used to construct an approximative
model which serves as a surrogate fitness function in a genetic
algorithm for optimizing new suggestions. The surrogate is used
to recommend new items to the user, which are then evaluated
according to the user’s liking and subsequently removed from the
search space. By updating the surrogate model after new recom-
mendations have been evaluated by the user, we enable the model
itself to evolve towards the user’s preferences.

In order to precisely evaluate the performance of that approach,
the human’s subjective evaluation is replaced by common contin-
uous objective benchmark functions for evolutionary algorithms.
The system’s performance is compared to a conventional genetic
algorithm and random search. We show that given a very limited
amount of allowed evaluations on the true objective, our approach
outperforms these baseline methods.
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1 INTRODUCTION
During the last century, consumer behavior shifted from buying
products to subscribing to services. Platforms like Spotify or Netflix
almost entirely replaced the need to buy CDs, DVDs or even digital
copies. However, besides offering an ultimate freedom of choice, this
overwhelming variety also causes an information overload, leaving
users with the problem of finding songs that match their taste.
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Luckily, a vast amount of research has been put into developing
and improving systems helping the user to deal with this overload
by recommending items that are likely to match his or her taste.

In contrast to the most popular recommender method of collabo-
rative filtering, our approach is not taking other users’ opinions into
account in order to increase the prediction precision. Instead, we
are using genetic algorithms to optimize suggestions with respect to
a surrogate model, constructed from the currently evaluated items
and updated after every suggestion. As frequently updating the sur-
rogate model is indirectly optimizing the model itself, the strategy
we propose is able to adapt to changes in the user’s taste and find
the most viable suggestions, even though similar items might not
have been evaluated yet. Thus we rely on the ability of the surrogate
model to suggest supposedly good items and then make drastic
updates if the suggested items has not been as well-received. We
argue that this approach may be able to recommend more diverse
items without the need to access other users’ data. To show the
viability of this concept from an algorithmic point of view, we sim-
ulate the user’s taste through common benchmarking functions for
evolutionary algorithms. Motivated by the user-interactive scenario
though, our experiments differ from common surrogate-assisted
algorithms in the the goal of recommendation, i.e., we explicitly
exclude any individuals that have already been evaluated by the
true objective function from our optimization process, yielding a
highly dynamic optimization process.

We first review some related work regarding recommender sys-
tems and surrogate-assisted genetic algorithms in Section 2. In
Section 3 we introduce the approach and provide more detailed ex-
planations on the parameters and surrogate models used. After that,
we evaluate the concept by testing different settings and analyze
the suitability of the different meta-models in Section 4. Finally, we
sum up the findings, discuss limitations and prospects and show
possibilities of future work in Section 5.

2 FOUNDATIONS AND RELATEDWORK
2.1 Recommender Systems
Research regarding recommender systems began in the mid-1990s
[8, 18] with the motivation of providing useful suggestions to users
in order to help themmake choices in a space too overcrowded to be
survey-able by a human. By overcrowded spaces, we refer to item
domains that consist of far more items than a user can compare
or evaluate. Also, the density of items in some areas of the given
domain decreases their comparability and exacerbates the human
selection.

In general, recommender systems rely on rating data provided by
the users. In an effort to predict highly rated items, they use filtering
methods to reduce the number of items that could be suggested
and recommend new items to their users so that these are likely to
match their tastes.
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Items may be characterized by their set of features and their
value to the user and classified by their complexity or scope they
require to be evaluated within. The term “active users” is often used
to describe the users recommendations are made to. Interactions of
the user with the system are often referred to as transactions. [19]

In a mathematical expression, recommender systems aim to
provide for a given user c ∈ C the recommended item

s ′c = argmax
s ∈S

u(c, s) (1)

where u : C × S → R is a utility function measuring the usefulness
of item s ∈ S to user c ∈ C , where R is a totally ordered set (like
real numbers R in a certain range, e.g.). A recommendation task
for an evaluation budget n is the problem of computing the best
recommendation s ′c for user c while using just n evaluations of
the utility function u. As usually n ≪ |S |, the recommendation
task has to approximate the result s ′c . Different methods have been
developed to extrapolate u or build a meta-model to make useful
suggestions s ′ [2].

Content-Based Approach. This approach recommends items based
on their similarity to items previously rated positively by the user.
For computing the similarity of items, generally, a comparison of
their features is used [19].

Genetic algorithms have been used to optimize suggestions ac-
cording to user profiles [21]. Similar to the approach we propose,
the incorporation of genetic algorithms allows for dynamic adap-
tation to changing user interests by optimizing filtering agents.
Another method is using the set of rated items to train a Bayesian
classifier to predict the usefulness of yet unrated items [6, 17].

The most common method used for keyword retrieval, called
term-frequency/inverse-document-frequency (TF/IDF), at its core
weighs occurring words by their frequency [2]. As an optimization,
an approach based on minimum description length (MDL) has been
suggested: MDL provides a framework to minimize the model’s
complexity by reducing the number of extracted keywords while
retaining the items’ discriminability [15].

Collaborative Approach. Considered to be themost popularmethod,
collaborative filtering recommends items that have already been
rated positively by users with a related taste [19]. In contrast to the
content-based approach being item-centered, this strategy could be
described as user-centered, clustering users with a similar rating
history into peers or virtual communities [8]. According to [5],
collaborative filtering algorithms can be classified into two types:
• Memory-based algorithms generally predict the rating of a
yet unknown item by calculating a weighted sum of this
item’s rating by other users, where the weight reflects the
similarity of those users to the active user. Therefore differ-
ent distance measures have been applied, for example, the
Pearson correlation coefficient as used in the Group Lens
project [18]. In an alternative approach, users are treated as
vectors; their similarity can then be measured by calculating
the cosine of the angles between them [5].
• Model-based algorithms generally employ probability expres-
sions, measuring the probability of a specific rating by the
user. Therefore Bayesian classifiers can be used for creating
clusters, or Bayesian Networks can be employed [16].

Further Approaches. Besides these two approaches, knowledge-
based, community-based and demographic methods have been sug-
gested [19]. Also, hybrid recommender systems as presented in [3]
have been shown to overcome some of the approaches’ weaknesses
by combining them.

2.2 Surrogate-Assisted Genetic Algorithms
This kind of genetic algorithms is applied to problems where an
explicit fitness function does not exist, for example in interactive
scenarios, but also to areas where the computational costs of the
fitness function would be too expensive. When replacing the real
fitness function by the use of approximation, however, the accuracy
is generally correlated negatively with the computational cost. [7]

Evolution Control. In contrast to the early stage of research,
where solely the surrogate model was used for evaluation, sur-
rogates are commonly used in combination with the real fitness
function as far as possible, in order to prevent the convergence
towards wrong optima introduced by the surrogate. Methods for
this distribution are often referred to as model management or
evolution control. Those can be divided into three categories: [10]
• In individual-based control, each generation some individ-
uals are evaluated using the real fitness function while the
rest is evaluated using the surrogate. Re-evaluating the best-
approximated individuals using the real fitness function has
been shown to further reduce computational costs [10]. An-
other approach applied in [13] utilizes clustering to evaluate
only the most representative individuals. Re-evaluating the
most uncertain predictions has also been proven to be useful,
increasing the meta-model’s prediction precision by explor-
ing still less evaluated areas. As measures for the prediction
accuracy, simple distance-based techniques, as well applica-
tions of Gaussian processes have been proposed [10].
• Generation-based control evaluates some generations en-
tirely using the real fitness function, while the other genera-
tions are approximated.
• Population-based control employs coevolution with multi-
ple populations using different meta-models, while the mi-
gration between populations is allowed to individuals. A
homogeneous incorporation using neural network ensem-
bles, benefiting from diverse predictions by those has been
proposed in [13]. Also, heterogeneous methods, utilizing a
population-based model management to employ surrogates
of different fidelities have been investigated [20].

It has also been shown that prevention of convergence towards
false optima that could be introduced by the surrogate’s prediction
errors needs to be considered [12].

While mainly used for fitness approximation, surrogates have
also been applied to the population initialization, mutation, and
crossover guiding those otherwise probabilistic mechanisms [9].

Regarding data sampling both off-line techniques, i.e., training
the meta-model before the optimization, and on-line techniques,
i.e., continually updating the surrogate during the optimization
process, have been applied [9].

Meta-models. Methods for constructing meta-models can gener-
ally be divided into three categories by their level of approximation.
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Figure 1: The surrogate-assisted genetic recommender sys-
tem. A pool of user-evaluated items is used to train a meta-
model (1), which in turn is used as a surrogate fitness func-
tion in a genetic algorithm optimizing recommendations (2).
Once suggest-able and potentially valuable individuals are
optimized, they are suggested to the user, evaluated against
his or her mental-model and the meta-model is updated to
optimize new suggestions (3). This cycle is carried on until
the recommendations converge, i.e., no more new or valu-
able items are found.

Problem approximation, i.e., trying to replace the original problem
with a similar problem which is easier to solve, functional approxi-
mation, i.e., trying to simplify or approximate the original fitness
function, and evolutionary approximation, specific to evolution-
ary algorithms containing methods like fitness inheritance or the
clustering strategy mentioned above [9]. As concrete approxima-
tion models, different polynomial models, Kriging models, support
vector machines and neural networks have been suggested [9].

The approach presented in [14] follows our motivation and em-
ploys interactive evolutionary computation, combined with a meta-
model to embed the human expert domain knowledge, solving
computationally expensive modified nodal analysis.

To compensate for the lack of training data available in the use
of interactive genetic algorithms in conjunction with surrogate-
assisted fitness approximation, the approach presented in [22] em-
ploys co-training of radial basis function networks in a homoge-
neous multi surrogate fashion. Furthermore, they attempt to handle
uncertainties of human interval-based fitness evaluations using a
best-strategy individual-based model management.

Besides the application areasmentioned above, surrogate-assisted
genetic algorithms have also been found to be helpful for dynamic
optimization, constrained optimization and applied to higher opti-
mization robustness [10, 11].

3 APPROACH
The approach we present can be classified as a content-based rec-
ommender system, using two different model-based techniques for
filtering, where the results are optimized using a aurrogate-assisted
genetic algorithm (SAGA). The system is built cyclically in order
to improve itself among the suggestions and adapt to changes in

the user’s taste. See Figure 1 for visual reference depicting the sys-
tem architecture as motivated by the use case of human-centered
recommender systems.

For a given user c ∈ C , we assume that user c can evaluate any
item s ∈ S according to his liking. This evaluation is described by
the utility function uc : S → R, assuming that the user’s liking can
be encoded in R. We also call u the mental-model of the user in the
context of our approach, as it describes the user’s true intent.

Note that for the purpose of this paper, we are more interested in
testing the capabilities of the algorithm than testing user interaction.
Thus, for the mental-model uc we employ well-known and well-
defined functions commonly used for benchmarking evolutionary
algorithms, i.e., the Bohachevsky, Ackley and Schwefel functions.
Accordingly, our item space is S = R2 to fit these functions [1].

Given a set of already evaluated items S ′ ⊂ S , the goal of our
recommender system is to provide us with an item recommendation

s∗ ≈ argmax
s ∈ S\S ′

uc (s) (2)

that is the best item not yet discovered by the user. However, we
aim to approximate that item without actually calling u and thus
allow for some error regarding optimality. Instead we return

ŝ ≈ argmax
s ∈ S\S ′

ûc (s, S
′) (3)

for a surrogate utility function ûc : S × 2S → R, which we call the
meta-model. The meta-model allows us to describe the suspected
quality of items without actually evaluating them with respect
to u. Note that in order to minimize errors, the meta-model may
take into account all the already evaluated items S ′. The defining
feature of this recommendation-based instance of a SAGA is that
the best recommendations according to the meta-model are then
subsequently evaluated using the mental-model, i.e., S ′ ← S ′ ∪ {ŝ},
and thus removed from the search space S \ S ′.

As meta-models, a polynomial regression model fitted to the
training data using the method of least squares, and an interpola-
tion model utilizing radial basis function networks are tested and
compared in this paper:

• For the surrogate model based on polynomial regression we
employ the second order polynomial ŷ = β0+

∑
1≤i≤n βixi +∑

1≤j≤n βn+jx
2
j as suggested in [9]. The model is fitted to

the training data, i.e., the 100 currently evaluated items using
the least squares method, which is why we shortly refer to
this surrogate as “LSM”. Thus, given the 2d + 1 × n input
matrixX and then×1 responsematrixY , derived from S ′, the
fitness uc (s) for any unknown item with the d-dimensional
value vector s can then be estimated by ûc (s, S ′) = s Θ̂ with

Θ̂ =
(
XTX

)−1
XTY .

• To build an interpolation-based model we use radial basis
function networks and refer to this model as “RBF”. As the ac-
tivation function we utilize the minimization adopted Gauss-

ian function ϕ(x) = 1 − e−
(
x2
2σ 2

)
.

Given a set of n input vectors and the target vector T =
(t1, ..., tn ), any unknown item’s fitness can be approximated
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by ûc (s, S ′) =
∑N
n=1wnϕ (∥s − sn ∥) withW = Φ−1T , where

Φ =


ϕ (∥s1 − s1∥) · · · ϕ (∥s1 − sn ∥)

...
. . .

...

ϕ (∥sn − s1∥) · · · ϕ (∥sn − sn ∥)

 ,
using the euclidean norm ∥p − q∥2 as a distance function.
For finding suitable values for σ , we use a diversity-based
method as suggested in [4], setting the width of all activation
functions to the average distance between the currently eval-
uated items’ values. This method results in a wider prediction
landscape when the item pool is diverse and a narrower eval-
uation landscape once the evaluated items start converging
towards an optimum.

Individuals to be recommended are selected using the best-strategy,
i.e., individuals with the highest predicted fitness value according to
û are recommended, thus added to the item pool S ′, and evaluated
according to u. The amount of suggested individuals per cycle is a
free parameter of this approach (cf. Section 4).

4 EVALUATION
4.1 Benchmark Objectives
In order to run a multitude of tests on the performance of the em-
ployed approach and the employed models, we opt for standard
evolutionary benchmark functions instead of real human interac-
tion. We used the implementation for Bohachevsky, Ackley, and
Schwefel functions provided by [1]. See Figure 2 for a small illus-
tration. All of these are constrained to a specific subset of R2 and
are to be minimized with a best fitness value of 0. Note that these
three benchmarking functions were chosen for their different land-
scape structure, modeling both very obvious, focused landscapes
and more erratic ones. However, this selection is obviously limited
and can arguably be expanded.

(a) Bohachevsky objective (b) Ackley objective (c) Schwefel objective

Figure 2: Function plots for the (a) Bohachevsky, (b) Ackley,
and (c) Schwefel benchmark functions for two-dimensional
input. Images taken from [1].

4.2 Parameter Optimization
To test and compare different settings, data regarding the best item’s
fitness and accepted suggestion (in every suggestion cycle) as well
as the fitness of the best real-evaluated item and the cycle of conver-
gence (after the fixed number of recommendation cycles) are saved
for each test run. The cycle of convergence is represented by the
last recommendation cycle in which at least one suggestion was ac-
cepted. The number of accepted suggestions is obtained by counting
the suggestions that are evaluated better than the worst evaluated
item at that time. For enhanced comparability, the number of ac-
cepted suggestions is then normed with the number of suggestions,

so that this variable displays the success in the range [0; 1]. The
following section will provide tests and evaluations regarding the
population-handling technique, the rate of evaluation, the amount
of suggestions, and the optimal number of recommendation cycles.
Every test setup is performed in 10 repetitions and the results are
averaged in order to get a more representative result, less influenced
by possible outliers, also illustrating the robustness. To keep the
computational efforts reasonably low, all the tests are made based
on two-dimensional versions of the objectives introduced above.

Rate of Evaluation and Population-Handling Technique. Test re-
sults on different evaluation rates, i.e., number of optimization
cycles before suggesting, ranging from 1 to 64, as well as the im-
pact of resetting the pool of individuals or maintaining that pool
throughout the recommendations are visualized in Figure 3.

Overall, the test results imply that applying a no-reset population
handling strategy yields a better outcome if the model is not at
risk to converge towards a local optimum of the benchmark (see
results for the Bohachevsky benchmark). A counterexample for this
can be observed at the results for the LSM model on the Ackley
benchmark. Also, choosing lower rates, i.e., shorter optimization of
suggestions, further reduces the risk of introducing false optima to
the surrogate by decelerating the model’s convergence. Otherwise,
higher rates are able to benefit the system’s performance, as seen at
the rest results for the LSM model on the Bohachevsky benchmark.

Amount of Suggested Individuals per Cycle. Regarding the amount
of recommendations per cycle, numbers from 1 through 8 have
been tested; test results can be seen in Figure 4. Overall, a higher
number of suggestions benefits the systems performance, especially
in combination with shorter optimization of those, as this leads to
a higher diversity of recommendation, which could counteract the
risk of the model’s convergence towards a local or false optimum.
Also, the comparably local perspective of the RBF model, causing
an overall worse performance than the LSM model, seems to be
neutralized by this effect, as seen in the results for the RBF model on
the Bohachevsky benchmark. The results for the LSMmodel on both
the Bohachevsky and Ackley benchmarks show less correlation, as
the results are already quite good and further improvement would
be hard to achieve, especially with this more globally oriented
surrogate model.

System Convergence and Number of Recommendation Cycles. As
the tested system is intended to work in an interactive scenario,
we strive for an overall low amount of real fitness evaluations. In
order to further reduce those, additional tests have been carried
out to determine the minimal amount of recommendation cycles
required. The convergence of the system, i.e., if it is still able to
make valuable recommendations is measured by the number of
accepted suggestions while the performance of the surrogate and
its convergence can be derived from the fitness of the currently best
real-evaluated item. The test results visualized in Figure 5 show that
all of the systems mostly converge within about 100 cycles, which,
depending on the specific settings requires about 1000 real fitness
evaluations at maximum. Reaching further improvement with a
higher number of recommendation cycles could not be justified by
the amount of additional real evaluations that would be needed.
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Figure 3: Benchmarking different Evaluation Rates (x-axis) on the Bohachevsky (red/orange), Ackley (blue) and Schwefel
(green) objective. The LSM- and RBF-Model are compared with a Reset (lighter color) and NoReset (darker color) population-
handling technique. Test results for ten iterations of each test setup are displayed by box-plots for the Best Fitness on a
logarithmic scale.

Figure 4: Testing the impact of the number of suggestions (x-axis) per recommendation cycle on the Bohachevsky (red/orange),
Ackley (blue) and Schwefel (green) objective. Comparing the LSM and RBFmodels by their Best Fitness, displayed by box-plots
on a logarithmic scale. Concrete parameter settings for the Evaluation Rate and the population-handling technique are shown
in the legend below.
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Figure 5: Evaluating the optimal number of recommendation cycles (x-axis) needed for both LSM and RBF models on the
Bohachevsky (red/orange), Ackley (blue) and Schwefel (green) objective. The optimization progress represented by the Best
Fitness (left y-axis) is visualized by a line graph on a logarithmic scale, the share in accepted suggestions (right y-axis) rep-
resented by dotted line graphs. Concrete parameter settings for the Evaluation Rate, population-handling technique, and
number of suggested items per recommendation cycle are displayed in the legend below.

4.3 Comparison of System Performance
In order to put the Surrogate-Assisted Genetic Recommender Sys-
tem’s (“SAGRS”) performance into a context, we compare it to the
conventional Genetic Algorithm (“GA”). For all evolutionary pro-
cesses (both within the SAGRS and for the GA itself), a selection
factor of 0.9, a mutation probability of 0.1, and a recombination
probability of 0.05 are used. Furthermore an equal amount of true
fitness evaluations neval is retained, defining the population size
npop and the number of generations ngen in even distribution, such
that npop = ngen =

⌊√
neval

⌋
. If compared to LSM and RBF models

with different amounts of true evaluations, the higher one is used
to compute the settings.

To further validate the necessity and the performance of the
meta-models used and to get an impression of the impact the ge-
netic optimization has, comparisons against a random search strat-
egy (Random Recommender, “RR”), integrated into the system the
same way the genetic optimization is, are drawn. Random search
is implemented as a genetic optimization with an evaluation rate
of 0, causing the optimization to be skipped and the system to
recommend the initially best-estimated individuals. As parameters
for this random-search-adopted recommender, an evaluation rate
of 0 and a reset population-handling technique as well as the op-
timal settings for the number of suggestions and the amount of
recommendation cycles (as evaluated in the previous sub-section)
are used. From a broader perspective, this system could also be
seen as a conventional content-based recommender-system, mak-
ing suggestions solely based on the estimation of the unknown
item’s rating. Concrete settings for all of those variable parameters
of each system compared are annotated in the legends of the plots.

Bohachevsky. The comparison results seen in Figure 6 show that
the SAGRS outperforms the Genetic Algorithm as well as the Ran-
dom Recommender with both approximation models easily. The
reason for this is most likely that the Genetic Algorithm cannot
handle such a low amount of evaluations, i.e., it is not able to offer
convergence towards better fitness areas with such small amounts
of individuals and optimization cycles.

The Random Recommender, also performing better than the Ge-
netic Algorithm, shows that the incorporation of meta-models has
a distinctly positive impact on the system’s performance. Compar-
ing the Surrogate-Assisted Genetic Recommender to the Random
Recommender furthermore provides evidence that the optimization
of suggestions has an affirmative effect.

The LSM model apparently has the best outcome, but also the
RBF model performs surprisingly well. With 100 recommendation
cycles of four suggestions, optimized comparably long from a pop-
ulation that is retained over the runtime, the LSM model clearly
yields profit from its similarity to the objective and its global es-
timation capabilities. The RBF model, on the other hand, takes
advantage from an increased diversity of suggestions, as a result
to their short optimization in conjunction with the high amount
of recommendations per cycle, allowing for a better exploration of
the objective, thus counteracting the model’s local perspective.

Ackley. The comparison results seen in Figure 7 show that, simi-
lar to the Bohachevksy objective, the SAGRS is able to outperform
the Genetic Algorithm as well as the Random Recommender with
both approximation models. Still, the Genetic Algorithm does not
accomplish convergence towards any good solutions with this low
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Figure 6: Performance comparison of the SAGRS using an
LSMmodel (blue) and an RBFmodel (green), a conventional
genetic algorithm (dark grey), and a random recommender
based on the LSM (blue-grey) and RBF (green-grey) model
on the Bohachevsky objective. Their outcome regarding the
best fitness is visualized by box-plots on a logarithmic scale.
Concrete parameter settings are shown in the legend.

amount of fitness evaluations, which seems obvious, given the fact,
that Ackley is even harder to be optimized than Bohachevsky, where
it already failed.

Even though the results are allocated on a denser expanse, due
to the objective’s comparably small fitness range, it still can be
perceived that the Random Recommender results in a better out-
come than the Genetic Algorithm, while being outperformed by the
SAGRS. Therefore, the implications about the usefulness of both the
optimization of suggestions and the utilization of approximation
models can still be endorsed for this specific benchmark.

While mostly performing worse than the LSM model, the RBF
model is able to reach even better results at some times. With a
comparably short optimization and a high number of suggestions,
the RBF model can benefit from a higher diversity of recommenda-
tions, as seen before. In contrast, the LSM model is able to prevent
being misdirected by the objective’s local optima, by not retaining
previous populations, therefore requiring longer optimizations, and
suggesting a high amount of individuals.

Schwefel. The comparison results seen in Figure 8 show that
the SAGRS is able to slightly outperform the Genetic Algorithm
and offers similarly good results compared to the Random Recom-
mender. After performing badly for the previous two benchmarks,
which could be classified as easier to be optimized than Schwefel,
the Genetic Algorithm shows good results despite the low number
of evaluations.

In contrast to the previous comparisons, the Random Recom-
mender shows a comparably better performance than the SAGRS.
Considering their low evaluation rate of 1, hardly differing in effect
to a rate of 0, and that they the same population-handling technique,
such outcome could have been presumed with regard to the test
results for the Schwefel objective in the previous section. Still, the
positive impact of the use of approximation models as well as the
better performance of the LSM model due to its global estimation
capabilities can be seen in the results.

Figure 7: Performance comparison of the SAGRS using an
LSMmodel (blue) and an RBFmodel (green), a conventional
genetic algorithm (dark grey), and a random recommender
based on the LSM (blue-grey) and RBF (green-grey) model
on the Ackley objective. Their outcome regarding the best
fitness is visualized by box-plots on a logarithmic scale. Con-
crete parameter settings are shown in the legend.

Figure 8: Performance comparison of the SAGRS using an
LSMmodel (blue) and an RBFmodel (green), a conventional
genetic algorithm (dark grey), and a random recommender
based on the LSM (blue-grey) and RBF (green-grey) model
on the Schwefel objective. Their outcome regarding the best
fitness is visualized by box-plots on a logarithmic scale. Con-
crete parameter settings are shown in the legend.

The short optimization, combined with the high amount of sug-
gestions and the reinitialization of the population, causes the con-
vergence of both meta-models to be decelerated to a high degree,
preventing them from converging towards the distinct local optima
of the objective.

5 CONCLUSION
We proposed a framework for building systems that are able to
make recommendations based on content that has been evaluated
by a user. We assumed that user preference can be modeled by a
real-valued function called the mental-model, i.e., the true utility
to be measured from the user evaluating a given item. In order to
estimate the true utility of items yet unknown to the user, we used
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a polynomial regression model (fitted using the method of least
squares) and an interpolation model (using radial basis function
networks) as surrogate models. These were employed by a genetic
algorithm to optimize for the best item that has not yet been evalu-
ated according to the mental-model. By evaluating these suggested
items on the mental-model, we improve our surrogate model but
also force a dynamic change in the mental-model.

We evaluated and tested the approach by replacing the subjec-
tive human evaluation with three different objective benchmark
functions. Evaluating and optimizing the impact of the evaluation
rate, population-handling technique, number of suggestions and
number of recommendation cycles, we realized that decelerating
the meta-model’s convergence helps to overcome local optima of
the objective, and aids the system to converge towards the global
optimum.

Limitations. As we replaced the human evaluation with bench-
mark functions, the influences of human evaluation, even though
considered, are not tested nor evaluated. Therefore an applicability
of this approach as an interactive system cannot be stated. Further-
more, the use of those benchmarks compensates for the need of
an appropriate classification of items, which plays an important
role when applying the system to real items. Also, all tests were
only made with two-dimensional values, which would be too few
for accurately classifying actual items. It should also be noted that
while the benchmark functions are well-established for testing ge-
netic algorithms, it is still to be shown if the approach generalizes
to other functions beyond that. When used in a real-world applica-
tion, especially with a human interaction, the optimized amount
of 1000 evaluations would still be a considerably high amount of
evaluations to be demanded from a single user.

Future Work. As the scope of the performed tests is limited,
further tests, especially evaluating and optimizing the system’s
real-world applicability should be performed. To test the system’s
ability adapting to a changing taste of the user, evaluations could
be made using a changing fitness landscape for the mental-model,
for example, the Moving Peaks benchmark presented in [1]. Also, a
higher dimensionality of the items’ features should be tested to get
a more representative image of the performance. Another test to
be performed is the reaction to noisy fitness functions, as a human
evaluation might involve uncertainty.

Since the approximation models showed some weaknesses, a fur-
ther improvement of those should also be considered. Even though
considered to be a more powerful model, the radial basis function
network was mostly outperformed by the polynomial regression
model, due to a too local point of view, resulting from the interpola-
tion technique. To counteract these constraints, training the model
with fewer radial basis function nodes by clustering the sample
data might be helpful. An alternative approach for constructing a
meta-model could utilize a Gaussian process as suggested in [10],
which already offers the Gaussian mean and variation as a measure
of certainty. Based on the idea of hybrid recommender systems, a
combined incorporation of both surrogates might help to overcome
some of their weaknesses, especially due to their different level

of approximation. Having shown that the diversity of suggestions
is able to influence the model’s convergence to prevent the con-
vergence towards local optima, active control over the exploration
and exploitation might be useful. Therefore, a most-uncertain or
novelty-based technique for selecting items to be recommended
could be used, which would need the approximation models to be
extended by a measure of certainty.

Lastly, the approach should be implemented in a real-world
scenario to really test the human interaction instead of making
assumptions about it. Most importantly, different methods for in-
corporating the human evaluation need to be evaluated to provide
a helpful tool, assisting its users to deal with the vast variety of
possibilities most efficiently.
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