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ABSTRACT 
Predicting1 remaining useful life (RUL) of plasma equipment 
becomes an important issue for semiconductor manufacturing in 
this decade. If RUL can be accurately estimated, the schedule of 
maintenance can be proper to moderate the waste and cost of the 
production. Digital Radio Frequency Matching Box (RF-MB) is an 
essential equipment in the semiconductor manufacturing 
process. The status of RF-MB will be recorded by the Fault 
Detection and Classification (FDC). In order to establish the RUL 
of RF-MB, we use Fisher Discriminant Analysis (FDA) for feature 
selection to concentrate the leading variables in FDC. We 
marked the first 2 days of the RF-MB operation as “Good” and 
marked the last 2 days before the failure of RF-MB as “Bad”. We 
used eXtended Classifier System with continuous-valued inputs 
(XCSR) to learn the well-labeled FDC data. The results show that 
XCSR can quickly find patterns and meaningful variables. The 
average accuracy of XCSR is 97.3% and the average missing rate 
of rules is only about 1.6%. The results confirmed that XCSR is 
capable of alerting related operator before the plasma 
component reaching its residual life. In the future, we will use 
XCS with Function approximation (XCSF) to more accurately 
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approximate the function of RUL. We look forward to building a 
complete assessment of RUL. 

CCS CONCEPTS 
• Computing methodologies → Machine learning → 
Machine learning approaches → Rule learning 

KEYWORDS 
Fisher Discriminant Analysis (FDA), eXtended Classifier System 
(XCS), Digital Radio Frequency Matching Box (RF-MB), 
Remaining Useful Life (RUL) 

1 INTRODUCTION 
Industry 4.0 is a high-tech project proposed by the German 
government using computerized, digitalized, and intelligent 
ways to improve the production and quality of manufacturing. 
Semiconductor industry is an important indicator for the 
development of the four industrial evaluation. Many 
semiconductor manufacturers transform their manufacturing 
processes into fully automated intelligent controls. One of 
important issues for semiconductor manufacturing process is 
pre-diagnosis of plasma equipment failure. In the past, 
semiconductor manufacturer can only restore the plasma 
equipment after an anomaly occurred. Such process control 
brings two main cost losses. One is to scrap the semi-product 
when anomaly occurred, and the other is to suspend the 
production line during repair. If the remaining useful life (RUL) 
of plasma equipment could be accounted in advance, we can 
schedule the maintenance procedure to avoid manufacturing 
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products without knowing the abnormality of the plasma 
equipment. Arranging a maintenance plan in advance can help 
us shorten the preparation time and reduce the scrap rate of 
products in manufacturing process. Therefore, it is necessary to 
use an intelligent way to predict the RUL of the plasma 
equipment to accurately control the production process, which is 
the most urgent issue for semiconductor manufacturing process.  

Digital Radio Frequency Matching Box (RF-MB) machine is 
an essential equipment in the semiconductor manufacturing 
process. When operating, the Fault Detection and Classification 
(FDC) continuously record the statue of RC-MB. We want to 
figure out the appropriate algorithm to evaluate the RUL of RF-
MB though FDC data. Since the RUL of the plasma equipment 
will change slightly with the environment, such as temperature 
and humidity, it is necessary to apply an algorithm that is 
suitable for adapting to dynamical changes. In the past, we have 
successfully applied Zeroth-level Classifier System with 
continuous-valued inputs (ZCSR) for targeting the optimal 
impedance in RF-MB [1]. Here, we evaluate an algorithm called 
eXtended Classifier System(XCS) for predicting the RUL of RF-
MB. XCS is a rule-based machine learning method. XCS 
recalibrate its rule set by interacting with the environment and 
modifying its rule set by adopting Reinforcement Learning (RL) 
and Genetic Algorithm (GA) [2]. XCS has a special mechanism 
called “Covering”. When the rule set of XCS does not match the 
condition of the current environment, the “Covering” 
mechanism will activate and generate a new rule that matches 
environmental condition. The “Covering” mechanism allows 
XCS to instantly recalibrate its rule set (model) for unseen data 
without re-training and re-testing the entire rule set. Therefore, 
XCS is suitable for online learning. In addition to applying 
online learning, XCS is also suitable for dealing with complex 
problems of both epistasis and heterogeneity [3]. Epistasis refers 
to the interaction between variables that affects the importance 
of the other variables. XCS proves its ability to deal with 
epistasis and generate mappings for multiplexer problems. The 
FDC data in RF-MB contains a total of 73 variables. It is difficult 
to check the dependence between variables one by one. We 
expect to find the dependencies between variables from the rules 
learned from XCS. Heterogeneity means that the same effect 
caused by the same action may contain different pattern. In the 
issues of predicting the RUL, the same predicting residual life 
time of the plasma equipment may be accompanied by different 
failure patterns. Another advantage of XCS is that there is a 
cooperative and competitive relationship between its rules. XCS 
can be matched by many rules with different conditions to the 
same prediction result. Therefore, XCS is suitable for patterning 
such heterogeneous problem domains. We expect that the rules 
learned by XCS can indicate the possible causes of the failure. 

When applying XCS to predict the RUL of plasma equipment, 
there are 2 important issues that need to be solved. The first 
issue is that the original XCS is only suitable for classification 
problems. This means that the original XCS is incompletely 
suitable for RUL modeling. To simplify the problem, we label the 
FDC data as good state and impending failure. XCS can be 
modeled with labeled data, alerting the relevant people to 

arrange maintenance before the machine fails. The other issue is 
that conventional XCS is only able to process binary input data. 
However, actual data is usually recorded in real numbers. In 
order to handle this problem, Prof. Wilson proposed the interval 
predicate as the expression of rule condition to extend the 
possibility of dealing with the real-word problem. The modified 
version is called XCS with continuous-valued inputs (XCSR) [4]. 

This study mainly uses XCSR to predict the RUL of RF-MB 
equipment. Section 2 introduces XCS and describes the 
difference between XCS and XCSR. The experimental setup and 
parameters setup of XCSR are explained. We also provide a 
method of feature selection called Fisher Discriminant Analysis 
(FDA). FDA can find out the leading variable and feature which 
has better classification ability. The statistics of the obtained data 
and the workflow of data pre-processing are illustrated in this 
section. Section 3 shows the experimental results of XCSR. 
Section 4 looks deeper and gives future work on this topic. 
Finally, a summary of this study was given in section 5. 

2 MATERIAL AND METHODS 
We selected the FDC data in a RF-MB machine from normal to 
abnormal as training material. The dates of FDC data range from 
February 21 to August 14, 2017. We used the first 2 days of FDC 
data which are February 21 and February 22 and labelled these as 
“Good”. In addition, we selected the last 2 days of data which are 
August 13 and August 14 and labelled these as “Bad”. The size of 
this FDC dataset is 207,629 for this 4-day period. However, the 
RF-MB machine has many different recipes (tasks) that need to 
be executed, as shown in Table 1. Different recipes have different 
process conditions. We could find that Recipe1 has the most data 
in RF-MB machine, so we chose Recipe1 as an online interactive 
environment for XCSR. To verify the ability of generalization for 
XCSR, we also use Recipe1 for 10-fold cross-validation to verify 
the performance of XCSR. After that, we used Recipe1 as training 
data and Recipe2 as testing data, because the procedure for 
Recipe1 and Recipe2 are similar. This experiment mainly tests 
whether XCSR has the ability of generalization between similar 
recipes in the same RF-MB machine. 

FDC data contains 73 variables in this machine. There are 
many steps in each recipe that must be executed and many 
variables are recorded. Considering that more days of data may 
be used in the future as training data to improve accuracy, we 
must concentrate the number of features to reduce the amount 
of data. Prof. Jay Lee mentioned in [7] that the average, standard 
deviation, maximum, and minimum values are features that can 
effectively distinguish categories. Therefore, we calculate these 
values for each variable as input features in each step. This also 
causes the number of features to change from 73 to 292, but the 
volume of data can be reduced from 148,541 to 3,260. To 
accelerate XCS learning, we used FDA to help us identify the 
leading features of variables. Table 2 list the top 50 features by 
FDA. 
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Table 1: Amount of each recipe data in RF-MB machine 

Rank Recipe Count (*) 

1 Recipe1 148541 

2 Recipe2 33640 

3 Recipe3 7036 

4 … … 

Table 2: Top 50 features selected by FDA 

Rank Feature Value Rank Feature Value 

1 
Var40 
Step13, Mean 

355250 26 
Var30 
Step6, Max 

139.6 

2 
Var25 
Step10, Max 

12323.5 27 
Var29 
Step10,Max 

135.6 

3 
Var27 
Step17, Max 

4571.4 28 
Var40 
Step8, Mean 

123.5 

4 
Var25 
Step10, Mean 

4203.2 29 
Var30 
Step17, Max 

119.3 

5 
Var27 
Step21, Max 

3156.1 30 
Var27 
Step19, Max 

112.5 

6 
Var26 
Step10, Mean 

2420.2 31 
Var29 
Step2, Min 

92.2 

7 
Var27 
Step10, Max 

1848.5 32 
Var26 
Step8, Max 

91.6 

8 
Var27 
Step10, Mean 

1261.5 33 
Var30 
Step19, Max 

89.8 

9 
Var26 
Step10, Max 

1181.5 34 
Var26 
Step21, Mean 

84.4 

10 
Var27 
Step17, Mean 

723 35 
Var26 
Step10, SD 

76.7 

11 
Var29 
Step6, Mean 

563.9 36 
Var27 
Step13, Mean 

75.7 

12 
Var26 
Step8, Mean 

517 37 
Var29 
Step19, Min 

73.2 

13 
Var26 
Step19, Max 

452.6 38 
Var26 
Step4, Mean 

71.3 

14 
Var29 
Step21, Mean 

373.5 39 
Var30 
Step13, Max 

70.8 

15 
Var26 
Step19, Mean 

347.1 40 
Var29 
Step16, Min 

69.9 

16 
Var29 
Step17, Mean 

319.2 41 
Var59 
Step10, Mean 

69.5 

17 
Var29 
Step17, Max 

284.9 42 
Var29 
Step8, Mean 

68.5 

18 
Var27 
Step21, Mean 

283.8 43 
Var29 
Step7, Max 

66.3 

19 
Var26 
Step21, Max 

269.6 44 
Var26 
Step13, Mean 

64.3 

20 
Var29 
Step19, Mean 

250 45 
Var26 
Step8, SD 

63.2 

21 
Var29 
Step6, Min 

246.1 46 
Var29 
Step7, Mean 

62.6 

22 
Var29 
Step17, Min 

151 47 
Var29 
Step6, Max 

61.8 

23 
Var26 
Step13, Max 

148.9 48 
Var30 
Step15, Max 

61.1 

24 
Var40 
Step13, Min 

146 49 
Var29 
Step2, Mean 

59.5 

25 
Var27 
Step13, Max 

143 50 
Var29 
Step15, Min 

55.3 

 
 

 

Figure 1: The descriptive statistics of Var30 for step 13 of 
Recipe 1. 

Table 3: Raw data for each step 

Step Raw data Size 

Stable 
after 

n 
points 

1 [400, 400, 400, 400, 400, 400, 400, 400] 8 0 

2 [400, 400, 400, 400, 890, 1052, 1054, 1056, 
1056] 9 6 

3 [1061, 1043, 1043, 400, 400, 400, 400, 400] 8 4 

4 [400, 400, 400, 468, 863, 904, 894, 877, …] 22 7 

5 [842, 1093, 684, 400, 400, 400, 400, 400, 400] 9 4 

6 [400, 400, 400, 400, 940, 1208, 1208, 1208, …] 43 6 

7 [1218, 1216, 1216, 400, 400, 400, 400, 400] 8 4 

8 [400, 400, 400, 662, 1182, 1195, …] 18 5 

9 [1144, 1144, 1144, 400, 400, 400, 400] 7 4 

10 [400, 400, 400, 707, 1295, 1312, 1323, 
1330, …] 94 7 

11 [400, 400, 400, 643, 1252, 1295, 1310, 1322, 
1331, 1332, …] 10 8 

12 [400, 400, 400, …] 10 0 

13 [400, 400, 400, 400, 1088, 1227, 1238, 
1238, …] 53 7 

14 [1249, 1248, 981, 400, 400, …] 6 4 

15 [400, 400, 400, 676, 1171, 1237, 1248, 
1248, …] 34 7 

16 [1246, 1245, 1245, 400, 400, 400, …] 8 4 

17 [400, 400, 400, 400, 1190, 1206, 1212, 
1214, …] 24 7 

18 [1222, 1221, 971, 400, 400, 400, …] 8 4 

19 [400, 400, 400, 400, 917, 965, 969, 969, …] 24 6 

20 [973, 972, 731, 400, 400] 5 3 

21 [400, 400, 400, …] 18 0 

22 [400, 400, 400, …] 31 0 
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Figure 2: A total of 13 variables and 52 features were 
selected. The first 8 variables were selected by experts in 
the manufacturing production line. The last 5 variables 
were defined by FDA. 

We find that Var25, Var26, Var27, Var29, Var30, and Var59 are 
leading variables, which are indicated in grey in Table 2. It can 
be seen that Var40 is also pointed out as an important feature by 
FDA, but the experts of semiconductor manufacturing have 
evaluated that Var40 has no significant impact on the entire 
process. Therefore, Var40 is ignored for further XCSR processing. 

We observed the descriptive statistics of the feature selected 
by FDA and found that the machine had not reached its stable 
state before the start of each step. As shown in Fig. 1, step 13 
begins at 7,563 data points and reaches a stable state at 7,568 
data points. We listed all the data points of each step and 
observed that each step will reach the stable state at a maximum 
of 8 data points after the start of each step and will be out of the 
stable state at most a maximum of 2 data points before the end of 
each step. Table 3 lists the raw data of each step, the size of the 
raw data, and the number of data points needed to reach the 
stable state after the start of each step. Therefore, according to 
Table 3, we remove the first 8 data points and the last 2 data 
points of each step to calculate the value of the feature. 

Finally, we selected Var30, Var31, Var32, Var33, Var63, Var64, 
Var65, and Var66 based on the experience of experts, and we 
selected Var25, Var26, Var27, Var29, and Var59 based on FDA. A 
total of 13 variables were selected as input variables based on the 
experience of experts and FDA as shown in Fig. 2. In the 
following, we briefly explained the FDA, the difference between 
XCS and XCSR, and the parameters used by XCSR. 

2.1  Fisher discriminant analysis (FDA) 
The purpose of FDA is to confirm whether there are statistically 
significant differences between the average scores of a set of 
variables for two or more predefined groups. The FDA is also a 
supervised dimensionality reduction method for two categories 
of samples. On the classification problem, FDA can be used to 
sort the ability of each feature to distinguish between two 
categories. The formula for FDA is shown in (1), where i and j 
are the class labels; ui,fk and uj,fk are the means of the kth feature, 
and (σi,fk)2 and (σj,fk)2 are the variances of the kth feature. A 
higher FDA score means that a feature has a better ability to 
distinguish between two categories. 

𝐽𝑓𝑘 =
‖𝜇𝑖, 𝑓𝑘 − 𝜇𝑖, 𝑗𝑘‖

2

𝜎𝑖,𝑓𝑘
2 + 𝜎𝑖,𝑗𝑘

2  (1) 

In the Artificial Intelligence for Cyber-Enabled Industrial 
Systems project hosted by Prof. Jay Lee [5, 6], the collection of 
multiple variables in Industry 4.0 is considered as big data. When 
dealing with the issue of big data, we must consider the amount 
of data that can be processed by the computer and the 
complexity between the variables. To avoid the curse of 
dimensionality, the dimension reduction process will be 
performed before dealing with multiple variables. Prof. Jay Lee 
also applied FDA as a feature selection method for the analysis 
of semiconductor manufacturing processes [7]. 

2.2  eXtended Classifier System (XCS) 
XCS is a rule-based machine learning method suitable for online 
learning systems. The core of XCS is composed of rules, and the 
interpretation of each rule is “IF condition, THEN action”. The 
rules learned by XCS are very simple interpretations for humans. 
A collection of multiple rules in XCS is called a population set 
[P]. XCS finds the rules that satisfy the environmental conditions 
from [P] and executes the action of these rules to interact with 
the environment. The environment gives feedback or payoff 
based on the action of XCS. XCS evaluates the quality of the 
rules based on the payoff and determines whether the rules can 
be retained in [P]. XCS uses the ternary alphabet {0, 1, #} as 
encoding for the condition of the rule, where the # symbol 
stands for “Don’t care”. Regardless of whether the input value is 
0 or 1, the environmental condition corresponding to the bit of # 
is considered to satisfy the condition. To evaluate the rules, XCS 
uses 3 parameters to calculate the quality of the rules. Rules 
contain evaluation parameters called classifiers. The three 
parameters contained in the classifier are prediction, prediction 
error, and fitness. Prediction is used to predict how many payoffs 
can be obtained from the environment after the action of the 
classifier is executed. Prediction error is the error between the 
predicted value of the classifier and the actual payoff obtained 
from the environment. Fitness is used to assess whether a 
classifier is suitable for retention in [P]. Fitness is defined as a 
function of prediction error. A classifier with smaller prediction 
error is easier to retain in [P]. After interacting with the 
environment, XCS uses the reinforcement learning method to 
update these 3 parameters according to the payoff given by the 
environment. In addition to adding 3 parameters to evaluate the 
quality of the rule, GA is applied to help XCS produce new rules. 
XCS evolves through iterations to find the most accurate and the 
most general rules. 

The performance cycle of XCS is divided into 6 stages. (i) 
Matching operation. XCS converts the detected environmental 
inputs into a binary string and creates an empty set called match 
set [M]. XCS scans [P] to find the classifiers that satisfy the 
classifier conditions for the given environmental inputs and put 
these classifiers into [M]. If [M] is still empty after scanning [P], 
XCS will activate the “Covering” mechanism. The covering 
mechanism will generate a new classifier whose condition must 
satisfy the environmental inputs. Each bit in the condition of the 
newly generated classifier will be covered by # with a certain 
probability. The action and 3 parameters of the newly generated 
classifier are given randomly. Therefore, re-scanning [P] will 
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inevitably find a classifier that meets the environmental inputs 
and put it into [M]. (ii) Generating prediction array [PA]. Each 
classifier with the same action in [M] will weigh its prediction 
with fitness. Finally, the weighted values of the classifiers with 
the same action are averaged as the prediction of the action. 
[PA] can be generated after all the predictions for the action are 
calculated. (iii) Action selection. After [PA] is generated, XCS 
will decide which action to execute based on the prediction value 
of each action in [PA]. There are two mechanisms for action 
selection: exploration and exploitation. In exploration, XCS will 
randomly select an action based on the prediction of each action 
in [PA] as the probability of selection, or randomly select an 
action to execute. In exploitation, XCS will choose the largest 
predicted value of the action in [PA] as the executed action. In 
the process of interaction with the environment, XCS will 
alternately perform exploration and exploitation. The classifiers 
in [M] that match the chosen action will be selected and placed 
in action set [A]. (iv) RL. The update of the parameters mainly 
occurs in [A]. When the XCS performs an action through the 
effector, the environment provides the payoff. XCS will use Q-
learning to update the parameters of the classifiers in [A] based 
on the payoff. (v) GA. If the threshold of GA is satisfied, GA will 
activate. GA acts on [A] to generate new classifiers for adapting 
to environmental changes or finding better solutions. GA mainly 
contains two important mechanisms: Crossover and Mutation. 
The Crossover uses a two-point Crossover or uniform Crossover 
to exchange the information of two classifiers for generating 
better classifiers. The Mutation is to scan each bit of the 
classifier’s condition. The scanned bit will change the value or 
cover by # with a certain probability. (vi) Updating operation. 
XCS will scan the classifiers in [P] to find out which classifier's 
parameters need to be updated. If a new classifier generated by 
GA does not exist in [P], XCS will check the size of [P]. If the 
size of [P] does not reach the upper limit, XCS will insert the 
new rule directly into [P]. If the number of rules exceeds the size 
of [P], XCS will delete classifiers based on fitness. XCS will 
repeat the above six stages to find the most correct and most 
general classifiers. 

XCS also has two major mechanisms, the macroclassifier and 
the subsumption mechanism, which help XCS learn the general 
classifiers. The concept of a macroclassifier is to speed up the 
matching operation of XCS. XCS may generate the same 
classifier in [P]. Therefore, a new parameter “num” is added to 
the classifier. When XCS generates a new classifier, XCS will 
scan [P] to find if there is a macroclassifier whose condition and 
action are the same as the newly generated classifier. If a 
macroclassifier exists, the num of the macroclassifer will be 
incremented by 1; otherwise, this new classifier is inserted in [P] 
and its num is set to 1. When a macroclassifier is selected to be 
deleted, its num is decremented by 1 if its num is greater than 1; 
otherwise, the macroclassifier is removed from [P]. Subsumption 
mainly occurs in [A] and GA; it can also be called 
ActionSetSubsumption and GASubSumption according to the 
location of activation. The concept of subsumption is to help 
XCS find accurate and general classifiers. 

2.3  XCS with continuous-valued inputs 
(XCSR) 

To process continuous-valued inputs, Pro. Wilson proposed 
XCSR. This method changes the original expression of a 
classifier’s condition from ternary alphabet to interval predicate. 
Interval predicates are expressed as inti = (ci, si), where ci 
represents the middle value of the interval and si represents the 
half range centered on ci. For instance, the environmental inputs 
are x1 and x2, and both x1 and x2 are real numbers. A classifier’s 
condition is expressed as [(0.3, 0.1), (0.7, 0.1)]. We can interpret 
this classifier’s condition as “if (0.2 ≤ x1 ≤ 0.4) and (0.6 ≤ x2 ≤ 0.8) 
are true, then the classifier matches the environmental inputs”. 
The performance cycle of XCSR is the same as that of XCS 
except for two mechanisms, which are Covering and GA. 

Covering will activate when [M] is still empty after matching 
operation. XCSR will generate a new rule whose condition is 
expressed as inti = (ci, si), where ci is equal to the environment 
input xi; si is randomly taken from 0 to sr; sr is defined by the 
user and sr ≥ 0. The action of the classifier is given randomly. The 
difference between GA in XCSR and XCS are in the operation of 
Crossover and Mutation. XCSR uses Uniform Crossover. XCSR 
scans the classifier’s condition for each interval predicate, and 
exchanges the interval predicates of the two rules with 
probability x. In Mutation, the center and spread values in each 
interval predicate are randomly added and subtracted from 
random values between 0 and m, where m is defined by user. We 
call this modified version of XCS, XCSR. 

2.4 Parameters setup of the XCSR 
The parameters setup of the XCSR mainly refer to [8], and the 
description of the setting is as follows: Population size n = 5000; 
learning rate β = 0.2; decline rate of fitness α = 0.1;  the threshold 
of prediction error ε0 = 10; fitness exponent υ = 5; the threshold 
of GA acts on [A] θGA = 25; the probability of Crossover χ = 0.8; 
the probability of Mutation μ = 0.04; the deletion threshold θdel = 
20; the fraction of the mean in [P] δ = 0.1; the subsumption 
threshold θsub  = 20; the probability that a bit in the Covering 
mechanism is covered by the "don't care" symbol P# = 0.33; initial 
prediction value pI  = 10; initial prediction value εI = 0; initial 
fitness value FI = 10; the maximum range of spread sr = the half 
range of values for each variable; the range of value that increase 
or decrease the value of the interval predicate m = sr;  Both 
doActionSetSubsumption and doGASubsumption are activated. 

3 RESULTS 
We calculated the mean, standard deviation, maximum, and 
minimum values of the data in Recipe1 as the input features. A 
total of 3,260 data and 52 features for each data are inputted to 
XCSR. The output of the XCSR is “Good” (the first 2 days after 
the machine's operation) and “Bad” (the last 2 days before the 
machine's failure). The data was repeatedly trained 100 times, 
and the data will be shuffled before each training time. XCSR 
repeated 30 experiments for each data training, and all static 
reports were the average results for 30 runs. Fig. 3 shows the 
result of XCSR.  
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Figure 3: The moving average accuracy result per 50 
exploitations for XCSR. 

Table 4: 10-fold cross validation for XCSR 

No Accuracy 

Number 
of missing 
classifiers 

in [P] 

No Accuracy 

Number of 
missing 

classifiers 
in [P] 

1 0.981250 7 6 0.974643 8 
2 0.962145 9 7 0.965409 8 
3 0.972050 4 8 0.987616 3 
4 0.975155 4 9 0.972136 3 
5 0.984568 2 10 0.959119 7 

Average 
accuracy 0.973409 

Missing 
rate of 

classifiers 
in[P] 

0.016871 

The result is the moving average with the accuracy of every 
50 exploitations. We can find that XCSR reaches 100% accuracy 
after approximately 11,500 interactions. The result confirmed 
that XCSR can quickly adapt to the environment and find the 
patterns. 

We used 10-fold cross-validation to test the performance and 
the generalization  of XCSR. Recipe1 has 3,260 data, of which 
1,779 are marked as "Good" and 1,481 are marked as "Bad" . We 
cut the data into 10 folds, about 326 data each fold, and the ratio 
of "Good" and "Bad" in each fold is close to the ratio of the 
original data. XCSR will use the first fold as testing data, and the 
remaining nine folds will be used as training data. Each fold will 
become the testing data once, and the rest of the folds will 
become training materials. This process will be repeated 10 
times. During the XCSR verification process, XCSR does not 
activate the mechanisms for Covering, GA, and Updating 
operations. XCSR only uses exploitation for selecting execution 
actions, which means that XCSR only uses the classifier that 
predicts the maximum payoff. If XCSR cannot find a classifier 
from [P] that matches the verification data, we will record it as a 
missing classifier and add 1 to the number of missing classifier. 

Missing classifiers are not included in the calculation of the 
accuracy rate, because the normal operation of XCSR will 
activate the Covering mechanism to generate a new classifier. 
Table 4 shows the results of 10-fold cross-validation. The average 
accuracy rate of XCSR is 0.973409, and the missing rate of 
classifiers is only 0.016871. The results confirmed that XCSR has 
good performance in predicting unseen data, which also 
confirmed that XCSR has the ability of generalization in dealing 
with multivariable issues. 

Finally, we used the data of Recipe2 as the input of the testing 
data, which has a similar process to Recipe1. We also calculated 
the mean, standard deviation, maximum, and minimum values of 
the data in Recipe2 as the input features. The amount of input 
data for Recipe2 has been reduced from 33,640 to 686. In the 
input data, 249 data are marked as "Good" and 437 data are 
marked as "Bad". It can be observed that the ratio of two classes 
in Recipe2 is unbalanced. We used the 686 data of Recipe2 as 
input data to verify the effectiveness of the [P] learned by XCSR. 
Table 5 shows the results of 30 verifications. The average 
accuracy rate of XCSR is 0.97399, and the missing rate of 
classifiers is only 0.02074. The verification results give us more 
confidence to confirm that XCSR can handle complex real-world 
problems of such multiple variables. XCSR can still find patterns 
to accurately predict RUL, even if there are slight differences 
between similar recipes. 

We go further to see the classifiers learned in [P]. In order to 
understand what XCSR learns, when the range of values covered 
by the interval predicate is greater than or equal to the 
maximum value of the variables and less than or equal to the 
minimum value of the variables, we will use the “don’t care” 
symbol (#) to express the allele of interval predicate. This means 
that any input value can match this allele of interval predicate, 
indicating that the classifier believes that the variable does not 
affect its output. We analyze a classifier learned by XCSR as an 
example. Table 6 is the classifier that XCSR learned for step 6 in 
Recipe1 of RF-MB machine. There are a total of 52 features in the 
input data. In this classifier, XCSR only retains 3 features and the 
rest are covered with #. This classifier predicts that RF-MB 
machines may be failure after 2 days. We draw descriptive 
statistics for the “Good” and “Bad” of the mean value of Var29 in 
step 6 as shown in Fig. 4. Compared with the classifier learned 
by XCSR, it can be found that “Good” and “Bad” do have 
significant differences, and XCSR can accurately cut the “Bad” 
range, from 17.5 to 23. The mean value of Var29 in step 6 also 
has the same result as shown in Fig. 5. XCSR can accurately cut 
the “Bad” range, from 19 to 21.6. In the mean value of Var59 in 
step 6, it is shown that XCSR can accurately cut out the “Bad” 
range value, from 50.1 to 50.5, as shown in Fig. 6. However, it 
can be found that the range of “Bad” learned by XCSR overlaps 
with the range of “Good”. We think the possible reason is that 
the number of 100 iterations is too short, and it is not enough to 
make XCSR converge to the optimal range. However, XCSR can 
reduce features from 52 to 3 and accurately concentrate the exact 
range, which is an exciting result. 
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Table 5: Verify the accuracy and missing rate of [P] 
learned by XCSR 

No Accuracy 

Number 
of missing 
classifiers 

in [P] 

No Accuracy 

Number of 
missing 

classifiers 
in [P] 

1 0.946824 9 16 0.979228 12 
2 0.988166 10 17 0.988113 13 
3 0.961652 8 18 0.986547 17 
4 0.985251 8 19 0.953869 14 
5 0.965672 16 20 0.984985 20 
6 0.973451 8 21 0.968085 28 
7 0.967213 15 22 0.986706 9 
8 0.942857 21 23 0.964126 17 
9 0.983558 17 24 0.982143 14 
10 0.986587 15 25 0.986726 8 
11 0.953453 20 26 0.96875 14 
12 0.979259 11 27 0.976155 15 
13 0.991031 17 28 0.962853 13 
14 0.968935 10 29 0.976366 9 
15 0.987786 31 30 0.973451 8 

Average 
accuracy 0.97399 

Missing 
rate of 

classifiers 
in[P] 

0.02074 

Table 6: Classifiers learned by XCSR for step 6 in recipe 1 
of RF-MB machine 

Condition Action 

Step 6 

Bad 

Var 30 31 32 33 63 

Mean # # # # # 

Std # # # # # 

Max # # # # # 

Min # # # # # 

Var 64 65 66 25 26 

Mean # # # # # 

Std # # # # # 

Max # # # # # 

Min # # # # # 

Var 27 29 59   

Mean # 
17.5-
23.0 

50.1-
50.5 

  

Std # # #   

Max # 
19.0-
21.6 

#   

Min # # #   

 

 

Figure 4: Descriptive statistics for the mean value of Var29 
in step 6. 

 
Figure 5: Descriptive statistics for the maximum value of 
Var29 in step 6. 

  
Figure 6: Descriptive statistics for the mean value of Var59 
in step 6. 
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Figure 7: Descriptive statistics for the mean value of Var29 
in step 6. 

4 DISSCUSSIONS 
The XCSR learns “Good” and “Bad” labels as RUL indicators for 
RF-MB machine on the 4-day training materials. However, the 
trend of data for the rest of days have not yet been taken into 
account. We have found complete data of Recipe1 in RF-MB 
machine for about six months, and plotted the statistical 
description of Var29. Complete data means that the RF-MB 
machine is from a new normal state to a failure. Fig. 7 shows the 
variation of the mean value of Var29 in step 6, where illustrates 
an occurrence of periodic reset. Periodic reset is about half a 
month. This is a periodic maintenance action that the operator 
will perform based on past operation experience. Periodic reset 
seems to be effective in returning Var29 to its normal state. 
However, we found that the overall  change in Var29 presents a 
trend of increasing values when the time is close to the “Bad” 
that we have labeled. It can be observed that it is impossible to 
return to the situation on March 12 after maintenance in June 12. 
This represents an interference problem with other anomalies. 
At this time, we only know the cause of RF-MB machine failure. 
Other possible reasons need to be further discussed with 
relevant experts and operators. 

XCSR can find patterns and accurately predict state of the RF-
MB machine in similar recipes of the same RF-MB. In the future, 
we hope to verify the performance of XCSR under the same 
recipe of different RF-MB machines. However, learning and 
testing in different RF-MB machines may encounter some 
difficulties. For example, the difference in the baseline of each 
variable for different RF-MB machines can be very large due to 
different environmental status. We must find an appropriate 
normalization method for XCSR to find patterns in the same 
recipe between different RF-MB machines. We hope to find the 
pattern on different RF-MB machines in the future. 
We successfully used XCSR to exam the features of the normal 
state and abnormal state of the RF-MB machine. If we want to 
calculate RUL of plasma equipment more accurately, it is 
necessary to find an algorithm to approximate the function of 
RUL. XCS with function approximation (XCSF) is another 

modified version of XCS that can approximate unknown 
functions [9, 10]. We think that we can use the remaining time 
of RF-MB from normal to failure as the payoff given by the 
environment. We use Var29 and the information of periodic 
reset as input data expecting XCSF to approximate the RUL 
function of RF-MB machine. We hope to build a more complete 
evaluation method of RUL in the future. 

5 CONCLUSIONS 
We use XCSR to predict the RUL of plasma equipment. We use 
the Recipe1 in RF-MB machine as training data. The data is 
recorded from February 21, 2017 to August 14, 2017, where a 
component of RF-MB machine is reinstalled and continuously 
operates until the component is damaged. Due to the large 
number of variables, we use FDA to help us concentrate 
important variables. We marked the first 2 days of the RF-MB 
operation as “Good” and marked the last 2 days before the failure 
of RF-MB as “Bad”. In order to reduce the amount of data, we use 
the mean, standard deviation, maximum, and minimum of each 
variable in a single step as input features. XCSR can quickly find 
patterns from these features. XCSR has the ability to reduce 
features from 52 to 3. We used 10-fold cross-validation in Recipe1 
for XCSR. The averaged accuracy of XCSR is 97.3% and the 
averaged missing rate of rules is only about 1.6%. We also used 
similar process of recipe in the same RF-MB machine as testing 
data. The averaged accuracy of XCSR is 97.3% and the averaged 
missing rate of rules is about 2%. The result shows that XCSR 
performs the ability to handle complexity problems with 
multiple variables. In the future, we will conduct the XCSF to 
approximate the optimization function for more accurately 
predicting the RUL of plasma equipment. 
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