
Predicting the Remaining Useful Life of Plasma Equipment
through XCSR

Liang-Yu Chen
Institute of Computer Science and
Engineering, College of Computer

Science, National Chiao Tung
University

1001 University Road, Hsinchu 300
Taiwan R.O.C.

reno.iie02g@nctu.edu.tw

Jia-Hua Lee
Institute of Computer Science and
Engineering, College of Computer

Science, National Chiao Tung
University

1001 University Road, Hsinchu 300
Taiwan R.O.C.

jessie1992a@gmail.com

Ya-Liang Yang
Department of Computer Science,

College of Computer Science, National
Chiao Tung University

1001 University Road, Hsinchu 300
Taiwan R.O.C.

alan.yaco@msa.hinet.net

 Ming-Tsung Yeh
Smart Manufacturing Division,

Architecture 4, United
Microelectronics Corporation

No. 18, Nanke 2nd Rd., Xinshi Dist.,
Tainan City 744
Taiwan R.O.C.

madami@affiliation.org

Tzu-Chien Hsiao*
Department of Computer Science,

College of Computer Science; Institute
of Biomedical Engineering, College of
Electrical and Computer Engineering,

National Chiao Tung University
1001 University Road, Hsinchu 300

Taiwan R.O.C.
labview@cs.nctu.edu.tw

ABSTRACT
Predicting1 remaining useful life (RUL) of plasma equipment
becomes an important issue for semiconductor manufacturing in
this decade. If RUL can be accurately estimated, the schedule of
maintenance can be proper to moderate the waste and cost of the
production. Digital Radio Frequency Matching Box (RF-MB) is an
essential equipment in the semiconductor manufacturing
process. The status of RF-MB will be recorded by the Fault
Detection and Classification (FDC). In order to establish the RUL
of RF-MB, we use Fisher Discriminant Analysis (FDA) for feature
selection to concentrate the leading variables in FDC. We
marked the first 2 days of the RF-MB operation as “Good” and
marked the last 2 days before the failure of RF-MB as “Bad”. We
used eXtended Classifier System with continuous-valued inputs
(XCSR) to learn the well-labeled FDC data. The results show that
XCSR can quickly find patterns and meaningful variables. The
average accuracy of XCSR is 97.3% and the average missing rate
of rules is only about 1.6%. The results confirmed that XCSR is
capable of alerting related operator before the plasma
component reaching its residual life. In the future, we will use
XCS with Function approximation (XCSF) to more accurately

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
GECCO '19 Companion, July 13–17, 2019, Prague, Czech Republic

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6748-6/19/07…$15.00
https://doi.org/10.1145/3319619.3326879

approximate the function of RUL. We look forward to building a
complete assessment of RUL.

CCS CONCEPTS
• Computing methodologies → Machine learning →
Machine learning approaches → Rule learning

KEYWORDS
Fisher Discriminant Analysis (FDA), eXtended Classifier System
(XCS), Digital Radio Frequency Matching Box (RF-MB),
Remaining Useful Life (RUL)

1 INTRODUCTION
Industry 4.0 is a high-tech project proposed by the German
government using computerized, digitalized, and intelligent
ways to improve the production and quality of manufacturing.
Semiconductor industry is an important indicator for the
development of the four industrial evaluation. Many
semiconductor manufacturers transform their manufacturing
processes into fully automated intelligent controls. One of
important issues for semiconductor manufacturing process is
pre-diagnosis of plasma equipment failure. In the past,
semiconductor manufacturer can only restore the plasma
equipment after an anomaly occurred. Such process control
brings two main cost losses. One is to scrap the semi-product
when anomaly occurred, and the other is to suspend the
production line during repair. If the remaining useful life (RUL)
of plasma equipment could be accounted in advance, we can
schedule the maintenance procedure to avoid manufacturing

1263

GECCO’19, July 13-17, 2019, Prague, Czech Republic L.-Y. Chen et al.

2

products without knowing the abnormality of the plasma
equipment. Arranging a maintenance plan in advance can help
us shorten the preparation time and reduce the scrap rate of
products in manufacturing process. Therefore, it is necessary to
use an intelligent way to predict the RUL of the plasma
equipment to accurately control the production process, which is
the most urgent issue for semiconductor manufacturing process.

Digital Radio Frequency Matching Box (RF-MB) machine is
an essential equipment in the semiconductor manufacturing
process. When operating, the Fault Detection and Classification
(FDC) continuously record the statue of RC-MB. We want to
figure out the appropriate algorithm to evaluate the RUL of RF-
MB though FDC data. Since the RUL of the plasma equipment
will change slightly with the environment, such as temperature
and humidity, it is necessary to apply an algorithm that is
suitable for adapting to dynamical changes. In the past, we have
successfully applied Zeroth-level Classifier System with
continuous-valued inputs (ZCSR) for targeting the optimal
impedance in RF-MB [1]. Here, we evaluate an algorithm called
eXtended Classifier System(XCS) for predicting the RUL of RF-
MB. XCS is a rule-based machine learning method. XCS
recalibrate its rule set by interacting with the environment and
modifying its rule set by adopting Reinforcement Learning (RL)
and Genetic Algorithm (GA) [2]. XCS has a special mechanism
called “Covering”. When the rule set of XCS does not match the
condition of the current environment, the “Covering”
mechanism will activate and generate a new rule that matches
environmental condition. The “Covering” mechanism allows
XCS to instantly recalibrate its rule set (model) for unseen data
without re-training and re-testing the entire rule set. Therefore,
XCS is suitable for online learning. In addition to applying
online learning, XCS is also suitable for dealing with complex
problems of both epistasis and heterogeneity [3]. Epistasis refers
to the interaction between variables that affects the importance
of the other variables. XCS proves its ability to deal with
epistasis and generate mappings for multiplexer problems. The
FDC data in RF-MB contains a total of 73 variables. It is difficult
to check the dependence between variables one by one. We
expect to find the dependencies between variables from the rules
learned from XCS. Heterogeneity means that the same effect
caused by the same action may contain different pattern. In the
issues of predicting the RUL, the same predicting residual life
time of the plasma equipment may be accompanied by different
failure patterns. Another advantage of XCS is that there is a
cooperative and competitive relationship between its rules. XCS
can be matched by many rules with different conditions to the
same prediction result. Therefore, XCS is suitable for patterning
such heterogeneous problem domains. We expect that the rules
learned by XCS can indicate the possible causes of the failure.

When applying XCS to predict the RUL of plasma equipment,
there are 2 important issues that need to be solved. The first
issue is that the original XCS is only suitable for classification
problems. This means that the original XCS is incompletely
suitable for RUL modeling. To simplify the problem, we label the
FDC data as good state and impending failure. XCS can be
modeled with labeled data, alerting the relevant people to

arrange maintenance before the machine fails. The other issue is
that conventional XCS is only able to process binary input data.
However, actual data is usually recorded in real numbers. In
order to handle this problem, Prof. Wilson proposed the interval
predicate as the expression of rule condition to extend the
possibility of dealing with the real-word problem. The modified
version is called XCS with continuous-valued inputs (XCSR) [4].

This study mainly uses XCSR to predict the RUL of RF-MB
equipment. Section 2 introduces XCS and describes the
difference between XCS and XCSR. The experimental setup and
parameters setup of XCSR are explained. We also provide a
method of feature selection called Fisher Discriminant Analysis
(FDA). FDA can find out the leading variable and feature which
has better classification ability. The statistics of the obtained data
and the workflow of data pre-processing are illustrated in this
section. Section 3 shows the experimental results of XCSR.
Section 4 looks deeper and gives future work on this topic.
Finally, a summary of this study was given in section 5.

2 MATERIAL AND METHODS
We selected the FDC data in a RF-MB machine from normal to
abnormal as training material. The dates of FDC data range from
February 21 to August 14, 2017. We used the first 2 days of FDC
data which are February 21 and February 22 and labelled these as
“Good”. In addition, we selected the last 2 days of data which are
August 13 and August 14 and labelled these as “Bad”. The size of
this FDC dataset is 207,629 for this 4-day period. However, the
RF-MB machine has many different recipes (tasks) that need to
be executed, as shown in Table 1. Different recipes have different
process conditions. We could find that Recipe1 has the most data
in RF-MB machine, so we chose Recipe1 as an online interactive
environment for XCSR. To verify the ability of generalization for
XCSR, we also use Recipe1 for 10-fold cross-validation to verify
the performance of XCSR. After that, we used Recipe1 as training
data and Recipe2 as testing data, because the procedure for
Recipe1 and Recipe2 are similar. This experiment mainly tests
whether XCSR has the ability of generalization between similar
recipes in the same RF-MB machine.

FDC data contains 73 variables in this machine. There are
many steps in each recipe that must be executed and many
variables are recorded. Considering that more days of data may
be used in the future as training data to improve accuracy, we
must concentrate the number of features to reduce the amount
of data. Prof. Jay Lee mentioned in [7] that the average, standard
deviation, maximum, and minimum values are features that can
effectively distinguish categories. Therefore, we calculate these
values for each variable as input features in each step. This also
causes the number of features to change from 73 to 292, but the
volume of data can be reduced from 148,541 to 3,260. To
accelerate XCS learning, we used FDA to help us identify the
leading features of variables. Table 2 list the top 50 features by
FDA.

1264

Predicting the RUL of Plasma Equipment through XCSR GECCO’19, July 13-17, 2019, Prague, Czech Republic

 3

Table 1: Amount of each recipe data in RF-MB machine

Rank Recipe Count (*)

1 Recipe1 148541

2 Recipe2 33640

3 Recipe3 7036

4 … …

Table 2: Top 50 features selected by FDA

Rank Feature Value Rank Feature Value

1
Var40
Step13, Mean

355250 26
Var30
Step6, Max

139.6

2
Var25
Step10, Max

12323.5 27
Var29
Step10,Max

135.6

3
Var27
Step17, Max

4571.4 28
Var40
Step8, Mean

123.5

4
Var25
Step10, Mean

4203.2 29
Var30
Step17, Max

119.3

5
Var27
Step21, Max

3156.1 30
Var27
Step19, Max

112.5

6
Var26
Step10, Mean

2420.2 31
Var29
Step2, Min

92.2

7
Var27
Step10, Max

1848.5 32
Var26
Step8, Max

91.6

8
Var27
Step10, Mean

1261.5 33
Var30
Step19, Max

89.8

9
Var26
Step10, Max

1181.5 34
Var26
Step21, Mean

84.4

10
Var27
Step17, Mean

723 35
Var26
Step10, SD

76.7

11
Var29
Step6, Mean

563.9 36
Var27
Step13, Mean

75.7

12
Var26
Step8, Mean

517 37
Var29
Step19, Min

73.2

13
Var26
Step19, Max

452.6 38
Var26
Step4, Mean

71.3

14
Var29
Step21, Mean

373.5 39
Var30
Step13, Max

70.8

15
Var26
Step19, Mean

347.1 40
Var29
Step16, Min

69.9

16
Var29
Step17, Mean

319.2 41
Var59
Step10, Mean

69.5

17
Var29
Step17, Max

284.9 42
Var29
Step8, Mean

68.5

18
Var27
Step21, Mean

283.8 43
Var29
Step7, Max

66.3

19
Var26
Step21, Max

269.6 44
Var26
Step13, Mean

64.3

20
Var29
Step19, Mean

250 45
Var26
Step8, SD

63.2

21
Var29
Step6, Min

246.1 46
Var29
Step7, Mean

62.6

22
Var29
Step17, Min

151 47
Var29
Step6, Max

61.8

23
Var26
Step13, Max

148.9 48
Var30
Step15, Max

61.1

24
Var40
Step13, Min

146 49
Var29
Step2, Mean

59.5

25
Var27
Step13, Max

143 50
Var29
Step15, Min

55.3

Figure 1: The descriptive statistics of Var30 for step 13 of
Recipe 1.

Table 3: Raw data for each step

Step Raw data Size

Stable
after

n
points

1 [400, 400, 400, 400, 400, 400, 400, 400] 8 0

2 [400, 400, 400, 400, 890, 1052, 1054, 1056,
1056] 9 6

3 [1061, 1043, 1043, 400, 400, 400, 400, 400] 8 4

4 [400, 400, 400, 468, 863, 904, 894, 877, …] 22 7

5 [842, 1093, 684, 400, 400, 400, 400, 400, 400] 9 4

6 [400, 400, 400, 400, 940, 1208, 1208, 1208, …] 43 6

7 [1218, 1216, 1216, 400, 400, 400, 400, 400] 8 4

8 [400, 400, 400, 662, 1182, 1195, …] 18 5

9 [1144, 1144, 1144, 400, 400, 400, 400] 7 4

10 [400, 400, 400, 707, 1295, 1312, 1323,
1330, …] 94 7

11 [400, 400, 400, 643, 1252, 1295, 1310, 1322,
1331, 1332, …] 10 8

12 [400, 400, 400, …] 10 0

13 [400, 400, 400, 400, 1088, 1227, 1238,
1238, …] 53 7

14 [1249, 1248, 981, 400, 400, …] 6 4

15 [400, 400, 400, 676, 1171, 1237, 1248,
1248, …] 34 7

16 [1246, 1245, 1245, 400, 400, 400, …] 8 4

17 [400, 400, 400, 400, 1190, 1206, 1212,
1214, …] 24 7

18 [1222, 1221, 971, 400, 400, 400, …] 8 4

19 [400, 400, 400, 400, 917, 965, 969, 969, …] 24 6

20 [973, 972, 731, 400, 400] 5 3

21 [400, 400, 400, …] 18 0

22 [400, 400, 400, …] 31 0

1265

GECCO’19, July 13-17, 2019, Prague, Czech Republic L.-Y. Chen et al.

4

Figure 2: A total of 13 variables and 52 features were
selected. The first 8 variables were selected by experts in
the manufacturing production line. The last 5 variables
were defined by FDA.

We find that Var25, Var26, Var27, Var29, Var30, and Var59 are
leading variables, which are indicated in grey in Table 2. It can
be seen that Var40 is also pointed out as an important feature by
FDA, but the experts of semiconductor manufacturing have
evaluated that Var40 has no significant impact on the entire
process. Therefore, Var40 is ignored for further XCSR processing.

We observed the descriptive statistics of the feature selected
by FDA and found that the machine had not reached its stable
state before the start of each step. As shown in Fig. 1, step 13
begins at 7,563 data points and reaches a stable state at 7,568
data points. We listed all the data points of each step and
observed that each step will reach the stable state at a maximum
of 8 data points after the start of each step and will be out of the
stable state at most a maximum of 2 data points before the end of
each step. Table 3 lists the raw data of each step, the size of the
raw data, and the number of data points needed to reach the
stable state after the start of each step. Therefore, according to
Table 3, we remove the first 8 data points and the last 2 data
points of each step to calculate the value of the feature.

Finally, we selected Var30, Var31, Var32, Var33, Var63, Var64,
Var65, and Var66 based on the experience of experts, and we
selected Var25, Var26, Var27, Var29, and Var59 based on FDA. A
total of 13 variables were selected as input variables based on the
experience of experts and FDA as shown in Fig. 2. In the
following, we briefly explained the FDA, the difference between
XCS and XCSR, and the parameters used by XCSR.

2.1 Fisher discriminant analysis (FDA)
The purpose of FDA is to confirm whether there are statistically
significant differences between the average scores of a set of
variables for two or more predefined groups. The FDA is also a
supervised dimensionality reduction method for two categories
of samples. On the classification problem, FDA can be used to
sort the ability of each feature to distinguish between two
categories. The formula for FDA is shown in (1), where i and j
are the class labels; ui,fk and uj,fk are the means of the kth feature,
and (σi,fk)2 and (σj,fk)2 are the variances of the kth feature. A
higher FDA score means that a feature has a better ability to
distinguish between two categories.

𝐽𝑓𝑘 =
‖𝜇𝑖, 𝑓𝑘 − 𝜇𝑖, 𝑗𝑘‖

2

𝜎𝑖,𝑓𝑘
2 + 𝜎𝑖,𝑗𝑘

2 (1)

In the Artificial Intelligence for Cyber-Enabled Industrial
Systems project hosted by Prof. Jay Lee [5, 6], the collection of
multiple variables in Industry 4.0 is considered as big data. When
dealing with the issue of big data, we must consider the amount
of data that can be processed by the computer and the
complexity between the variables. To avoid the curse of
dimensionality, the dimension reduction process will be
performed before dealing with multiple variables. Prof. Jay Lee
also applied FDA as a feature selection method for the analysis
of semiconductor manufacturing processes [7].

2.2 eXtended Classifier System (XCS)
XCS is a rule-based machine learning method suitable for online
learning systems. The core of XCS is composed of rules, and the
interpretation of each rule is “IF condition, THEN action”. The
rules learned by XCS are very simple interpretations for humans.
A collection of multiple rules in XCS is called a population set
[P]. XCS finds the rules that satisfy the environmental conditions
from [P] and executes the action of these rules to interact with
the environment. The environment gives feedback or payoff
based on the action of XCS. XCS evaluates the quality of the
rules based on the payoff and determines whether the rules can
be retained in [P]. XCS uses the ternary alphabet {0, 1, #} as
encoding for the condition of the rule, where the # symbol
stands for “Don’t care”. Regardless of whether the input value is
0 or 1, the environmental condition corresponding to the bit of #
is considered to satisfy the condition. To evaluate the rules, XCS
uses 3 parameters to calculate the quality of the rules. Rules
contain evaluation parameters called classifiers. The three
parameters contained in the classifier are prediction, prediction
error, and fitness. Prediction is used to predict how many payoffs
can be obtained from the environment after the action of the
classifier is executed. Prediction error is the error between the
predicted value of the classifier and the actual payoff obtained
from the environment. Fitness is used to assess whether a
classifier is suitable for retention in [P]. Fitness is defined as a
function of prediction error. A classifier with smaller prediction
error is easier to retain in [P]. After interacting with the
environment, XCS uses the reinforcement learning method to
update these 3 parameters according to the payoff given by the
environment. In addition to adding 3 parameters to evaluate the
quality of the rule, GA is applied to help XCS produce new rules.
XCS evolves through iterations to find the most accurate and the
most general rules.

The performance cycle of XCS is divided into 6 stages. (i)
Matching operation. XCS converts the detected environmental
inputs into a binary string and creates an empty set called match
set [M]. XCS scans [P] to find the classifiers that satisfy the
classifier conditions for the given environmental inputs and put
these classifiers into [M]. If [M] is still empty after scanning [P],
XCS will activate the “Covering” mechanism. The covering
mechanism will generate a new classifier whose condition must
satisfy the environmental inputs. Each bit in the condition of the
newly generated classifier will be covered by # with a certain
probability. The action and 3 parameters of the newly generated
classifier are given randomly. Therefore, re-scanning [P] will

1266

Predicting the RUL of Plasma Equipment through XCSR GECCO’19, July 13-17, 2019, Prague, Czech Republic

 5

inevitably find a classifier that meets the environmental inputs
and put it into [M]. (ii) Generating prediction array [PA]. Each
classifier with the same action in [M] will weigh its prediction
with fitness. Finally, the weighted values of the classifiers with
the same action are averaged as the prediction of the action.
[PA] can be generated after all the predictions for the action are
calculated. (iii) Action selection. After [PA] is generated, XCS
will decide which action to execute based on the prediction value
of each action in [PA]. There are two mechanisms for action
selection: exploration and exploitation. In exploration, XCS will
randomly select an action based on the prediction of each action
in [PA] as the probability of selection, or randomly select an
action to execute. In exploitation, XCS will choose the largest
predicted value of the action in [PA] as the executed action. In
the process of interaction with the environment, XCS will
alternately perform exploration and exploitation. The classifiers
in [M] that match the chosen action will be selected and placed
in action set [A]. (iv) RL. The update of the parameters mainly
occurs in [A]. When the XCS performs an action through the
effector, the environment provides the payoff. XCS will use Q-
learning to update the parameters of the classifiers in [A] based
on the payoff. (v) GA. If the threshold of GA is satisfied, GA will
activate. GA acts on [A] to generate new classifiers for adapting
to environmental changes or finding better solutions. GA mainly
contains two important mechanisms: Crossover and Mutation.
The Crossover uses a two-point Crossover or uniform Crossover
to exchange the information of two classifiers for generating
better classifiers. The Mutation is to scan each bit of the
classifier’s condition. The scanned bit will change the value or
cover by # with a certain probability. (vi) Updating operation.
XCS will scan the classifiers in [P] to find out which classifier's
parameters need to be updated. If a new classifier generated by
GA does not exist in [P], XCS will check the size of [P]. If the
size of [P] does not reach the upper limit, XCS will insert the
new rule directly into [P]. If the number of rules exceeds the size
of [P], XCS will delete classifiers based on fitness. XCS will
repeat the above six stages to find the most correct and most
general classifiers.

XCS also has two major mechanisms, the macroclassifier and
the subsumption mechanism, which help XCS learn the general
classifiers. The concept of a macroclassifier is to speed up the
matching operation of XCS. XCS may generate the same
classifier in [P]. Therefore, a new parameter “num” is added to
the classifier. When XCS generates a new classifier, XCS will
scan [P] to find if there is a macroclassifier whose condition and
action are the same as the newly generated classifier. If a
macroclassifier exists, the num of the macroclassifer will be
incremented by 1; otherwise, this new classifier is inserted in [P]
and its num is set to 1. When a macroclassifier is selected to be
deleted, its num is decremented by 1 if its num is greater than 1;
otherwise, the macroclassifier is removed from [P]. Subsumption
mainly occurs in [A] and GA; it can also be called
ActionSetSubsumption and GASubSumption according to the
location of activation. The concept of subsumption is to help
XCS find accurate and general classifiers.

2.3 XCS with continuous-valued inputs
(XCSR)

To process continuous-valued inputs, Pro. Wilson proposed
XCSR. This method changes the original expression of a
classifier’s condition from ternary alphabet to interval predicate.
Interval predicates are expressed as inti = (ci, si), where ci
represents the middle value of the interval and si represents the
half range centered on ci. For instance, the environmental inputs
are x1 and x2, and both x1 and x2 are real numbers. A classifier’s
condition is expressed as [(0.3, 0.1), (0.7, 0.1)]. We can interpret
this classifier’s condition as “if (0.2 ≤ x1 ≤ 0.4) and (0.6 ≤ x2 ≤ 0.8)
are true, then the classifier matches the environmental inputs”.
The performance cycle of XCSR is the same as that of XCS
except for two mechanisms, which are Covering and GA.

Covering will activate when [M] is still empty after matching
operation. XCSR will generate a new rule whose condition is
expressed as inti = (ci, si), where ci is equal to the environment
input xi; si is randomly taken from 0 to sr; sr is defined by the
user and sr ≥ 0. The action of the classifier is given randomly. The
difference between GA in XCSR and XCS are in the operation of
Crossover and Mutation. XCSR uses Uniform Crossover. XCSR
scans the classifier’s condition for each interval predicate, and
exchanges the interval predicates of the two rules with
probability x. In Mutation, the center and spread values in each
interval predicate are randomly added and subtracted from
random values between 0 and m, where m is defined by user. We
call this modified version of XCS, XCSR.

2.4 Parameters setup of the XCSR
The parameters setup of the XCSR mainly refer to [8], and the
description of the setting is as follows: Population size n = 5000;
learning rate β = 0.2; decline rate of fitness α = 0.1; the threshold
of prediction error ε0 = 10; fitness exponent υ = 5; the threshold
of GA acts on [A] θGA = 25; the probability of Crossover χ = 0.8;
the probability of Mutation μ = 0.04; the deletion threshold θdel =
20; the fraction of the mean in [P] δ = 0.1; the subsumption
threshold θsub = 20; the probability that a bit in the Covering
mechanism is covered by the "don't care" symbol P# = 0.33; initial
prediction value pI = 10; initial prediction value εI = 0; initial
fitness value FI = 10; the maximum range of spread sr = the half
range of values for each variable; the range of value that increase
or decrease the value of the interval predicate m = sr; Both
doActionSetSubsumption and doGASubsumption are activated.

3 RESULTS
We calculated the mean, standard deviation, maximum, and
minimum values of the data in Recipe1 as the input features. A
total of 3,260 data and 52 features for each data are inputted to
XCSR. The output of the XCSR is “Good” (the first 2 days after
the machine's operation) and “Bad” (the last 2 days before the
machine's failure). The data was repeatedly trained 100 times,
and the data will be shuffled before each training time. XCSR
repeated 30 experiments for each data training, and all static
reports were the average results for 30 runs. Fig. 3 shows the
result of XCSR.

1267

GECCO’19, July 13-17, 2019, Prague, Czech Republic L.-Y. Chen et al.

6

Figure 3: The moving average accuracy result per 50
exploitations for XCSR.

Table 4: 10-fold cross validation for XCSR

No Accuracy

Number
of missing
classifiers

in [P]

No Accuracy

Number of
missing

classifiers
in [P]

1 0.981250 7 6 0.974643 8
2 0.962145 9 7 0.965409 8
3 0.972050 4 8 0.987616 3
4 0.975155 4 9 0.972136 3
5 0.984568 2 10 0.959119 7

Average
accuracy 0.973409

Missing
rate of

classifiers
in[P]

0.016871

The result is the moving average with the accuracy of every
50 exploitations. We can find that XCSR reaches 100% accuracy
after approximately 11,500 interactions. The result confirmed
that XCSR can quickly adapt to the environment and find the
patterns.

We used 10-fold cross-validation to test the performance and
the generalization of XCSR. Recipe1 has 3,260 data, of which
1,779 are marked as "Good" and 1,481 are marked as "Bad" . We
cut the data into 10 folds, about 326 data each fold, and the ratio
of "Good" and "Bad" in each fold is close to the ratio of the
original data. XCSR will use the first fold as testing data, and the
remaining nine folds will be used as training data. Each fold will
become the testing data once, and the rest of the folds will
become training materials. This process will be repeated 10
times. During the XCSR verification process, XCSR does not
activate the mechanisms for Covering, GA, and Updating
operations. XCSR only uses exploitation for selecting execution
actions, which means that XCSR only uses the classifier that
predicts the maximum payoff. If XCSR cannot find a classifier
from [P] that matches the verification data, we will record it as a
missing classifier and add 1 to the number of missing classifier.

Missing classifiers are not included in the calculation of the
accuracy rate, because the normal operation of XCSR will
activate the Covering mechanism to generate a new classifier.
Table 4 shows the results of 10-fold cross-validation. The average
accuracy rate of XCSR is 0.973409, and the missing rate of
classifiers is only 0.016871. The results confirmed that XCSR has
good performance in predicting unseen data, which also
confirmed that XCSR has the ability of generalization in dealing
with multivariable issues.

Finally, we used the data of Recipe2 as the input of the testing
data, which has a similar process to Recipe1. We also calculated
the mean, standard deviation, maximum, and minimum values of
the data in Recipe2 as the input features. The amount of input
data for Recipe2 has been reduced from 33,640 to 686. In the
input data, 249 data are marked as "Good" and 437 data are
marked as "Bad". It can be observed that the ratio of two classes
in Recipe2 is unbalanced. We used the 686 data of Recipe2 as
input data to verify the effectiveness of the [P] learned by XCSR.
Table 5 shows the results of 30 verifications. The average
accuracy rate of XCSR is 0.97399, and the missing rate of
classifiers is only 0.02074. The verification results give us more
confidence to confirm that XCSR can handle complex real-world
problems of such multiple variables. XCSR can still find patterns
to accurately predict RUL, even if there are slight differences
between similar recipes.

We go further to see the classifiers learned in [P]. In order to
understand what XCSR learns, when the range of values covered
by the interval predicate is greater than or equal to the
maximum value of the variables and less than or equal to the
minimum value of the variables, we will use the “don’t care”
symbol (#) to express the allele of interval predicate. This means
that any input value can match this allele of interval predicate,
indicating that the classifier believes that the variable does not
affect its output. We analyze a classifier learned by XCSR as an
example. Table 6 is the classifier that XCSR learned for step 6 in
Recipe1 of RF-MB machine. There are a total of 52 features in the
input data. In this classifier, XCSR only retains 3 features and the
rest are covered with #. This classifier predicts that RF-MB
machines may be failure after 2 days. We draw descriptive
statistics for the “Good” and “Bad” of the mean value of Var29 in
step 6 as shown in Fig. 4. Compared with the classifier learned
by XCSR, it can be found that “Good” and “Bad” do have
significant differences, and XCSR can accurately cut the “Bad”
range, from 17.5 to 23. The mean value of Var29 in step 6 also
has the same result as shown in Fig. 5. XCSR can accurately cut
the “Bad” range, from 19 to 21.6. In the mean value of Var59 in
step 6, it is shown that XCSR can accurately cut out the “Bad”
range value, from 50.1 to 50.5, as shown in Fig. 6. However, it
can be found that the range of “Bad” learned by XCSR overlaps
with the range of “Good”. We think the possible reason is that
the number of 100 iterations is too short, and it is not enough to
make XCSR converge to the optimal range. However, XCSR can
reduce features from 52 to 3 and accurately concentrate the exact
range, which is an exciting result.

1268

Predicting the RUL of Plasma Equipment through XCSR GECCO’19, July 13-17, 2019, Prague, Czech Republic

 7

Table 5: Verify the accuracy and missing rate of [P]
learned by XCSR

No Accuracy

Number
of missing
classifiers

in [P]

No Accuracy

Number of
missing

classifiers
in [P]

1 0.946824 9 16 0.979228 12
2 0.988166 10 17 0.988113 13
3 0.961652 8 18 0.986547 17
4 0.985251 8 19 0.953869 14
5 0.965672 16 20 0.984985 20
6 0.973451 8 21 0.968085 28
7 0.967213 15 22 0.986706 9
8 0.942857 21 23 0.964126 17
9 0.983558 17 24 0.982143 14
10 0.986587 15 25 0.986726 8
11 0.953453 20 26 0.96875 14
12 0.979259 11 27 0.976155 15
13 0.991031 17 28 0.962853 13
14 0.968935 10 29 0.976366 9
15 0.987786 31 30 0.973451 8

Average
accuracy 0.97399

Missing
rate of

classifiers
in[P]

0.02074

Table 6: Classifiers learned by XCSR for step 6 in recipe 1
of RF-MB machine

Condition Action

Step 6

Bad

Var 30 31 32 33 63

Mean # # # # #

Std # # # # #

Max # # # # #

Min # # # # #

Var 64 65 66 25 26

Mean # # # # #

Std # # # # #

Max # # # # #

Min # # # # #

Var 27 29 59

Mean #
17.5-
23.0

50.1-
50.5

Std # # #

Max #
19.0-
21.6

Min # # #

Figure 4: Descriptive statistics for the mean value of Var29
in step 6.

Figure 5: Descriptive statistics for the maximum value of
Var29 in step 6.

Figure 6: Descriptive statistics for the mean value of Var59
in step 6.

1269

GECCO’19, July 13-17, 2019, Prague, Czech Republic L.-Y. Chen et al.

8

Figure 7: Descriptive statistics for the mean value of Var29
in step 6.

4 DISSCUSSIONS
The XCSR learns “Good” and “Bad” labels as RUL indicators for
RF-MB machine on the 4-day training materials. However, the
trend of data for the rest of days have not yet been taken into
account. We have found complete data of Recipe1 in RF-MB
machine for about six months, and plotted the statistical
description of Var29. Complete data means that the RF-MB
machine is from a new normal state to a failure. Fig. 7 shows the
variation of the mean value of Var29 in step 6, where illustrates
an occurrence of periodic reset. Periodic reset is about half a
month. This is a periodic maintenance action that the operator
will perform based on past operation experience. Periodic reset
seems to be effective in returning Var29 to its normal state.
However, we found that the overall change in Var29 presents a
trend of increasing values when the time is close to the “Bad”
that we have labeled. It can be observed that it is impossible to
return to the situation on March 12 after maintenance in June 12.
This represents an interference problem with other anomalies.
At this time, we only know the cause of RF-MB machine failure.
Other possible reasons need to be further discussed with
relevant experts and operators.

XCSR can find patterns and accurately predict state of the RF-
MB machine in similar recipes of the same RF-MB. In the future,
we hope to verify the performance of XCSR under the same
recipe of different RF-MB machines. However, learning and
testing in different RF-MB machines may encounter some
difficulties. For example, the difference in the baseline of each
variable for different RF-MB machines can be very large due to
different environmental status. We must find an appropriate
normalization method for XCSR to find patterns in the same
recipe between different RF-MB machines. We hope to find the
pattern on different RF-MB machines in the future.
We successfully used XCSR to exam the features of the normal
state and abnormal state of the RF-MB machine. If we want to
calculate RUL of plasma equipment more accurately, it is
necessary to find an algorithm to approximate the function of
RUL. XCS with function approximation (XCSF) is another

modified version of XCS that can approximate unknown
functions [9, 10]. We think that we can use the remaining time
of RF-MB from normal to failure as the payoff given by the
environment. We use Var29 and the information of periodic
reset as input data expecting XCSF to approximate the RUL
function of RF-MB machine. We hope to build a more complete
evaluation method of RUL in the future.

5 CONCLUSIONS
We use XCSR to predict the RUL of plasma equipment. We use
the Recipe1 in RF-MB machine as training data. The data is
recorded from February 21, 2017 to August 14, 2017, where a
component of RF-MB machine is reinstalled and continuously
operates until the component is damaged. Due to the large
number of variables, we use FDA to help us concentrate
important variables. We marked the first 2 days of the RF-MB
operation as “Good” and marked the last 2 days before the failure
of RF-MB as “Bad”. In order to reduce the amount of data, we use
the mean, standard deviation, maximum, and minimum of each
variable in a single step as input features. XCSR can quickly find
patterns from these features. XCSR has the ability to reduce
features from 52 to 3. We used 10-fold cross-validation in Recipe1
for XCSR. The averaged accuracy of XCSR is 97.3% and the
averaged missing rate of rules is only about 1.6%. We also used
similar process of recipe in the same RF-MB machine as testing
data. The averaged accuracy of XCSR is 97.3% and the averaged
missing rate of rules is about 2%. The result shows that XCSR
performs the ability to handle complexity problems with
multiple variables. In the future, we will conduct the XCSF to
approximate the optimization function for more accurately
predicting the RUL of plasma equipment.

ACKNOWLEDGMENTS
This project is fully supported by United Microelectronics
Corporation (UMC).

REFERENCES
[1] L. Y. Chen, Y. L. Yang, and T. C. Hsiao. 2017. ZCSR for targeting the optimal

impedance in digital radio frequency matching box. In Proceedings of ACM
GECCO conference, Berlin, Germany (GECCO’17), 269–270.

[2] S. W. Wilson. 1995. Classifier fitness based on accuracy. Evolutionary
Computation. Vol. 3, No. 2, 149–175.

[3] R. J. Urbanowicz and W. N. Browne. 2017. Introduction to learning classifier
systems. Springer.

[4] S. W. Wilson. 1999. Get real! XCS with continuous-valued inputs. In
International Workshop on Learning Classifier Systems. Springer, 209–219.

[5] J. Lee, B. Bagheri, and H. A. Kao. 2015. A cyber-physical systems architecture
for industry 4.0-based manufacturing systems. Manufacturing Letters, Vol. 3,
18–23.

[6] J. Lee, H. A. Kao, and S. Yang. 2014. Service innovation and smart analytics for
industry 4.0 and big data environment. Procedia CIRP. Vol. 16, 3–8.

[7] J. Lee, D. Siegel, and E. R. Lapira. 2013. Development of a predictive and
preventive maintenance demonstration system for a semiconductor etching
tool. ECS Transactions. Vol. 52, No. 1, 913–927.

[8] M. V. Butz and S. W. Wilson. 2000. An algorithmic description of XCS. In
International Workshop on Learning Classifier Systems. Springer. 253–272.

[9] S. W. Wilson. 2001. Function approximation with a classifier system. In
International Workshop on Learning Classifier Systems (GECCO’01). 974–981.

[10] M. V. Butz, P. L. Lanzi, and S. W. Wilson. 2008. Function approximation with
XCS: Hyperellipsoidal conditions, recursive least squares, and compaction.
IEEE Transactions on Evolutionary Computation. Vol. 12, No. 3, 355–376.

1270

