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ABSTRACT
Some of the modern evolutionary multiobjective algorithms have

a high computational complexity of the internal data processing.

To further complicate this problem, researchers often wish to alter

some of these procedures, and to do it with little effort.

The problem is even more pronounced for steady-state algo-

rithms, which update the internal information as each single indi-

vidual is computed. In this paper we explore the applicability of

the principles behind the existing framework, called generalized of-

fline orthant search, to the typical problems arising in steady-state

evolutionary multiobjective algorithms.

We show that the variety of possible problem formulations is

higher than in the offline setting. In particular, we state a problem

which cannot be solved in an incremental manner faster than from

scratch. We present an efficient algorithm for one of the simplest

possible settings, incremental dominance counting, and formulate

the set of requirements that enable efficient solution of similar

problems. We also present an algorithm to evaluate fitness within

the IBEA algorithm and show when it is efficient in practice.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making; • Theory of computation → Sorting and
searching.
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1 INTRODUCTION
Software systems for evolutionary computation shall be both easy

to use and performant. It is not obvious which of these two points

is more important. A software system with a steep learning curve
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repels new users that wish to try it for their purposes. A slow

software system pushes away some of the existing users, which

appear to be unsatisfied with the speed. Such users have already

invested their time into getting acquainted with the system and into

tuning their workflows to work with it, so the amount of frustration,

as well as the associated losses, can also be quite high.

The nature of metaheuristics implies that the end users often

wish to play with the algorithms, which involves not just tuning

their parameters but also altering and replacing and their com-

ponents, often at the fundamental level. This necessitates open

software architectures and requires the components to be easily

understandable and manageable. As a result, performance and con-

venience are typically in conflict.

Some of the parts are less likely to be intercepted by users, as

they feel them as monolithic building blocks, which enables their

optimization. For instance, the hypervolume indicator [43] is mostly

used as is after simple data preparation, such as coordinate nor-

malization or selection of the reference point [2, 20]. This faciliates

development of efficient algorithms [21, 24, 33] to this #P-complete

problem [5]. Similarly, the end users are unlikely to alter eigende-

composition in the core of the CMA-ES algorithms [18, 19].

Other computationally-demanding subroutines of evolutionary

algorithms are altered much more often. For instance, the Pareto-

dominance relation, which is used in a large number of evolution-

ary multiobjective algorithms, is sometimes replaced by epsilon-

dominance [25], and the procedure of reference vector creation,

which is common to decomposition-based many-objective algo-

rithms [40], is altered in NSGA-III [12] in order to adapt the bound-

aries in every objective based on the current population state.

To enable efficient implementation of such ever-changing pro-

cedures, designing generic algorithmic frameworks is one of the

solutions. Already in 2003 a divide-and-conquer scheme is pro-

posed [22] which encapsulated non-dominated sorting [12, 13],

archiving of non-dominated solutions [1] and dominance count-

ing [42], all with the complexity of O(N (logN )K−1) or smaller for

N points and dimension K . A more recent paper [8] introduced the

formalism called generalized offline orthant search to cover these

problems, as well as computation of the ε-indicator [44], initial
fitness assignment for the IBEA algorithm [41] and the variants of

the R2 indicator [6, 34], that enabled a single well-optimized imple-

mentation, running in O(N (logN )K−1), to serve all the purposes.

The contribution of this paper amounts to investigation of

generalized orthant search in the settings common to steady-state

evolutionary multiobjective algorithms. We introduce generalized
incremental orthant search, which appears to be an even richer

problem, and study several applications which appear to be the

easiest, the hardest and the medium-complexity cases.
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2 PRELIMINARIES
In this paper, we will mostly investigate algorithmic problems aris-

ing when developing and implementing evolutionary multiobjec-

tive algorithms. Furthermore, we are going to operate exclusively

with the objective vectors representing fitness values of individuals,

so we abstract away from the typical issues related to evolutionary

computation, such as solution representations, variation operators

and genotype-to-phenotype mapping.

2.1 Basic Definitions and Notation
We consider solving multiobjective problems with the number of

objectives K ≥ 2, also denoted as the dimension. Without loss of

generality, we assume that the fitness vectors, which we will often

refer to as points, come from the space RK , and we will refer to

the i-th component of a point, 1 ≤ i ≤ K , as the i-th objective or
the i-th coordinate. We assume minimization problems, that is, the

smaller the objective, the better.

A point p is said to strictly dominate another point q in the Pareto
sense, denoted as p ≺ q, if the following conditions are satisfied:

p ≺ q ↔

{
∀i, 1 ≤ i ≤ K pi ≤ qi ,

∃j, 1 ≤ j ≤ K pj < qj .

If we remove the second condition, we will get the definition of

weak dominance, denoted as p ⪯ q. We will also need the partially
strict dominance parameterized by the set S of strict coordinates:

p ≺S q ↔


∀i, (1 ≤ i ≤ K) ∧ (i < S) pi ≤ qi ,

∀i, (1 ≤ i ≤ K) ∧ (i ∈ S) pi < qi ,

∃j, 1 ≤ j ≤ K pj < qi .

2.2 Several Important Algorithms
In this subsection we recall some algorithms that either appear as

parts of evolutionary multiobjective algorithms, or are themselves

evolutionary multiobjective algorithms, which we will use further.

Dominance counting. The algorithm SPEA2 [42] features a two-

phase procedure called dominance counting. In the first phase, ev-

ery non-dominated point is assigned a value called the dominance
strength, which is equal to the number of other points it dominates.

The less points it dominates, the better it is thought to be, as in

this case it represents a less-populated region. In the second phase,

the dominance strength of every dominated point p is evaluated

by summing up the dominance strengths of all non-dominated

points that dominate p. Although the reference implementation

of SPEA2 uses Θ(N 2K) algorithms to complete both of the phases,

it is shown in [22] that each of these phases can be completed in

O(N (logN )K−1), which is also possible to achieve as in [8].

Non-dominated sorting. This procedure was proposed in the mul-

tiobjective algorithms NSGA [35] and NSGA-II [13] as one of the

ranking procedures. It assigns ranks to points using the following

logic: let Pi be the part of the population at the i-th iteration, i ≥ 0

(initially P0 is the entire population), then the point set Ri (called
the i-th level or the i-th layer) is defined as the non-dominated sub-

set of Pi , e.g.: Ri = {p | p ∈ Pi ∧�q ∈ Pi : q ≺ p}, and Pi+1 = Pi \Ri
is the remainder of the population which is processed on the next

iteration. The process continues until Pi is empty for some i .

In NSGA [35], this was implemented straightforwardly in time

O(N 3K), where N is the number of points, and NSGA-II [13] con-

tained an improved algorithm, called fast non-dominated sorting,
that required Θ(N 2K) time and memory. Even with this reduced

complexity, it was still an asymptotic bottleneck in NSGA-II. For

this reason, as well as because of the huge popularity of NSGA-II

and the appearance of more algorithms that used non-dominated

sorting [11, 12, 42], a large number of more efficient algorithms ap-

peared. Some of them did not attempt to improve the worst-case per-

formance, but instead concentrated on improving the performance

“on average” regarding typical scenarios from evolutionary compu-

tation; the best algorithms of this sort are arguably ENS-NDT [17]

and Best Order Sort [31, 32]. Others aimed at improving the worst-

case performance, which started in [22] with the time complexity

ofO(N (logN )K−1) and subsequently refined in a number of works,

featuring e.g. the algorithm requiring O(N (logN )K−2 log logN )
time and a word RAM computation model [9]. These works are

based on the divide-and-conquer scheme dating back to [23].

Note that in the computational geometry community this prob-

lem is known as finding the layers of maxima and has been ex-

tensively investigated for K = 3, resulting in efficient algorithms

with complexity as small as O(N (log logN )2) [7, 29]; however, the
attempts to generalize these ideas to higher dimensions did not

succeed so far.

Incremental non-dominated sorting. A steady-state version of

NSGA-II recently received considerable attention and found out to

deliver noticeable improvements both on benchmark functions [28]

and on certain real-world problems [10] in terms of both fitness

function evaluations and the resulting diversity. One of the key dif-

ferences between it and the classical NSGA-II is that one individual

is synthesized and evaluated on each iteration, then it is added back

to the population. Unfortunately, a straightforward implementation

requires re-running non-dominated sorting, already a bottleneck,

on each individual insertion, which influences the running time

negatively even with quite expensive fitness functions.

A number of algorithmic approaches have been developed to

replace the conventional offline non-dominated sorting with a data

structure to maintain incremental changes, e.g. insertion of a newly

computed individual and removal of the worst individual. The

approach called efficient non-dominated level update [26, 27] modi-

fies fast non-dominated sorting for this purpose, which does not

improve the worst-case insertion time but significantly improves

performance on the real data. Another approach [38] is particu-

larly efficient in the two-dimensional case (the worst-case inser-

tion time is O(N ), which drops to O(logN ) in typical evolutionary

computation scenarios), but has also been generalized to arbitrary

dimensions [39] with the insertion complexity of O(N (logN )K−2).
Note that evenwith these improvements the complexity of insert-

ing N points into the data structure for incremental non-dominated

sorting is much higher than doing it once with an offline sorting. It

is not known as of now whether it is a fundamental property, or

just a lack of attention from algorithmists.

ε-indicator. In [44] it was proposed to compare the performance

of evolutionary multobjective algorithms by means of binary in-
dicators. An indicator is a function that takes one or more point
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sets and returns a single number. The well-known hypervolume

indicator [43] is an example of an unary indicator. One of the binary

indicators proposed in [44] is the additive ε-indicator which takes

two point sets, the moving setM and the fixed set F , and computes

the following value:

ε(M, F ) = max

m∈M
min

f ∈F

K
max

i=1
(fi −mi ),

which, informally speaking, tells that ε(M, F ) is the minimum value

that shall be subtracted from each point from M such that every

point from F gets dominated by at least one point fromM .

It may seem unlikely to enhance the performance of three tight

loops that evaluate the ε-indicator in Θ(N 2K), however, an algo-

rithm was proposed in [37] to compute it in timeO(KN (logN )K−2)
using K runs of a divide-and-conquer algorithm similar to the one

used for non-dominated sorting, which appeared to be efficient in

practice for small K . This work served as a basis for developing the

concept of generalized offline orthant search [8].

Indicator-Based Evolutionary Algorithm. In [41] it was proposed

to use binary indicators not only for assessment of performance of

evolutionary multiobjective algorithms, but for the optimization

itself. The indicator-based evolutionary algorithm, or IBEA, can

use any binary indicator I which is dominance-preserving, that is,
if a ≺ b, then I ({a}, {b}) < I ({b}, {a}), and for any other point c
it holds that I ({c}, {a}) ≥ I ({c}, {b}). Note that the ε-indicator, as
well as the binary version of the hypervolume also proposed in [44],

satisfy these conditions. With the use of such an indicator I , IBEA
assigns its own fitness values to an arbitrary set of points P in the

following way:

F (p) = −
∑

q∈P\{p }

e−I ({q }, {p })/κ .

IBEA maintains a population of individuals P of size N . On

every iteration it synthesizes N more individuals using variation

operators, adds to this population, and then removes the worst

individuals (the ones with the smallest fitness) one by one until

the population size gets back to N . Once an individual is removed,

fitness is recomputed for the remaining individuals by removing

the corresponding addends, amounting in Θ(NK) operations per
individual, assuming the ε-indicator is used.

While the initial fitness assignment, which can be run after

all children are evaluated, was shown in [8] to be possible in time

O(KN (logN )K−2), applying the same approach during the removal

phase seems to be impossible. In Section 4.3 of this paper we propose

an algorithm that improves the running time of this operation, but,

unfortunately, only by a constant factor.

2.3 Several Important Data Structures
This subsection explains the basics of two data structures, which

we will subsequently need in the proposed algorithms.

k-d tree. This is a data structure which efficiently partitions thek-
dimensional space using hyperplanes formed by fixing a particular

coordinate to a certain value [3]. It accelerates various queries, most

often from the practical point of view, by ignoring the unrelated

sections of the space whenever possible. Its name is a set expression,

which appeared as a short form of a term k-dimensional tree.

The k-d tree consists of leaves and internal nodes. The leaves

contain k-dimensional points (typically at most a constant number

of them), often augmented with problem-dependent information.

The internal nodes contain the coordinate index i , the value of

the coordinate v , and the pointers to the subtrees which contain

only the points with the i-th coordinate respectively smaller and

greater thanv . One can also store some subtree-related information

(such as e.g. the sum of values associated with all the points in the

subtree) in the internal nodes, which improves both theoretical and

practical performance in certain applications.

Adding a new point generally requires the time proportional

to the height of the tree. If a leaf contains too many points after

insertion of the new point, it needs to be split. The shape of the

tree depends on the strategy which chooses the coordinate index

and the value at split events, but randomized choices generally

work well, and the height of the tree is roughly logarithmic to the

number of contained points. There is no particular time bounds for

an arbitrary query, but many of them are still logarithmic.

In the context of evolutionary computation, k-d trees are used

in the ENS-NDT algorithm for non-dominated sorting [17], as well

as in several algorithms for maintaining the non-dominated set of

points [14, 16]. The space complexity of a k-d tree is O(N ).

K-dimensional range query tree. This is a close relative of the
multi-dimensional Fenwick tree [15] that supports dynamic inser-

tion and deletion of points. A conventional Fenwick tree stores N
numbers at indices 1, 2, . . . ,N , which it can update inO(logN ) time,

and it also can retrieve the sum on indices [1..i] also in O(logN )
time. It can be generalized to an arbitrary dimension K , such that

the structure stores K-dimensional points as well as the associated

values, with update and query times of O((logN )K−1). while the
memory complexity remains O(N ).

To support dynamic insertion and deletion of points, which

would correspond to indices of the Fenwick tree, a randomized

splitting scheme similar to the one used ink-d trees is typically used,

with the exception that the data structure consists of multiple levels

of trees, where each level corresponds to a dedicated coordinate,

and every node of the level i also contains a tree of the level i−1 that
contains all the points from the subtree. This makes it possible to

insert and remove points in time O((logN )K−1), as well as execute
orthant sum queries in the same time, but the space requirements

increase and reachO(N (logN )K−1). Additional information stored

in the nodes also enables modifications that, as effectively observed,

simultaneously add some value to all the points within a certain

product of ranges also in time O((logN )K−1). This family of data

structures is known as range query trees [4].

2.4 Generalized Offline Orthant Search
In [8] a generalization of a number of existing algorithms, which

were based on the same divide-and-conquer scheme as in [22], was

proposed to be able to embrace them all with a single piece of code.

Generalized offline orthant search was defined as follows:

• A collection of points P of size N from the K-dimensional

space is given. We distinguish different points with coincid-

ing coordinates, so we assign to them indices i , 1 ≤ i ≤ N .

• Each point can independently be a data point and a query
point. A set D contains the indices of data points, and a setQ
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contains the indices of query points. Note that D ∩Q need

not be empty, and in some applications D = Q = [1..N ].
• The partially strict dominance relation ≺S , defined by a set

S ⊆ [1..K] as in Section 2.1, is used.

• A commutative monoidK , having the neutral element □ and
the aggregation operation ⊕ : K×K → K , is given, which is

the domain of the values associated with the data points, and

also of the query results associated with the query points.

• A mapping V : D → K , that defines the values associated
with the data points, is initially defined, and it can be subse-

quently updated while solving the problem.

• The problem is to compute, for each query point with index

q, an aggregation of values associated with all data points

which dominate P[q] according to the ≺S relation:

A(q) =
⊕
d ∈D

P [d ]≺S P [q]

D(d).

• OnceA(q) is found for a query pointq, it is possible to update,
in an arbitrary way, the mapping V for a constant number

of data points d , such that Q[q] ≺S d . This is captured by

defining the query-to-data operation Q2Dq : (D → K) ×
K → (D → K), associated with a query pointq, which takes
the old mapping V and the query result A(q) and produces

the new mapping V by updating a few entities. In most

applications, Q2Dq is the identity function on the second

argument (i.e. it does nothing). In some applications, it is

associated only with those query points, which are also data

points, and updates only their own data values.

• The order of computing the queries for the above reason, and

the problem definition requires that an answer to a query

may be computed only once all necessary data points are

completely evaluated and will never change. This means that

any two queries q1 ≺S q2 must be answered in the order

of dominance. As the ≺S relation is acyclic, there exists an

order of query answering which satisfies this requirement.

This complicated definition differs from the conventional prob-

lem of answering orthant minimum queries in the following points:

• It enables on-the-fly updates of the data points in order to

capture non-dominated sorting and the similar problems.

• It uses a configurable dominance relation, which is heavily

used, for instance, in the reduction of IBEA’s fitness assign-

ment to ensure correctness for all inputs.

A divide-and-conquer algorithm withO(N (logN )K−1) time and

O(NK)memory was proposed in [8] along with an implementation

in Java which enables defining new configurations of generalized

offline orthant search by just extending a few abstract methods of a

configuration class, enabling a cheap reduction of many problems

to be solved by a well-optimized algorithmic core. This is simi-

lar to reduction of complicated problems to solvers, such as SAT

solvers [36, Chapter 2], common to other computer science fields.

3 GENERALIZED INCREMENTAL ORTHANT
SEARCH: THE PROBLEM DEFINITION

In this section we define the problem of generalized incremental
orthant search closely following the previous section.

The following components of the definition are similar to the

ones that constitute generalized offline orthant search:

• The domain for values K , which is a commutative monoid

with the aggregation operation ⊕ : K × K → K and the

neutral element □. This time, we may also profit from a

negation operation . : K → K .
• The partial dominance relation ≺S .

• The collections of data points D and query points Q . For a
dynamic data structure it is not easy to maintain contiguous

indices for points that can be added or removed. However,

we still need to distinguish points that are coordinatewise

equal but appeared by different queries.

• The data values associated with the data points V : D → K ,
as well as the query answers maintained for every query

A : Q → K .
• The query-to-data operation Q2D that updates a constant

number of data points once a query is evaluated: Q2Dq :

(D → K) × K → (D → K).

However, it is not enough to stop with this set of components.

In the offline search, answers to the queries, as well as the updated

values associated with the data points, can be directly used with

the O(1) lookup complexity once the algorithm terminates, so we

do not have to account for operations that consume them. The situ-

ation is different in the incremental case. For instance, incremental

non-dominated sorting is used within the steady-state NSGA-II

in conjunction with crowding distance, and finding the individual

with the smallest crowding distance in the last level may now be of

the same complexity order as insertion of one element, so special

tricks are needed to maintain a data structure that can efficiently

locate the worst individual [30].

Another example is the IBEA’s fitness assignment procedure. As

we will see later, we could achieve the O(K(logN )K−2) time for

insertion/removal of a point, as well as for reading the answer to a

query. However, after modifications we need to identify the point

which has the smallest sum of the answers of associated queries,

which would require scanning all query points and result in the

increase of the overall complexity, so this approach is not useful

for the intended application.

For this reason, we need to introduce an additional component,

the query selector, which can be asked to find a query point that sat-

isfies some requirement. This component can as well be associated

with a system of generalized incremental orthant search instances

instead of each single instance. For this reason, we do not specify

its function type, but merely signify its existence.

The following operations need to be supported by a data struc-

ture implementing generalized incremental orthant search:

• adding a data point;

• removing a data point;

• adding a query point;

• removing a query point;

• retrieving the answer for a query point;

• retrieving the value associated with a data point;

• asking the query selector.

The first four operations are modification operations. The data

structure needs to ensure that once an operation is finished, the

values associated with each data point, as well as the answers to
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all queries, are exactly the same as if generalized offline orthant
search was called on the same inputs. That is, the state of the data

structure shall not depend on the order of modification operations,

with the sole exception of resolving ties that may appear in the

query selector.

In the presence of the non-trivial query-to-data operation, it

is not easy to maintain this property. This is why incremental

non-dominated sorting, which is an instance of the generalized

incremental orthant search with the following parameters:

• K = N, □ = 0, ⊕ = max, S = [1..K],
• all points are both query points and data points,

• the initial value of a data point is □,
• Q2Dp performs V (p) ← A(p) + 1,
• no query selector is used,

is noticeably harder than the conventional offline non-dominated

sorting, as some of the updates tend to propagate for long distances

through the data structure.

On the other hand, we can get rather good bounds for the settings

with a trivial query-to-data operation, no query selectors and the

presence of the negation operator using range query trees.

Theorem 3.1. Generalized incremental orthant search is possible
to implement with O((logN )K−1) time required to perform all modi-
fication operations, as well as for retrieving the answer for a query
point, within O(N (logN )K−1) memory.

Proof. We use two K-dimensional range query trees with val-

ues from K and the aggregation operation ⊕. The first one stores

the data points and is used to produce answers to the queries, in

O((logN )K−1) each, every time a new query arrives.

The second one stores the changes in the answers to the queries

resulting from adding and removing the data points. It stores negated

query points along with their corresponding answers (initialized

by the answer at the time of the query addition), and also features

additional values in the internal nodes that need to be added to the

entire subtree of that node. Addition (or removal) of the data point

results in adding (or subtracting) its value from the orthant range

originating at the negated data point, which takes O((logN )K−1)
time. When an answer to a query is requested, the value associated

with that query is summed up with all the additional values in

the internal nodes on the way to the root. When a new query is

inserted, the additional values in the internal nodes on the way to

the location of that query from the root are pushed down to the

children of these nodes, which retains the correctness of the data

structure and allows accommodation of the new query. □

While using range query trees seems promising, their benefits

quickly disappear once advanced features, such as non-trivial query-

to-data operations or query selector, need to be implemented. This

is why we limit ourselves by implementations based on k-d trees

in the experimental sections of this paper.

The following sections investigate the easiest case of generalized

incremental orthant search with the setting from Theorem 3.1 (Sec-

tion 4.1, experimental), the hardest case where nothing can be done

more efficiently than from scratch (Section 4.2, theoretical), and the

important case of IBEA’s fitness assignment with a constant-factor

improvement compared to the naive implementation (Section 4.3,

experimental).

4 APPLICATION EXAMPLES
4.1 An Easy Example: Dominance Counting
For an easy example, we considered the simplified version of the

dominance counting setup. In this example, we will have two sep-

arate sets of points: one for data points that would represent the

non-dominated points and would carry some value uniformly ran-

domly sampled from [0; 1], and one for query points that would

represent the dominated points and would request the sum of the

data points that dominate them.

We consider dimensions K ∈ {2, 3, 4, 5, 7, 10} and the character-

istic problem sizes N = ⌊10n/2⌋ for n ∈ [2..7], so that the maximum

N is 3162. We generate both the query points and the data points

using three types of generators:

• “cube” (each coordinate is sampled uniformly and indepen-

dently from [0; 1]);

• “plane” (coordinates from [2..K] are sampled as above, the

first coordinate is equal to one minus the sum of all other

coordinates; all such points reside on a hyperplane and thus

are non-dominated);

• “line” (a single value for all coordinates of a point is sampled

uniformly from [0; 1]).

We compare two algorithms: the naive one which compares

the added/removed point for dominance with all points from the

opposite class, and the one which uses two k-d trees as follows:

• the first k-d tree stores the data points and produces answers

to the queries when they arrive;

• the second k-d tree stores the (negated) query points, and

on each added/removed data point the algorithm runs an

orthant, made from a negated data point, on the second tree,

and updates all the query points which were found to be

dominated by the negated data point.

As in both algorithms the time to get the answer to a query is

O(1) and the data values do not change, we only measure the time

needed to performmodification queries. The protocol for measuring

running times is as follows:

• The total number of queries for each test instance is 4N .

• The current number of data points Nd ≤ N , as well as of

query points Nq ≤ N , is tracked.

• The modifications are generated with the following random-

ized procedure:

– With probability
1

2
, the data point set is modified. With

probability (1 − 2
Nd−N )/(1 − 2

N ), a new data point is

randomly generated and added; otherwise, a randomly

chosen existing data point is deleted.

– With probability
1

2
, the query point set is modified. With

probability (1 − 2Nq−N )/(1 − 2N ), a new query point is

randomly generated and added; otherwise, a randomly

chosen existing query point is deleted.

• Three independently generated datasets are used for each

configuration.

• The algorithms are implemented in Scala. The running time

is measured by the Java Microbenchmark Harness tool with

five forks of the Java Virtual Machine.
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The experimental results can be seen in Fig. 1–3. One can see that,

apart from the smallest problem sizes, the implementation based

on the k-d tree outperforms the naive implementation, and, based

on the observed difference of the slopes, the speed-up is asymptotic

for the “cube” and the “plane” datasets, while in the “line” dataset

the performance is of the same order, which is expected as the k-d
tree has to traverse each dominating point.

Again matching the expectations, the speed-up on the “cube”

dataset increases with the dimension as fewer points dominate

each other for larger K (the speed-up at N = 3162 is 2.8 for K = 2

and 5.9 for K = 10). On the “plane” dataset the speed-ups are better

and slightly decrease as K grows (28.8 for K = 2, 13.6 for K = 10).

The speed-ups on the “line” dataset are less than 2x for K = 2 and

converge to 1x when K grows.

4.2 A Hard Artificial Example: Not Easier than
Computing from Scratch

In this section, we will exemplify a situation when, even without

the query selection mechanism, generalized incremental orthant

search will have to spend O(N (logN )K−1) time per each update

out of a sequence of Θ(N ) updates.
For this we will develop a special monoid K . An element of K

will be an integer consisting of 2m bits, wherem > 2 log
2
N . The

lowerm bits represent the value part of the element, while the upper

m bits represent the salt part. Beforehands, 2m integers consisting of

2
m

bits are generated using a cryptographically strong keystream.

The ⊕ operation will behave as follows: it chooses as s the largest
salt part of the arguments, then it applies the bitwise exclusive OR

operation between the s-th crypto integer and the value part for

each of the arguments, then it multiplies them together and takes

the result modulo 2
m

to form the value part of the result. The salt

part of the result is chosen to be s . The query-to-data operation
copies the salt part of the answer to the query to the value of the

coinciding data point.

After that, to demonstrate the declared properties, the first N
points (each is both a query point and a data point) are added

arbitrarily, ensuring that the salt part is equal to zero. The following

N points are inserted in such a way that the i-th of these points

(i ≥ 1) has the salt part equal to i , and the point itself dominates all

other points in the data structure.

The described procedure ensures that, on each insertion of a

point from the second pool, all data values are simultaneously

replaced with new pseudo-random values. The algorithm has to

either recompute every query from scratch, or to maintain the

possible update scenarios for Ω(N 2) different salts. An arbitrary

combination of these strategies ensures the running time of at least

the time needed to recompute the queries from scratch, that is,

O(N (logN )K−1).

4.3 An Attempt to Accelerate IBEA’s Fitness
Assignment

The reduction of the IBEA’s fitness assignment to the generalized

incremental orthant search follows the principle detailed in [8],

which we give only shortly for the space reasons. We maintain K
instances of the orthant search problem, one for each coordinate,

such that in the i-th of these instances the points that dominate the

point p will determine the ε-indicator by the difference of their i-th
coordinates. In fact, the i-th problem is an orthant search problem

defined over projected points (x1 − xi ,x2 − xi , . . . ,xK − xi ), where
the identity-zero xi − xi coordinate is removed.

To account for the points where the differences between the

coordinates may coincide, we use the partially strict dominance

with the set S = [i;K] in the i-th coordinate, so that each pair of

points is found to be dominated in a single instance only.

The experimental setup is mostly similar to the one in Section 4.1,

except that there was only one type of the event, namely, generation

of a random point according to the chosen generator. Once the

number of points stored in the data structure was equal to 2N , the

worst points were removed from the data structure, one by one,

until the size gets back to N , closely mimicking the IBEA’s logic.

As finding the worst point is performed by iterating over the

answer values, the lower bound on the entire runtime is Ω(N 2) and

the upper bound isO(N 2K), thus we may hope only for a constant-

factor improvement. The results of measurements are presented in

Fig. 4–6. One can see that forK ≤ 4 there is indeed an improvement

by a constant factor of roughly 1.8, starting from some problem size.

The greater K is, the worse is the performance of orthant search.

The only exception is the “line” dataset, where the orthant-based

implementation is always slightly faster, which can be explained by

the fact that in this case all points in each of the K orthant search

instances simply coincide. One of the reasons for the speed-up may

be that the proposed scheme performs Θ(K) exponentiations for
each individual, while the original scheme performs Θ(N ) of them.

5 CONCLUSION
We proposed generalized incremental orthant search, a formalism

which may be a basis of algorithmic frameworks intented to be

efficient “solvers” for various components of evolutionary mul-

tiobjective algorithms. Unfortunately, unlike generalized offline

orthant search, the variety of possible problem configurations is

much higher in our case, and it seems necessary to maintain at

least several codebases for different subsets of the generic problem.

In particular, we have investigated the easiest problem class,

similar to dynamic dominance counting, and obtained both good

theoretic complexity bounds and noticeable asymptotic speed-ups

in practice, reaching up to 28x on the investigated problem sizes.

The medium-complexity instances may enjoy only a very small

asymptotic speed-up compared to the naive approach, such as incre-

mental non-dominated sorting, or just a constant speed-up, like in

our experimental study on the IBEA’s fitness assignment procedure.

We also exemplified the hardest setup, where a nearly arbitrary

consecutive number of operations would require at least the same

time as needed to re-evaluate everything from scratch.

The source code of the experiments is available on GitHub
1
. The

particular version used to produce the presented results is accessible

under the v2019.04 release tag2.
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Figure 1: Running times for simplified dominance counting, in seconds, the “cube” dataset generator
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Figure 2: Running times for simplified dominance counting, in seconds, the “plane” dataset generator
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Figure 3: Running times for simplified dominance counting, in seconds, the “line” dataset generator
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Figure 4: Running times for IBEA’s fitness assignment, in seconds, the “cube” dataset generator
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Figure 5: Running times for IBEA’s fitness assignment, in seconds, the “plane” dataset generator
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Figure 6: Running times for IBEA’s fitness assignment, in seconds, the “line” dataset generator
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