
SAPIAS Concept: Towards an independent Self-Adaptive
Per-Instance Algorithm Selection for Metaheuristics

 Mohamed Amine EL MAJDOULI
Conception & Systems Laboratory

Faculty of Science
MOHAMMED V University in Rabat, Morocco

elmajdouli@acm.org

ABSTRACT
Per-Instance Algorithm Selection and Automatic Algorithm
Configuration have recently gained important interests. However,
these approaches face many limitations. For instance, the
performance of these methods is deeply influenced by factors like
the accuracy of the underlying prediction model, features space
correlation, incomplete performance space for new instances,
instances sampling and many others. In this paper, an effort to
address such limitations is described. Indeed, we propose a
cooperative architecture, labeled as the “SAPIAS” concept,
composed of a self-adaptive online Algorithm Selection system
and an offline Automatic Algorithm Configuration system,
working together in order to deliver the most accurate
performance. Additionally, SAPIAS is proposed as a methodic
concept that the metaheuristics community might adopt to fill in
the gap between theory and practice in the field, by providing for
theoreticians the ability to continuously analyze the evolution of
the problems characteristics and the behavior of the solving
techniques as well as providing a ready to use solving framework
for practitioners.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms

KEYWORDS
Per-instance Algorithm Selection, Automatic Algorithm
Configuration, Metaheuristics
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
GECCO '19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07…$15.00
https://doi.org/10.1145/3319619.3326881

1 INTRODUCTION
The metaheuristics field is an active research field for over 50
years. Many important advances have been achieved in several
hard problems including transport, logistics, medicines and many

others. However, although the genericity and the flexibility they
offer, the public adoption rate of metaheuristics as a branch of
artificial intelligence shows that these methods are still far behind
to be considered as a ready to use end user product in comparison
with neural networks, e.g. deep learning, which is not as old as
metaheuristics. Thus, a “why” question is imposed.
• Investigating the “why” question

Kendall in [1] has studied this question demonstrating the poor
adoption of the industrial / commercial sectors of such solving
techniques. One among many reasons the study states is that the
underlying benchmarking models are not quite relevant or less
descriptive to the real-world problem being solved, leading to
several difficulties in successfully applying them in real world at a
larger scale. Another possible reason we believe could be also the
ignorance of their potential in the optimization field as seen by
non-experts. Actually, metaheuristics are pointed out as
“untrusted” non-deterministic stochastic procedures rather than
“proven” solving tools. The terminologies used by the artificial
intelligence community “AIC” and the mathematical optimization
community “MOC” supports this where the term “solution of a
given problem” is referred as being a “feasible solution” for AIC,
while the MOC refers to it as being the “proven optimal solution”.
However, the issue could be even more organic. Unfortunately, a
good part of the research community, driven by an abusive
interpretation of the No Free Lunch “NFL” theorem conclusion
[2], has “misused” the nature inspiration part which at the same
time represents one of the main advantages and central aspects of
metaheuristics. This has led to more optimization algorithms than
optimized problems, [3] and [4] are two clear examples.
• Automatic Algorithm Configuration: An emerging

approach
As a remedial to this situation, other approaches are gathering

more and more attention recently. One approach is the Automatic
Algorithm Configuration “AAC” [5]. Although this approach can
be applied broadly to any algorithm by automating its parameter
tuning, AAC becomes more interesting when it comes to
exploiting the modular aspect of metaheuristics. In fact, most if
not all metaheuristics follow a generic modular algorithmic
scheme which makes it easier for AAC to tune not only a set of
parameters for a given metaheuristic, but also by defining a
grammar, it can generate as many variants as possible and can go
beyond for a hybridization. Having that said, the main goal of
AAC is to find the best overall performing configuration of an
algorithm over a set of problem instances. However, the overall

1474

GECCO’19, July 13-17, 2019, Prague, Czech Republic M.A. EL MAJDOULI.

2

performance metric here is somehow insufficient especially if we
target a large-scale adoption as discussed earlier, simply because
an overall performance means a compromise of good and less
good performance over all instances. This is somehow undesirable
for the real-world scenarios as the real-world instances’
landscapes are not guaranteed to be drawn from the same
sampling the AAC used to determine the best configuration.
• Per-Instance Algorithm Selection: Another promising

way
Another promising way which coherently uses the NFL

theorem conclusion is the Per-instance Algorithm Selection “AS”
approach [6]. Indeed, AS tries to identify the best performing
algorithm for each new given instance based on a prediction
model that binds the instance features to the algorithms’
performance space. However, this approach faces many
limitations. For example, the performance of a Per-Instance AS
system is deeply influenced by factors like the accuracy of the
underlying prediction model, feature space correlation or
incomplete performance space for new instances. Another
example of limitations is the information lack of the real
performance of all unpredicted algorithms on a new instance in
hand during the prediction decision phase.

• Cooperation to address limitations
In this paper, we describe an effort to address such limitations.

A cooperative architecture, which we call the SAPIAS concept,
composed of a self-adaptive online Algorithm Selection system
and an offline Automatic Algorithm Configuration system,
working together in order to deliver the most accurate
performance. The general concept of a “SAPIAS” architecture is
composed of four important cooperating layers. The first two
layers are supposed to be implemented for an online execution
mode and the last two layers for an offline mode as shown.

The first layer (Prediction layer) defines a Per-Instance
Algorithm Selection. This is the classical task where, based on a
pre-built prediction model, an algorithm is selected to optimize a
new instance. Once the optimization process is achieved, the
predicted schedule along with the solution found are passed to the
second layer called the Advisor layer.

In the second layer (Advisor Layer), two operations are
respectively triggered. The first one is using a control block that
implements a low budget procedure, called “Prediction
Enhancer”, to optimize the new instance. The goal here is not to
check the prediction accuracy in the precedent layer, but rather
detect if an improvement to the output solution of the predicted
algorithm can be performed. the Prediction Enhancer identifies
the algorithm(s) which the enhancing improvement strategy(s)
improve the solution further. The second operation is then
performed by grouping the detected algorithms in a schedule
allowing them to contribute to the solving process along with the
original algorithm once this latter is predicted again. This list of
algorithms is also forwarded to the next layer.

The third layer (AAC Layer) aims to find an algorithm (a
metaheuristic) by automatically configuring different components
used by the set of algorithms received. For this reason, a Two-
Phase Automatic Algorithm Configuration is established. In the

first phase, an algorithm configuration is performed at the
components level. Indeed, an algorithmic framework is
constructed first, then an automatic configuration is performed to
find a well performing configuration. Afterwards, if a successful
configuration is found, the next phase performs an extensive
parameter tuning for the new configuration.

The goal of the fourth layer is to merge the performance set of
the new algorithm into the performance space, automatically
update the algorithm space and rebinding the outperformed
algorithms to the new algorithm so that it becomes ready to use at
the online mode instead of the outperformed algorithms. The next
subsections provide more details about each of the proposed
layers.

The remainder of this paper is as follows. The second chapter
of this paper describes the different layers of the SAPIAS concept
in more details. The third chapter discusses the research question
addressed by SAPIAS, the challenges and the possible workouts
that can be investigated. A conclusion and perspectives are given
right after.

2 SAPIAS: A SELF ADAPTIVE
PER-INSTANCE ALGORITHM SELECTION
SYSTEM

2.1 Prediction Layer: Defining the Per-Instance
Algorithm Selection

Formally, a per instance AS problem can be defined as follows.
Given a set I of problem instances, a distribution D over I, a space
of algorithms A, and a performance measure m: I x A → IR, the
per-instance algorithm selection problem aims to find a mapping
s: I → A that optimizes the performance measure achieved by
running the selected algorithm s(i) for instance i in expectation
across instances in I drawn from D.

To build an Algorithm selection system in SAPIAS, the
following assumptions on the space of algorithms A of size n are
considered:

• An algorithm Ai is implemented using the modular
scheme composed of an Initialize module INi, an
Amelioration module AMi and a Next Generation
Selection module SEi.

• Modules of an algorithm can be used in a standalone
mode. Which means every module can be executed by
providing the adequate inputs and without the need to
run all of the algorithm’s modules.

Using the extracted features from pre-available problem
instances along with the performance space drawn from each
algorithm performance over all instances, a prediction model is
built. Upon the arrival of a new instance Ii, this model will select
the algorithm Ai that is likely to better solve this instance based on
the features projection results, then communicated to the next
layer.

2.2 Control Layer: Setting up the solving process

1475

SAPIAS Concept: Towards an independent Self-Adaptive
Per-Instance Algorithm Selection for Metaheuristics GECCO’19, July 13-17, 2019, Prague, Czech Republic

 3

At this layer, a Control Block is implemented where an internal
schedule of algorithms is initiated such that:

𝑆𝐾𝐷𝐿(𝐴'() = 	𝛼-	𝐴- +⋯+	𝛼'	𝐴' +⋯+	𝛼0	𝐴0 (1)

where k is the number of predictions of the algorithm 𝐴' and

1
𝛼' = 1
𝛼3 = 0 for k = 0.

This block mainly controls the execution of the solving process.
Indeed, using a fixed time budget 𝛼' initially set to 1, the
predicted algorithm Ai is set to optimize the new instance Ii
starting from an initial solution Sinit (or a set of solutions) which
results on a solution Si.

𝑆' = 	𝐴'(𝑆'0'5) (2)

𝑆6'078 = 𝐴𝑀0	°	𝐴𝑀0;<	°… 	°	𝐴𝑀<(𝑆') (3)

Afterwards, the solution Si is passed through all the
Amelioration modules implemented in the algorithm space A in
the goal of identifying one or more amelioration strategies that
can enhance Si further. In the case where no improvement is
detected, Si is returned as a final solution of the instance Ii.
Otherwise, when improvements are detected, Sfinal (the improved
solution) is returned and the internal schedule SKDL(Aik) is
updated where the time budget 𝛼' is decreased and the time
budgets for other algorithms where the amelioration modules have
contributed to Sfinal are increased.

𝐶 =	 {𝐴8	/	𝛼8 > 0} (4)

The next time Ai is predicted, the optimization process is
conducted by the schedule of algorithms SKDL rather than Ai
alone. Also, the set C of active algorithms in SKDL is passed to
the next offline mode layer where an automatic configuration is
conducted.

2.3 AAC Layer: Two-Phase Automatic
Algorithm Configuration

An Algorithm Configuration problem can be formally defined as
follows. Given a parameterized algorithm A with possible
parameter settings P, a set of training problem instances I and a
performance metric m: I x P → IR. The algorithm configuration
problem is to find a parameter configuration p that optimizes m
across the instances in I.

Given the set of algorithms C received from the previous layer,
the first automatic algorithm configuration phase has a solid
ground to start building new algorithms by combining the
algorithms components to generate an algorithm that can provide
similar or better performance than the one recorded by SKDL in
the online mode (e.g. Sfinal). It is also important to note that the set
of training instances I is reduced to only the new instance Ii. This
is particularly performed for three reasons.

The first is that the current component used for the
configuration surely contribute to optimize Ii as they were
communicated from SKDL, and thus we need to shape them into
an algorithm. The second reason is that we are particularly
interested to have a working algorithm for this new instance as the

predicted algorithm was not able alone to provide the best
performance and thus future instances that would be considered
closer to Ii will find a better suited solving algorithm. The third
reason is concerning the simplicity of the process, as starting a full
configuration task including the component level and the
numerical level with a vast training set of instances would
certainly make the task more complex and time consuming.

Figure 1 SAPIAS Architecture flow chart

2.4 Update Layer: Online Update of
Performance Space

Once the recorded performance set of B is received, the existing
performance space is updated with the new algorithm

1476

GECCO’19, July 13-17, 2019, Prague, Czech Republic M.A. EL MAJDOULI.

4

performance set allowing to remove the binding of algorithms
where the new algorithm performs better in their respective
instances. Once completed, the algorithm B is made available to
the prediction layer immediately at the online mode instead of the
replaced algorithms. Consequently, the control block in the
second layer is notified in order to reset the schedules.
The prediction model is also updated by regenerating a new one
using extracted features from all instances including the newly
received instances. This update is ruled using an update threshold
monitoring the number of new instances or algorithms being (or
waiting to be) made available to the online mode. This allows also
to track the variation in the features characterizing the problem at
hand rather than being limited to the initial set of features.

3 CHALLENGES & POSSIBLE WORKOUTS
As seen in the previous section, SAPIAS concept tries to deliver
an autonomous solving process by exploiting the key benefits in
AAC and AS systems. By connecting both, AAC ensures the
evolvability of the AS system by providing it with new algorithms
for unseen instances, and likewise, AS feeds AAC with a set of
algorithms where the configuration procedure is more confident to
produce a better algorithm.

However, many challenges can be identified that faces the real
implementation of such a concept. For example, the standalone
behavior of the “Amelioration modules” in the control block is not
guaranteed to be similar to the behavior within the original
algorithm. For an evolutionary algorithm, the use of such
amelioration blocks is straight forward, however, for a swarm
intelligence algorithm, e.g. Particle Swam Optimization, this
might be complicated as information like local and global best is
missing. It is also noticed that the currently designed control block
does not make use of the Initialization and the Selection modules
for complexity reasons. As a remedial to this situation, a
distribution can be learnt from the different values the missing
information can take during the training of the algorithm selection
system or during the performance space construction. It is also
planned in the midterm, to totally replace the amelioration
modules in the control block with equivalent highly trusted
Estimation Distribution Algorithms that can be used to generate
solutions directly. Another issue is the choice of the adopted
grammar for the first AAC phase on the component level
i.e. Top–Down, Bottom / UP or use the Fixed Grammar of
the predicted algorithm. This is an important decision as in case of
hybridization of two different strategies like evolutionary and
swarm for example, it is easier to integrate the evolutionary
process into the swarm intelligence algorithmic scheme than the
opposite. Another question that could be solved statistically is
how much budget the control block should be allowed. This is
very critical in low budget situations where the objective function
evaluation is very expensive. This can be solved also by building
surrogate models during the performance space construction or
the training phase of the Algorithm Selection.

4 CONCLUSIONS & PERSPECTIVES

In this paper, a description of a new concept of using
metaheuristics is proposed. This concept, namely SAPIAS, uses a
co-evolved Algorithm Selection and Automatic Algorithm
Configuration systems in order to deliver the most advanced
performance of the solving process. By linking an offline mode
AAC system and an online mode AS system using four layers, AS
feeds AAC with a set of algorithms where their configuration
procedure is more confident to produce a better algorithm. This
latter is made available for the AS system to solve more
accurately new unseen instances. This design answers some of the
limitations known in both systems when used separately.
Basically, it is expected that SAPIAS will deliver an independent
behavior of the Algorithm Selection where the algorithm space is
dynamically updated ensuring an evolvability of the system.
Using the amelioration blocks, not only the set of AAC algorithms
to be detected is identified but also an enhanced output solution is
found. SAPIAS also provides an indirect silent monitoring of the
prediction model accuracy by using the schedules strategy, which
helps to redress any model fitting problems of the Algorithm
selection system. Moreover, a quicker AAC procedure is proposed
by dividing the configuration task into two parts. The first one
deals with the components’ configuration, which upon success,
the second part will conduct a numerical parameter tuning.

The SAPIAS concept is intended to be implemented as a
community effort and be widespread and ready to use by the
industrial sectors in the goal of advancing the evolution of the
metaheuristics field in a more concise and beneficial way. By
adopting SAPIAS, the research trend that uses the nature inspired
aspect of metaheuristics to provide deprecated or renamed models
is expected to be widely reduced. It is also expected that the
SAPIAS would bring more research directions together to fill in
the gap between theory and practice. Actually, theory research can
benefit from the analysis of the components’ behavior
implemented in the control block and link it with the feature space
evolution, which is mainly updated using real world instances, in
order to propose more accurate surrogate models or evidence-
backed parameter values for such components. Alongside with
this, practical research can benefit also by exploiting the
capability of using and generating as many algorithms variants as
possible while being assisted with an underlying learning-based
selection system.

REFERENCES
[1] Kendall, G. 2018. Is Evolutionary Computation evolving fast enough? IEEE

Computational Intelligence Magazine, 13, 2, 42-51.
[2] Ho, Y. C., & Pepyne, D. L. 2002. Simple explanation of the no free lunch

theorem of optimization. Cybernetics and Systems Analysis 38, 2, 292-298.
[3] Weyland, D. 2015. A critical analysis of the harmony search algorithm—How

not to solve sudoku. Operations Research Perspectives, 2, 97-105.
[4] Camacho-Villalón, C. L., Dorigo, M., & Stützle, T. 2018, October. Why the

Intelligent Water Drops Cannot Be Considered as a Novel Algorithm. In
International Conference on Swarm Intelligence. Springer, Cham. 302-314.

[5] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas
Stützle, and Mauro Birattari. The irace package: Iterated Racing for Automatic
Algorithm Configuration. 2016. Operations Research Perspectives. 3, 43–58.

[6] Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated
algorithm selection: Survey and perspectives. Evolutionary computation, 27(1),
3-45.

1477

