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ABSTRACT 
Per-Instance Algorithm Selection and Automatic Algorithm 
Configuration have recently gained important interests. However, 
these approaches face many limitations. For instance, the 
performance of these methods is deeply influenced by factors like 
the accuracy of the underlying prediction model, features space 
correlation, incomplete performance space for new instances, 
instances sampling and many others. In this paper, an effort to 
address such limitations is described. Indeed, we propose a 
cooperative architecture, labeled as the “SAPIAS” concept, 
composed of a self-adaptive online Algorithm Selection system 
and an offline Automatic Algorithm Configuration system, 
working together in order to deliver the most accurate 
performance. Additionally, SAPIAS is proposed as a methodic 
concept that the metaheuristics community might adopt to fill in 
the gap between theory and practice in the field, by providing for 
theoreticians the ability to continuously analyze the evolution of 
the problems characteristics and the behavior of the solving 
techniques as well as providing a ready to use solving framework 
for practitioners. 
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1 INTRODUCTION 
The metaheuristics field is an active research field for over 50 
years. Many important advances have been achieved in several 
hard problems including transport, logistics, medicines and many 

others. However, although the genericity and the flexibility they 
offer, the public adoption rate of metaheuristics as a branch of 
artificial intelligence shows that these methods are still far behind 
to be considered as a ready to use end user product in comparison 
with neural networks, e.g. deep learning, which is not as old as 
metaheuristics. Thus, a “why” question is imposed. 
• Investigating the “why” question 

Kendall in [1] has studied this question demonstrating the poor 
adoption of the industrial / commercial sectors of such solving 
techniques. One among many reasons the study states is that the 
underlying benchmarking models are not quite relevant or less 
descriptive to the real-world problem being solved, leading to 
several difficulties in successfully applying them in real world at a 
larger scale. Another possible reason we believe could be also the 
ignorance of their potential in the optimization field as seen by 
non-experts. Actually, metaheuristics are pointed out as 
“untrusted” non-deterministic stochastic procedures rather than 
“proven” solving tools. The terminologies used by the artificial 
intelligence community “AIC” and the mathematical optimization 
community “MOC” supports this where the term “solution of a 
given problem” is referred as being a “feasible solution” for AIC, 
while the MOC refers to it as being the “proven optimal solution”. 
However, the issue could be even more organic. Unfortunately, a 
good part of the research community, driven by an abusive 
interpretation of the No Free Lunch “NFL” theorem conclusion 
[2], has “misused” the nature inspiration part which at the same 
time represents one of the main advantages and central aspects of 
metaheuristics. This has led to more optimization algorithms than 
optimized problems, [3] and [4] are two clear examples. 
• Automatic Algorithm Configuration: An emerging 

approach 
As a remedial to this situation, other approaches are gathering 

more and more attention recently. One approach is the Automatic 
Algorithm Configuration “AAC” [5]. Although this approach can 
be applied broadly to any algorithm by automating its parameter 
tuning, AAC becomes more interesting when it comes to 
exploiting the modular aspect of metaheuristics. In fact, most if 
not all metaheuristics follow a generic modular algorithmic 
scheme which makes it easier for AAC to tune not only a set of 
parameters for a given metaheuristic, but also by defining a 
grammar, it can generate as many variants as possible and can go 
beyond for a hybridization. Having that said, the main goal of 
AAC is to find the best overall performing configuration of an 
algorithm over a set of problem instances. However, the overall 
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performance metric here is somehow insufficient especially if we 
target a large-scale adoption as discussed earlier, simply because 
an overall performance means a compromise of good and less 
good performance over all instances. This is somehow undesirable 
for the real-world scenarios as the real-world instances’ 
landscapes are not guaranteed to be drawn from the same 
sampling the AAC used to determine the best configuration. 
• Per-Instance Algorithm Selection: Another promising 

way 
Another promising way which coherently uses the NFL 

theorem conclusion is the Per-instance Algorithm Selection “AS” 
approach [6]. Indeed, AS tries to identify the best performing 
algorithm for each new given instance based on a prediction 
model that binds the instance features to the algorithms’ 
performance space. However, this approach faces many 
limitations. For example, the performance of a Per-Instance AS 
system is deeply influenced by factors like the accuracy of the 
underlying prediction model, feature space correlation or 
incomplete performance space for new instances. Another 
example of limitations is the information lack of the real 
performance of all unpredicted algorithms on a new instance in 
hand during the prediction decision phase. 

• Cooperation to address limitations 
In this paper, we describe an effort to address such limitations. 

A cooperative architecture, which we call the SAPIAS concept, 
composed of a self-adaptive online Algorithm Selection system 
and an offline Automatic Algorithm Configuration system, 
working together in order to deliver the most accurate 
performance. The general concept of a “SAPIAS” architecture is 
composed of four important cooperating layers. The first two 
layers are supposed to be implemented for an online execution 
mode and the last two layers for an offline mode as shown.  

The first layer (Prediction layer) defines a Per-Instance 
Algorithm Selection. This is the classical task where, based on a 
pre-built prediction model, an algorithm is selected to optimize a 
new instance. Once the optimization process is achieved, the 
predicted schedule along with the solution found are passed to the 
second layer called the Advisor layer. 

In the second layer (Advisor Layer), two operations are 
respectively triggered. The first one is using a control block that 
implements a low budget procedure, called “Prediction 
Enhancer”, to optimize the new instance. The goal here is not to 
check the prediction accuracy in the precedent layer, but rather 
detect if an improvement to the output solution of the predicted 
algorithm can be performed. the Prediction Enhancer identifies 
the algorithm(s) which the enhancing improvement strategy(s) 
improve the solution further. The second operation is then 
performed by grouping the detected algorithms in a schedule 
allowing them to contribute to the solving process along with the 
original algorithm once this latter is predicted again. This list of 
algorithms is also forwarded to the next layer. 

The third layer (AAC Layer) aims to find an algorithm (a 
metaheuristic) by automatically configuring different components 
used by the set of algorithms received. For this reason, a Two-
Phase Automatic Algorithm Configuration is established. In the 

first phase, an algorithm configuration is performed at the 
components level. Indeed, an algorithmic framework is 
constructed first, then an automatic configuration is performed to 
find a well performing configuration. Afterwards, if a successful 
configuration is found, the next phase performs an extensive 
parameter tuning for the new configuration. 

The goal of the fourth layer is to merge the performance set of 
the new algorithm into the performance space, automatically 
update the algorithm space and rebinding the outperformed 
algorithms to the new algorithm so that it becomes ready to use at 
the online mode instead of the outperformed algorithms. The next 
subsections provide more details about each of the proposed 
layers. 

The remainder of this paper is as follows. The second chapter 
of this paper describes the different layers of the SAPIAS concept 
in more details. The third chapter discusses the research question 
addressed by SAPIAS, the challenges and the possible workouts 
that can be investigated. A conclusion and perspectives are given 
right after. 

2 SAPIAS: A SELF ADAPTIVE  
PER-INSTANCE ALGORITHM SELECTION 
SYSTEM 

2.1  Prediction Layer: Defining the Per-Instance 
Algorithm Selection 

Formally, a per instance AS problem can be defined as follows. 
Given a set I of problem instances, a distribution D over I, a space 
of algorithms A, and a performance measure m: I x A → IR, the 
per-instance algorithm selection problem aims to find a mapping 
s: I → A that optimizes the performance measure achieved by 
running the selected algorithm s(i) for instance i in expectation 
across instances in I drawn from D.  

To build an Algorithm selection system in SAPIAS, the 
following assumptions on the space of algorithms A of size n are 
considered: 

• An algorithm Ai is implemented using the modular 
scheme composed of an Initialize module INi, an 
Amelioration module AMi and a Next Generation 
Selection module SEi. 

• Modules of an algorithm can be used in a standalone 
mode. Which means every module can be executed by 
providing the adequate inputs and without the need to 
run all of the algorithm’s modules. 

Using the extracted features from pre-available problem 
instances along with the performance space drawn from each 
algorithm performance over all instances, a prediction model is 
built. Upon the arrival of a new instance Ii, this model will select 
the algorithm Ai that is likely to better solve this instance based on 
the features projection results, then communicated to the next 
layer. 

2.2 Control Layer: Setting up the solving process 
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At this layer, a Control Block is implemented where an internal 
schedule of algorithms is initiated such that: 

𝑆𝐾𝐷𝐿(𝐴'() = 	𝛼-	𝐴- +⋯+	𝛼'	𝐴' +⋯+	𝛼0	𝐴0 (1) 

where k is the number of predictions of the algorithm 𝐴' and 
 

1
𝛼' = 1
𝛼3 = 0         for k = 0. 

This block mainly controls the execution of the solving process. 
Indeed, using a fixed time budget 𝛼'  initially set to 1, the 
predicted algorithm Ai is set to optimize the new instance Ii 
starting from an initial solution Sinit (or a set of solutions) which 
results on a solution Si.  

𝑆' = 	𝐴'(𝑆'0'5) (2) 

𝑆6'078 = 𝐴𝑀0	°	𝐴𝑀0;<	°… 	°	𝐴𝑀<(𝑆') (3) 

Afterwards, the solution Si is passed through all the 
Amelioration modules implemented in the algorithm space A in 
the goal of identifying one or more amelioration strategies that 
can enhance Si further. In the case where no improvement is 
detected, Si is returned as a final solution of the instance Ii. 
Otherwise, when improvements are detected, Sfinal (the improved 
solution) is returned and the internal schedule SKDL(Aik) is 
updated where the time budget 𝛼'  is decreased and the time 
budgets for other algorithms where the amelioration modules have 
contributed to Sfinal are increased. 

𝐶 =	 {𝐴8	/	𝛼8 > 0} (4) 

The next time Ai is predicted, the optimization process is 
conducted by the schedule of algorithms SKDL rather than Ai 
alone. Also, the set C of active algorithms in SKDL is passed to 
the next offline mode layer where an automatic configuration is 
conducted. 

2.3 AAC Layer: Two-Phase Automatic 
Algorithm Configuration 

An Algorithm Configuration problem can be formally defined as 
follows. Given a parameterized algorithm A with possible 
parameter settings P, a set of training problem instances I and a 
performance metric m: I x P → IR. The algorithm configuration 
problem is to find a parameter configuration p that optimizes m 
across the instances in I. 

Given the set of algorithms C received from the previous layer, 
the first automatic algorithm configuration phase has a solid 
ground to start building new algorithms by combining the 
algorithms components to generate an algorithm that can provide 
similar or better performance than the one recorded by SKDL in 
the online mode (e.g. Sfinal). It is also important to note that the set 
of training instances I is reduced to only the new instance Ii. This 
is particularly performed for three reasons.  

The first is that the current component used for the 
configuration surely contribute to optimize Ii as they were 
communicated from SKDL, and thus we need to shape them into 
an algorithm. The second reason is that we are particularly 
interested to have a working algorithm for this new instance as the 

predicted algorithm was not able alone to provide the best 
performance and thus future instances that would be considered 
closer to Ii will find a better suited solving algorithm. The third 
reason is concerning the simplicity of the process, as starting a full 
configuration task including the component level and the 
numerical level with a vast training set of instances would 
certainly make the task more complex and time consuming. 

 
Figure 1 SAPIAS Architecture flow chart 

2.4 Update Layer: Online Update of 
Performance Space 

Once the recorded performance set of B is received, the existing 
performance space is updated with the new algorithm 
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performance set allowing to remove the binding of algorithms 
where the new algorithm performs better in their respective 
instances. Once completed, the algorithm B is made available to 
the prediction layer immediately at the online mode instead of the 
replaced algorithms. Consequently, the control block in the 
second layer is notified in order to reset the schedules.  
The prediction model is also updated by regenerating a new one 
using extracted features from all instances including the newly 
received instances. This update is ruled using an update threshold 
monitoring the number of new instances or algorithms being (or 
waiting to be) made available to the online mode. This allows also 
to track the variation in the features characterizing the problem at 
hand rather than being limited to the initial set of features. 

3 CHALLENGES & POSSIBLE WORKOUTS 
As seen in the previous section, SAPIAS concept tries to deliver 
an autonomous solving process by exploiting the key benefits in 
AAC and AS systems. By connecting both, AAC ensures the 
evolvability of the AS system by providing it with new algorithms 
for unseen instances, and likewise, AS feeds AAC with a set of 
algorithms where the configuration procedure is more confident to 
produce a better algorithm. 

However, many challenges can be identified that faces the real 
implementation of such a concept. For example, the standalone 
behavior of the “Amelioration modules” in the control block is not 
guaranteed to be similar to the behavior within the original 
algorithm. For an evolutionary algorithm, the use of such 
amelioration blocks is straight forward, however, for a swarm 
intelligence algorithm, e.g. Particle Swam Optimization, this 
might be complicated as information like local and global best is 
missing. It is also noticed that the currently designed control block 
does not make use of the Initialization and the Selection modules 
for complexity reasons. As a remedial to this situation, a 
distribution can be learnt from the different values the missing 
information can take during the training of the algorithm selection 
system or during the performance space construction. It is also 
planned in the midterm, to totally replace the amelioration 
modules in the control block with equivalent highly trusted 
Estimation Distribution Algorithms that can be used to generate 
solutions directly. Another issue is the choice of the adopted 
grammar for the first AAC phase on the component level  
i.e. Top–Down, Bottom / UP or use the Fixed Grammar of  
the predicted algorithm. This is an important decision as in case of 
hybridization of two different strategies like evolutionary and 
swarm for example, it is easier to integrate the evolutionary 
process into the swarm intelligence algorithmic scheme than the 
opposite. Another question that could be solved statistically is 
how much budget the control block should be allowed. This is 
very critical in low budget situations where the objective function 
evaluation is very expensive. This can be solved also by building 
surrogate models during the performance space construction or 
the training phase of the Algorithm Selection. 

4 CONCLUSIONS & PERSPECTIVES 

In this paper, a description of a new concept of using 
metaheuristics is proposed. This concept, namely SAPIAS, uses a 
co-evolved Algorithm Selection and Automatic Algorithm 
Configuration systems in order to deliver the most advanced 
performance of the solving process. By linking an offline mode 
AAC system and an online mode AS system using four layers, AS 
feeds AAC with a set of algorithms where their configuration 
procedure is more confident to produce a better algorithm. This 
latter is made available for the AS system to solve more 
accurately new unseen instances. This design answers some of the 
limitations known in both systems when used separately. 
Basically, it is expected that SAPIAS will deliver an independent 
behavior of the Algorithm Selection where the algorithm space is 
dynamically updated ensuring an evolvability of the system. 
Using the amelioration blocks, not only the set of AAC algorithms 
to be detected is identified but also an enhanced output solution is 
found. SAPIAS also provides an indirect silent monitoring of the 
prediction model accuracy by using the schedules strategy, which 
helps to redress any model fitting problems of the Algorithm 
selection system. Moreover, a quicker AAC procedure is proposed 
by dividing the configuration task into two parts. The first one 
deals with the components’ configuration, which upon success, 
the second part will conduct a numerical parameter tuning.   

The SAPIAS concept is intended to be implemented as a 
community effort and be widespread and ready to use by the 
industrial sectors in the goal of advancing the evolution of the 
metaheuristics field in a more concise and beneficial way. By 
adopting SAPIAS, the research trend that uses the nature inspired 
aspect of metaheuristics to provide deprecated or renamed models 
is expected to be widely reduced. It is also expected that the 
SAPIAS would bring more research directions together to fill in 
the gap between theory and practice. Actually, theory research can 
benefit from the analysis of the components’ behavior 
implemented in the control block and link it with the feature space 
evolution, which is mainly updated using real world instances, in 
order to propose more accurate surrogate models or evidence-
backed parameter values for such components. Alongside with 
this, practical research can benefit also by exploiting the 
capability of using and generating as many algorithms variants as 
possible while being assisted with an underlying learning-based 
selection system. 
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