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ABSTRACT
In this paper we propose the use of Minimum Spanning Tree-based
clustering to recursively cluster large sets of potentially Pareto-
optimal solutions. We present preliminary results for the multiob-
jective traveling salesperson problem. The clustering is based on
the distances between solutions defined in the decision space but it
generates clusters that correspond to clearly defined regions in the
objective space.

CCS CONCEPTS
• Computing methodologies → Discrete space search; • Ap-
plied computing→Multi-criterion optimization anddecision-
making;
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1 INTRODUCTION
Recent advances in multiobjective optimization with evolutionary
and metaheuristic algorithms made it possible to efficiently gen-
erate, manage, and evaluate even large sets of potentially Pareto-
optimal solutions (Pareto archives). Examples of such recent ad-
vances are:

• ND-Tree data structure and algorithms for efficient update
and management of large Pareto archives [7].

• (Many objective) Pareto local search method for efficient
generation of large and high quality Pareto archives [5, 9, 10].

• Efficient methods for calculation of the hypervolume indica-
tor [1, 4, 11, 12, 14].

These recent advances allow avoiding the traditional approach of
using Pareto archives with a bounded size [2]. Note that the use of
a bounded archive always reduces the quality of the archive since
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some potentially Pareto-optimal solutions are discarded, while each
of the discarded solutions could be the one that would be selected
by the decision maker (DM) if the full archive was known. The use
of bounded archives is especially disadvantageous in the case of
many-objective optimization, because in a many dimensional space
it is difficult to well represent a large set with a smaller sample of
solutions.

A large Pareto archive composed of thousands or even millions
of solutions may constitute, however, a challenge for the DM who
needs to select the single best solution for implementation in prac-
tice. A possible solution to this problem is clustering of similar
Pareto-optimal solutions. The DM may start by seeing a smaller
number of solutions representative to the main clusters and then
go inside one or more interesting clusters. This process may be
recursively repeated at different levels until the DM is satisfied with
a solution. Of course, the DMmay also retract the search to a higher
level. In this way an interactive analysis of the Pareto archive is
obtained [6]. The clustering may be performed in the objective
space, however, in practice the DMs are often interested also in
other aspects of solutions than the values of objectives. Thus, a
solution representative to a cluster should be representative also in
the decision space, and the cluster should contain solutions close
in both the objective and the decision spaces.

In this paper we propose to use Minimum Spanning Tree-based
(MST-based) clustering [3, 8, 13]. Namely, we use the well-known
Kruskal’s algorithm to build a spanning tree based on the distances
of all solutions in the decision space. Then we iteratively remove
the longest edges obtaining lower level spanning trees and corre-
sponding clusters. The advantages of this approach are:

• Efficient, polynomial-time algorithms for finding MST like
the Kruskal’s algorithm may be used.

• A hierarchy of clusters is naturally obtained.
• MST-based clustering is capable of finding clusters of irreg-
ular shape, while some other methods tend to prefer some
specific shapes of clusters.

2 PRELIMINARY RESULTS
We perform a proof of concept using a three objective traveling
salesperson (TSP) problem with 100 nodes. As a distance measure
we use the number of different edges between two solutions. We
have generated more than 6 000 potentially Pareto-optimal solu-
tions using many-objective Pareto local search [5] initialized with
seed solutions generated with Lin-Kernighan heuristic. We start
by testing the correlation between the distances in the objective
and decisions spaces. As the distance in the objective space we
use the Euclidean distance. The results are presented in Figure 1.
As one can see there is a very strong correlation between the dis-
tances in the two spaces. This result is obviously not surprising
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since it is a typical motivation for applying Pareto local search to
multiobjective TSP [9, 10].

Figure 2 shows a 2D projection of the set of potentially Pareto-
optimal solutions in the objective space and their split into 30
clusters obtained through MST-based clustering. One can see that
the clusters obtained in the decision space correspond to well de-
fined regions in the objective space of quite irregular shapes. One
of the clusters (the topmost) is marked and the triangle on the right
shows the edges (a coincidence matrix) that apear in at least 80%
of solutions from this cluster. In this case, there are 62 such edges
(18 of them are common to all solutions from this cluster). In other
words, these solutions are very similar in the decision space. In
a practical problem such frequent edges could be a meaningful
information for the DM. They constitute frequent subpaths that
could be presented on a digital map and the DM may be informed
that they correspond to some some specific (approximate) objective
values. Figure 3 shows a more deailed split into a higher number of
clusters and frequent edges for the rightmost cluster. In this case,
there are 78 (out of 100) edges that appear in at least 80% solutions
and 49 of them are common to all solutions from this cluster.

There are of course a number of open issues in this preliminary
work:

• How to evaluate the quality of a split of potentially Pareto-
optimal solutions?

• HowdoesMST-based clustering compare to other approaches
to clustering in either the objective or decision space?

Figure 1: Objective space distance vs. decisions space dis-
tance
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