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ABSTRACT
Uniform Random Search is considered the simplest of all random-
ized search strategies and thus a natural baseline in benchmarking.
Yet, in continuous domain it has its search domain width as a pa-
rameter that potentially has a strong e�ect on its performance. In
this paper, we investigate this e�ect on the well-known 24 func-
tions from the bbob test suite by varying the sample domain of
the algorithm ([−α ,α]n for α ∈ {0.5, 1, 2, 3, 4, 5, 6, 10, 20} and n the
search space dimension). �ough the optima of the bbob testbed
are randomly chosen in [−4, 4]n (with the exception of the linear
function f5), the best strategy depends on the search space dimen-
sion and the chosen budget. Small budgets and larger dimensions
favor smaller domain widths.
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1 INTRODUCTION
In continuous optimization, the simplest Random Search algorithm
samples uniformly at random from a given subdomain S from the
search spaceRn . Its performance is o�en used as a baseline when
benchmarking more advanced optimization algorithms, and thus
also has been benchmarked as one of the �rst algorithms in the
context of the Comparing Continuous Optimizers platform (COCO,
[6]).

�e RANDOMSEARCH as submi�ed to the BBOB-2009 work-
shop [2] sampled uniformly in the hypercube [−5, 5]n where n is
the search space dimension. �e choice of [−5, 5]n as sampling
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domain was motivated by the bounded de�nitions of the test func-
tions in the bbob test suite [7] which is based on their construction:
all optima are known to be located within this interval, while for all
but the linear function (f5), the optimum lies even within the hyper-
cube [−4, 4]n . Already in the context of the biobjective extension
of the bbob test suite [9], it has been noted that the search domain
of random search has a strong impact on the search performance
[1].

In this paper, we will investigate this e�ect a bit further on the
single-objective bbob test suite. We will in particular investigate
the question which search domain (more concretely which search
volume around the search space origin) results in the best overall
performance for random search. A more detailed analysis will allow
to see where these performance di�erences occur and what can
be learned by these observations about the bbob test functions.
In the following, we distinguish the algorithms by their sample
domain and denote whether the search space origin 0n has been
evaluated as the �rst search point. �e algorithm is then denoted by
RS-α-initIn0 and RS-α respectively if the search domain is [−α ,α]n .

Note that another way to look at our investigations is that ran-
dom search measures the volume of the sublevel sets for any given
target. With this in mind, we actually investigate rather properties
of the bbob functions than the performance of the random search,
because we precisely understand the la�er.

2 CPU TIMING OF RANDOM SEARCH
In order to evaluate the CPU timing of the algorithm, we have run
the random search on the bbob test suite [7] with varying sample
domains [−α ,α]n for α ∈ {0.5, 1, 2, 3, 4, 5, 6, 10, 20} for a maximum
budget equal to 103n function evaluations according to [8]. For
the �nal experiments, we run all algorithms up to a budget of 106n
function evaluations except for RS-4 and RS-5 for which we use
previously available data sets from COCO’s data archive that have
been run for a budget of 107n.

�e Python code of the COCO example experiment was run
on a linux machine with 64 Intel(R) Xeon(R) CPU E5-2683 v4 @
2.10GHz processors on which other processes have been running
during the timing experiment. �e time per evaluation is shy of
10 microseconds up to dimension 10 and grows sublinear with
dimension a�erwards. For larger dimensions we naturally expect
linear growth.1 �e function evaluation itself however may take
already a quite signi�cant fraction of this time.
1�e actual wall clock times per function evaluation vary li�le with the di�erent
variants and are, for �xed dimension, mostly in�uenced by the other load on the
machine: 8.6–9.6 microseconds (µs ) for dimension 2, 8.5–9.6 µs for dimension 3,
6.9–9.7 µs for dimension 5, 9.5–11 µs for dimension 10, 13–14 µs for dimension 20,
and 23–24 µs for dimension 40.

1912



GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic D. Brockho� and N. Hansen

3 RESULTS
Results from experiments according to [8] and [5] on the bench-
mark functions given in [4, 7] are presented in Figures 1, 2, 3, 4,
5, and 6. �e experiments were performed with COCO [6], ver-
sion 2.2.1, the plots were produced with version 2.2.2. �e en-
tire data with all plots and tables can be consulted at the urls
randopt.gforge.inria.fr/ppdata-archive/2019-RS/ppdata-RSall/ and
randopt.gforge.inria.fr/ppdata-archive/2019-RS/ppdata-RSall-initIn0/.

4 OBSERVATIONS
�e following observations are made from the data.

Global Performance Di�erences. In the aggregated empirical run-
time distribution plots over all 24 bbob functions, some clear tenden-
cies can be observed. �is is best seen for dimension 3 in Figure 1
with the visible di�erences becoming smaller in higher dimension.2

Unsurprisingly, the results generally depend on the budget and
the dimension. In 5-D, RS-3 solves in comparison the most problems
with a budget of 10 and 100 × dimension, RS-4 with a budget of
1000 and 10, 000 × dimension and RS-6 for larger budgets. In 20-D,
RS-3 solves in comparison the most problems with a budget of
100× dimension, RS-4 with 1000× dimension, and RS-6 with larger
budgets. �ese observations suggest that the easier target values
are biased towards the center of the search space.

Note again here that the optima of the bbob functions are placed
uniformly at random in the hyperbox [−4, 4]n with the exception
of the linear slope function for which the optimum lies at a corner
of the hyperbox [−5, 5]n or even outside of it.

With increasing budget, only strategies with α ≥ 5 can be op-
timal, as only those are able to eventually solve all target values.
However, log-linear extrapolation suggests a necessary evaluations
budget of roughly 10n×0.05p to 10n×0.1p evaluations to solve p
percent of all problems which is even in moderate dimension far
beyond any feasible number of evaluations to solve, say, 90% of all
problems.

A too large sample volume decreases the performance for larger
budgets because outside of [−5, 5]n , good targets can be hit only on
the linear function: RS-10 and RS-20 are clearly worse than RS-6.

Interesting are the slopes of the empirical runtime distributions:
with small sample volume, the slopes of the ECDFs decrease with
larger budgets, whereas for sample volumes close to the recom-
mended “region of interest” of [−5, 5]n the slopes are roughly con-
stant over the number of function evaluations.

Surprising in this context is the good performance of RS-6 that
outperforms the other tested variants with smaller sample space
when the budget is high(er), i.e. for budgets larger than about 3⋅104

×

dimension evaluations in dimension 5. �e observable upsurge at
30 000×dimension evaluations in the empirical runtime distribution
can be a�ributed to a great extend to the optimization of the linear
slope function (f5) that will be discussed below (see also Figures 2
and 3). A similar upsurge can be observed earlier for larger α . In
20-D however, the budget is too small to observe the upsurge at all.

2Most clear are the di�erences in dimension 2 (not shown here) with the same overall
tendencies.

Evaluating the Search Space Origin. It has been noted that the
search space origin (0, . . . , 0) ∈ Rn is, by construction, an espe-
cially good search point, in particular for the Griewank Rosenbrock
function (f19). In order to not disfavor algorithms that do not eval-
uate this distinct solution in the beginning of the benchmarking,
some example experiments of COCO evaluate the search space
origin by default as the �rst search point. To compare the e�ect
of this evaluation, we also re-run all random search variants with
the origin evaluated before the uniform sampling starts. �e corre-
sponding algorithms are denoted with the su�x “-initIn0” in the
supplementary material which, due to space limitations, we only
show selectively in this paper as in Figure 1.

�e main di�erence from evaluating the origin is observed on
the Griewank Rosenbrock function f19 where evaluating the initial
search point (0, . . . , 0) reaches about 25% of the targets whereas
RS-0p5 reaches maximally about 16% of the targets in the �rst
evaluation and the percentage decreases with increasing α falling
below 10% for α ≥ 3 (with slightly decreasing percentage in higher
dimensions), compare Figure 6. When not evaluating the origin �rst,
the random search needs some time to reach the same percentage
of solved targets. A�erwards, both algorithms show again the
same performance for larger budgets. In the larger dimensions, the
experiments’ budget was not high enough for random search to
reach 25% of the targets such that the period of similar performance
cannot be observed.

In the following, we provide further observations on single func-
tions that we �nd remarkable and that let us understand some of
the properties of the bbob functions.

�e linear slope function. �e linear slope function (f5) is the
only bbob function that does not have its optimum in [−4, 4]n
but instead at one of the corners of the hypercube [−5, 5]n and
beyond this corner where each variable is either ≤ −5 or ≥ 5. �is
explains why random search variants with sample volume larger
than [−5, 5]n perform best on this function.

�e linear function is the only one where in dimensions up to
10 all targets can be reached by some variants in the experiment
budget. However, in 20-D, even the random search variant sampling
in [−20, 20]n cannot solve more than about 16% of all targets in
106

× dimension evaluations. For α →∞, the probability to hit the
�nal target approaches 2−n ≈ 10−0.3n , hence a budget of somewhat
above 100.3n should su�ce.

Katsuuras function. �e Katsuuras function (f23) shows the largest
percentage of solved targets in higher dimension for all tested ran-
dom search variants except for RS-10 and RS-20. Except for RS-10
and RS-20 all variants show comparable performance. �is is ex-
pected as the function is repetitive within the hypercube [−α ,α]n

with α ≤ 5.
Similar as on the Scha�er function f17, the �rst evaluation in the

domain [−α ,α]n with α ≤ 5 solves comparably many targets like
evaluating the origin.

Compared to the algorithm variants that evaluate the search
space origin �rst, we see another e�ect that is di�erent from the
Griewank Rosenbrock function, discussed above: for the func-
tion value of the initial search point it does not make a di�erence
whether it is sampled within [−5, 5]n or chosen as the origin. A
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Figure 1: Empirical cumulative distribution functions of runtimes in dimensions 3, 5, 10, and 20 (from le� to right) for
various random search variants, aggregated over all 24 bbob functions and 51 target precisions 100 . . . 10−8. �e �rst row shows
the standard random search, sampling uniformly in [−α ,α]n with α indicated in the algorithm name RS-α while the second
row shows the variants with the origin evaluated �rst.

di�erence, however, occurs for the RS-10 and RS-20 variants (not
shown here): in the case of RS-20, no other search point be�er than
the origin is found in the entire experiment in 20-D and for RS-10,
it takes about 6 ⋅103 function evaluations to �nd a be�er target than
in the �rst evaluation (also in 20-D). �is e�ect is smaller in lower
and larger in higher dimension. In this sense, we can conclude that
for the Katsuuras function, in contrast to the Griewank Rosenbrock
function, the search space origin has no exceptionally good function
value compared to a random one within the hypercube [−5, 5]n
but that samples outside of this hypercube have exceptionally low
function values.

�e Gallagher functions. Besides the Griewank Rosenbrock and
Katsuuras functions, the Gallagher functions show the best per-
formance in low dimensions, solving all or almost all targets for
variants RS-4, RS-5, and RS-6 in dimension 2 and showing the
best performance over all functions (except for the linear slope) in
dimension 5 with about 50% of the targets solved for RS-3 and RS-4.

�is good performance, however, is not observable in higher
dimensions, where for example in 20-D, the performance on the
Weierstrass function, the Scha�er function with condition number
10, the Griewank Rosenbrock, and the Katsuuras functions are
be�er. Also the performance on the sphere function is slightly
be�er in 20-D than for the Gallagher function with 21 peaks in the
same dimension and for easier targets.

5 CONCLUSIONS
Despite being one of the simplest stochastic search variants, uni-
form random search has an internal parameter, its sample volume,
that plays an important role for its performance. We have com-
pared di�erent variants of random search on the bbob test suite
and observed some signi�cant di�erences on some functions that
resulted in some insights into the construction of the function. Not

surprisingly, only for the single bbob function that has its optimum
at one of the corners or outside the hypercube [−5, 5]n it is best to
sample in a large volume. For some other functions such as the ro-
tated Rosenbrock function and the Griewank Rosenbrock function,
we observed that a smaller sample volume around the search space
origin is be�er for budgets up to 106

× dimension.
Over all functions, the performance of RS-3, RS-4, RS-5, RS-6,

and RS-10 is surprisingly similar, however also depending on the
budget and dimension. �e best performance is observed for the
variants RS-4, RS-5, and in smaller dimension also RS-6 due to the
be�er performance on the linear function f5.

Evaluating the search space origin as �rst solution has an ad-
ditional advantage on several functions and in particular on the
Griewank Rosenbrock function, where the origin has an exception-
ally good function value by construction—an issue that has been
corrected in the recent bbob-largescale test suite [3].

�e sample volume of RS-5 is in dimension 5, 10, and 20 about 3,
9, and 87 times larger than that of RS-4. �at means, for example,
with a 9 times larger budget, RS-5 will perform at least on par with
RS-4 in dimension 10.
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7 Step-ellipsoid
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Figure 2: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in number of objective function
evaluations, divided by dimension (FEvals/DIM) for the 51 targets 10[−8..2] in dimension 5.
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Figure 3: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in number of objective function
evaluations, divided by dimension (FEvals/DIM) for the 51 targets 10[−8..2] in dimension 10.
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Figure 4: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimen-
sion (FEvals/DIM) for 51 targets with target precision in 10[−8..2] for all functions and subgroups in 5-D. As reference algorithm,
the best algorithm from BBOB 2009 is shown as light thick line with diamond markers.
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Figure 5: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by di-
mension (FEvals/DIM) for 51 targets with target precision in 10[−8..2] for all functions and subgroups in 20-D. As reference
algorithm, the best algorithm from BBOB 2009 is shown as light thick line with diamond markers.
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Figure 6: Empirical cumulative distribution functions of the runtime to reach certain targets on the Griewank-Rosenbrock
function for the random search variants without (�rst and third plot) and with evaluating the origin �rst (second and forth)
in dimension (le� two plots) and dimension 10 (right two plots).
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