
Towards Better Estimation of Statistical Significance When
Comparing Evolutionary Algorithms

Maxim Buzdalov

ITMO University

Saint Petersburg, Russia

mbuzdalov@gmail.com

ABSTRACT
The use of well-established statistical testing procedures to compare

the performance of evolutionary algorithms often yields pessimistic

results. This requires increasing the number of independent sam-

ples, and thus the computation time, in order to get results with

the necessary precision.

We aim at improving this situation by developing statistical tests

that are good in answering typical questions coming from bench-

marking of evolutionary algorithms. Our first step, presented in

this paper, is a procedure that determines whether the performance

distributions of two given algorithms are identical for each of the

benchmarks. Our experimental study shows that this procedure is

able to spot very small differences in the performance of algorithms

while requiring computational budgets which are by an order of

magnitude smaller (e.g. 15x) compared to the existing approaches.

CCS CONCEPTS
•Mathematics of computing→Hypothesis testing and con-
fidence interval computation; Nonparametric statistics; Sta-
tistical software.

KEYWORDS
Multiple comparisons, statistical significance.

ACM Reference Format:
Maxim Buzdalov. 2019. Towards Better Estimation of Statistical Significance

When Comparing Evolutionary Algorithms. In Genetic and Evolutionary
Computation Conference Companion (GECCO ’19 Companion), July 13–17,
2019, Prague, Czech Republic. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3319619.3326899

1 INTRODUCTION
When a new randomized search heuristic is proposed, it shall be

compared with other existing algorithms on benchmark problems,

as well as on real-world problems when applicable. The perfor-

mance is most often measured either as the fitness value after a

fixed number of fitness function evaluations, or as the number of

fitness function evaluations to reach a certain fitness threshold. The

stochastic nature of randomized search heuristics implies that the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00

https://doi.org/10.1145/3319619.3326899

performance (either of the measures from above), on each problem

and even on each problem instance, is a random variable, which

necessitates the use of statistical methods to derive conclusions

about the mutual relation of these random variables. As a result,

statistical testing is widely used in evolutionary computation.

Statistical testing is a well-established discipline with very impor-

tant applications both in practical fields (medicine and finances) and

in highly-developed theoretic fields (such as high-energy physics).

However, it seems that most of available general-purpose tools are

optimized for the usages that are noticeably different from typical

usages within evolutionary computation (and computational intel-

ligence in general). For instance, a typical use of a statistical test

in a medical context is to find out which of K treatments results

in a significant change of the observable state or behaviour, which

implies that such a significant change is observed very rarely.

On the other hand, a typical scenario in evolutionary computa-

tion is to compare the performance of two (or more) algorithms on

K possibly unrelated benchmark problems and to derive conclu-

sions on the relationship between these algorithms. This setting

seems to occur rarely in areas that heavily influenced statistics, so

methods that address such questions are scarce. Attempts to use

existing general-purpose tools, that are tailored to answer other

questions, result in rather pessimistic results. In particular, this

problem requires conducting much more experiments in order to

get results of desired precision.

The contribution of this paper is the statistical testing proce-

dure, developed specially for benchmarking of randomized search

heuristics, that aims at determining whether two algorithms, on

each of K possibly unrelated problem instances, have an identical

distribution of the performance measure, given that on the i-th
of these instances there were N 1

i independent runs of the first al-

gorithm and N 2

i independent runs of the second algorithm. The

procedure consists of two stages. First, for each problem instance,

the two-sided Kolmogorov-Smirnov test [10] is conducted. Second,

for each of the K outcomes of these tests (we use Kolmogorov-

Smirnov statistic values), its rank among the possible outcomes

for the particular input dimensions is evaluated, and then the sum

of these ranks is used as a statistic, for which the procedure of

deriving an exact p-value is proposed.
While testing the identity of performance distributions of two

algorithms is probably not the most important problem in algo-

rithm benchmarking, we indicate that the proposed principle of

construction of statistical testing procedures is quite general and

can be used for answering more important questions, including,

but not limited to, testing for statistical dominance.

The rest of the paper is structured as follows. Section 2 explains

the necessary terms and overviews the related work. In Section 3

1782

https://doi.org/10.1145/3319619.3326899
https://doi.org/10.1145/3319619.3326899
https://doi.org/10.1145/3319619.3326899

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Maxim Buzdalov

we propose our rank-sum result joining procedure, which aggre-

gates the outcomes of multiple individual statistical tests to produce

a resulting p-value for the single statistical hypothesis that shall
hold across multiple benchmark problems. Section 4 presents our

experimental study of the proposed procedure, including one artifi-

cial setting and one setting related to experimental investigation of

evolutionary algorithms, as well as comparison with the existing

approaches. Section 5 concludes the paper and gives final remarks.

2 PRELIMINARIES AND RELATEDWORK
First we introduce the notation used throughout the paper. We de-

note as [1..n] the set of integer numbers {1, 2, . . . ,n}. ByN(m,σ 2)

we denote a Gaussian distribution with meanm and variance σ 2
.

The rest of this section recalls various topics which this paper

uses, such as the basics of hypothesis testing, a few statistical tests,

as well as several evolutionary algorithms and benchmark problems.

2.1 Hypothesis Testing
Statistical hypothesis testing is a method of statistical inference.

Usually, two hypotheses about the studied process are formulated:

the null hypothesisH0 assumes a default position which is typically

an undesired result (for instance, the newly proposed evolutionary

algorithm is not better than the existing ones on the available

benchmarks), and the alternative hypothesis H1 is its negation [14].

The observed behaviour of the process is then investigated for the

probability to observe it assumingH0 is true. If this probability is

small enough (e.g. below some application-dependent threshold),

then the difference toH0 is inferenced to be statistically significant,
and the null hypothesis is rejected in the favour of the alternative

hypothesis.

In this paper, we consciously stay away from the extensive (and,

at times, furious) discussion about pros and cons of statistical hy-

pothesis testing (the approach used in this paper) versus Bayesian

statistics [1]. Our current opinion is that, although the question of

whether p-values are a usable tool is intricate, Bayesian statistics

are themselves, as of now, still too much of an art than of a tool.

Many commonly used statistical tests follow a particular frame-

work. First, a certain numeric value is evaluated based on the ob-

servable data, which has the semantic of being the more extreme

(e.g. greater), the less probable it is to observe such data assuming

H0. This value is often called the statistic related to the correspond-
ing statistical test, e.g. the Kolmogorov-Smirnov statistic. Second,

this numeric value is either compared with the threshold values

for the needed significance level α pre-computed for the data sizes,

or (as more common now) is converted, using either an exact or

an approximate algorithm, into another numeric value, called the

p-value, which is the probability of observing data which is at least

that extreme assumingH0. If the statistic value is too extreme, or,

equivalently, the p-value is smaller than the significance level α ,
H0 is rejected. The p-value is often used to assess the strength of

the difference between H0 and the actual situation: the less it is,

the stronger is the observed difference.

The mathematics behind particular statistical tests may be valid

only under certain assumptions. For instance, many commonly

used tests assume normality of the data, such as the ANOVA fam-

ily of tests [11]. However, in computational intelligence, including

evolutionary computation, many common random variables that

undergo statistical testing violate most of common assumptions (e.g.

the number of fitness evaluations until the optimum is found, even

of simple algorithms and on simple problems, is significantly differ-

ent from the normal distribution). For this reason, non-parametric
tests are more appropriate in these areas. These tests were orig-

inally developed to work with ordinal data and thus have much

fewer assumptions about the data [9]. In applications where the

assumptions of the commonly used tests hold, parametric tests

typically have more resolution power than non-parametric ones

(i.e. produce smaller p-values on same inputs). We will focus on

non-parametric tests in the rest of the paper.

2.2 Hypothesis Testing in Evolutionary
Computation

A survey on application of statistical testing for evolutionary com-

putation [4] distinguishes the following groups of non-parametric

statistical tests:

• Pairwise tests take the results of measurements of two al-

gorithms on one problem and derive their statistics from a

certain property of these measurements. Most often (and the

only case considered in [4]) this is a median, as in the sign

test [2, Chapter 3.4] and the Mann-Whitney U test [12], also

known as the Wilcoxon rank-sum test [16]. Other tests, such

as the Kolmogorov-Smirnov test [10, 15], test whether the

cumulative distribution functions are the same.

• Tests for multiple comparisons. There are two different cate-

gories of tests that appeared under the same category in [4]:

– Paired difference tests. Here it is assumed that the two com-

pared algorithms were run once per each ofK benchmarks,

and we wish to derive conclusions based on comparisons

within these pairs. The multiple sign test [2], which counts

in howmany benchmarks the first algorithm is better than

the second one and derives the conclusions from this statis-

tic, falls into this category. Another example of such a test

is the Wilcoxon signed-rank test [16]. This test is more

powerful for a price of a stronger assumption that the

differences between the outcomes of the algorithms are

ordered (i.e. can be compared).

– Multiple comparison tests. These tests take the results of
k ≥ 2 algorithms on the same benchmark and check

whether all of the algorithms perform the same. The most

known example, the Friedman test [7], derives the state-

ment about the medians. In a typical evolutionary com-

putation scenario, this outcome is often of a little use, so

more tests need to be conducted once a null hypothesis of

a multiple comparison test is rejected.

• Post-hoc procedures, or corrections for multiple comparisons.
As the p-value, which often serves as the main outcome of

a statistical test, is itself a random variable, it has a chance

to fall below any predefined significance level α with proba-

bility of roughly 1/α even whenH0 cannot be rejected. As

a result, when several statistical tests need to be conducted,

some of them might trigger a false positive just by chance.

To compensate for this, the set of p-values need to be ad-

justed using one of the appropriate procedures, such as the

1783

Towards Better Estimation of Statistical Significance. . . GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Algorithm 1 The pseudocode of Randomized Local Search

Choose x ∈ {0, 1}n uniformly at random

Evaluate x
while stopping criterion not fulfilled do

Choose i ∈ [1..n] uniformly at random

y ← x with the i-th bit flipped

Evaluate y
if f (y) ≥ f (x) then

x ← y
end if

end while

Holm-Bonferroni correction [6], before comparing with the

significance level. As a result, one needs to aim at much

lower individual p-values when designing the experiment

with multiple intended statistical comparisons, which needs

to be roughly α/K for K comparisons.

2.3 Statistical Tests Used in This Paper
This subsection contains short descriptions of the statistical tests

used in this paper.

The Kolmogorov-Smirnov test [10, 15] uses the maximum differ-

ence between empirical cumulative distribution functions to reject

the null hypothesis that the distributions behind the measured

outcomes are identical. Both exact procedures for derivation of a

p-value [10] and a large-number approximation [15] are known. We

are going to use the former, so that the precision for small samples

is not reduced.

The null ofWilcoxon rank-sum test [12, 16] is that the medians of

the distributions are identical, and the statistic is the sum of ranks

of the samples from one of the sides (either a smaller or a larger of

the two values is usually chosen) when all the samples are merged,

sorted and ranked.

The Wilcoxon signed rank test [16] tests whether the differences
between the outcomes of two algorithms on a series of benchmarks

are symmetrically distributed around the zero (the null hypothesis

is that the algorithms perform the same). To do that, it sorts the

differences by the absolute values and evaluates the sum of the

ranks, taken with the sign matching the sign of the corresponding

difference, as a statistic.

All these tests assume by default that response is continuous,
that is, the probability of hitting two identical outcomes is exactly

zero. Numerous extensions exist for these tests; however, for the

Kolmogorov-Smirnov test it is known that the null hypothesis

cannot be mistakenly rejected when some parts of the tested distri-

butions are discrete.

2.4 Algorithms and Problems Used in
Experiments

The class of functions OneMax is defined on bit strings of length n
as follows:

OneMaxz : {0, 1}n → R;x 7→ |{i ∈ [1..n] | xi = zi }|.

The simple local optimizer called Randomized Local Search (RLS,

see Algorithm 1) optimizes functions defined on bit strings of length

Algorithm 2 The pseudocode of RLSk

Choose x ∈ {0, 1}n uniformly at random

Evaluate x
for i ← {2, . . . ,k} do ▷ Extended initialization phase

Choose z ∈ {0, 1}n uniformly at random

Evaluate z
if f (z) ≥ f (x) then

x ← z
end if

end for
while stopping criterion not fulfilled do ▷ General phase

Choose i ∈ [1..n] uniformly at random

y ← x with the i-th bit flipped

Evaluate y
if f (y) ≥ f (x) then

x ← y
end if

end while

n iteratively by flipping one randomly chosen bit on each iteration

and replacing the parent with the offspring if the latter is not worse.

Its flavour, which takes the best of k randomly sampled individ-

uals as the initial individiual, is called RLSk (see Algorithm 2). It

was theoretically studied in [3] and found to outperform RLS by a

roughly

√
n logn margin when k is chosen optimally.

3 THE METHOD: RANK-SUM RESULT JOINER
In this section, we are going to explain our method for statistical

comparison of two algorithms when there are K benchmarks, and

there aremultiple runs of every algorithm on every benchmark. Our

method assumes independence of all measurmenets and works will

hypotheses that cover the relations of algorithms as a whole (e.g. a

typicalH0 would be that the two algorithms behave identically on

all benchmarks), and the result of the application is a single p-value.
In the following, we first give our motivation about the particular

design of the method, and then describe the method formally.

3.1 Motivation for the Design
We consider the situation with multiple benchmarks and multiple

measures. The usual assumption within evolutionary computation

is that every measure takes some resources, so we would like to

get as much precision as possible from every measure to derive the

necessary “global” conclusions.

This effectively prevents us from using paired difference tests,

where the improvement following from using multiple measures

for every benchmark over a single measurement is not large: it is

typically advised that the measurements for a single benchmark

are averaged, or a median is taken, and the paired difference test is

then run on these averages [4]. As a result, the precision of the final

result grows with the number of benchmarks, but only marginally

with the number of samples.

Another possible scenario is to conduct multiple pairwise tests,

one for each benchmark, and then to perform a post-hoc correc-

tion on the results of these tests. The “global”H0 will be rejected,

1784

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Maxim Buzdalov

depending on the setting, if either at least one of the multiple com-

parison survives (e.g. when checking whether algorithms behave

identically) or all of them survive (e.g. when checking stochastic

dominance, as a single failure might be an indication of the reversal

of domination for a particular benchmark). In this case, increasing

the number of samples (for each benchmark) improves the results,

but when the number of benchmarks increases, the results can get

worse, as the corrections need to become more aggressive.

More precisely, many corrections are designed in such a way

that the (possibly unknown) dependencies between the individual

samples can not result in a false rejection ofH0. For instance, the

Holm-Bonferroni correction takes the p-values p1, . . . ,pk , sorted
in a non-decreasing order, and rejects only hypotheses indexed

by [1..t] such that, for all 1 ≤ i ≤ t , pi ≤ α/(k + 1 − i) for a
significance level α . With this correction, the measurement series

with p-values [0.01, 0.3, 0.4, 0.5, 0.6, 0.7] will not result in rejection

of H0 at the level α = 0.05 even for the first measurement, as

0.01 > 0.05/6. However, it will conservatively reject as well the

entire series [0.01, 0.01, 0.01, 0.01, 0.01, 0.01], as it assumes that all

these measurements can, in the worst case, be the same identical

measurement. In the context of truly independent samples, which

prevails in evolutionary computation, such a series shall definitely

be an indication of statistical significance.

We are going to construct a method which would profit both
from increasing the number of samples as well as the number of

benchmarks. At the same time it is still able to ignore spurious false

positives when the rest of the measurements is not up to that.

3.2 The Structure of the Method
Our method uses an existing statistical test S. Assuming its null

hypothesis isH0, the null hypothesis of our method that uses S is

thatH0 holds for every benchmark out of K benchmarks on which

the algorithms are compared, so a proper rejection of just one such

hypothesis is enough to reject the “global” null hypothesis. We

assume that the test S is based on computing a statistic s ∈ S , such
that S is the ordered set of all possible values for this statistic, and

then on computing a p-value p = pS(s), such that, without loss of

generality, whenever s1 < s2, it holds that pS(s1) > pS(s2).
The set S , as well as the function pS : S → R, are allowed to

depend on the number of samples in a benchmark, i.e. N 1

i is the

number of samples of the first compared algorithm for the i-th
benchmark, and N 2

i is for the second compared algorithm, so the

actual notation will be Si and pS,i . However, we leave out the index
i when it is safe.

Our method consists of the following phases. First, it runs the

statistical test S on the outcomes of the algorithms for every bench-

mark, and records the received statistics si along with the sample

sizes N 1

i and N 2

i , as well as the sets of possible statistic values

Si . Second, it computes, for each i , the rank Ri of si , such that

0 ≤ Ri < |Si |, among all possible elements of Si ordered by the

associated p-value, along with the probabilities to observe each

element of Si . To do that, for each i it performs the following:

• For every j, 1 ≤ j ≤ |S |, assuming sj ∈ S are ordered ac-

cording to their indices, the value qj = pS(sj) is computed,

taking into account the sample sizes N 1
and N 2

. Note that

q1 is the greatest value and q |S | is the smallest one.

• For every j, the probability of observing exactly sj is com-

puted as r j = qj − qj+1, assuming q |S |+1 = 0.

Third, the rank-sum statistic R =
∑
i Ri is computed. Note that,

as greater values of Ri correspond to more extreme values, greater

values of R also correspond to more extreme observations. Fourth,

for every possible sum of ranks σ , 0 ≤ σ ≤
∑
i (|Si | −1), it computes,

using the values ri, j , the probability πσ of observing exactly the

rank σ assuming allH0 hypotheses hold for every benchmark. It

is possible to do in time polynomial in the size of the statistic sets,

more precisely, in O((
∑
i |Si |)

2), using straightforward dynamic

programming. Finally, the resulting global p-value is computed by

definition as:

p =

∑
i (|Si |−1)∑
σ=R

πσ .

Note that the algorithm above computes the p-value, correspond-
ing to the intersection of the null hypotheses about the individual

benchmarks, essentially by definition, using the supplied statistical

test S in an almost black-box protocol. More precisely, we require

such a statistical test to give away the raw statistic value (which is

often done in practical implementations, such as in the one from

the R system [13]), as well as to provide the set of possible statistic

values for the given sample sizes, which is also often possible for

both exact and approximated tests, but may require some knowl-

edge of the internals of the test. In this paper we limit ourselves

to exact computations, leaving large-size approximations for the

future work.

4 EXPERIMENTS
In this section, we present and discuss our first experimental re-

sults regarding the proposed method. We limit ourselves to testing

whether the performance distribution of the algorithms is identical,

and thus to the two-sided Kolmogorov-Smirnov test serving as the

test S inside our method. Our main experiments, each of which

assumes running the underlying algorithms for multiple times, will

be run in multiple trials themselves to assess the variability of

the produced p-values. These p-values do not carry a paper-wide

meaning, which means that we do not have to apply corrections

for multiple comparisons on them, although it does not allow the

potential users of our method to do the same in their research.

4.1 A Smoke Test
The first set of experiments is designed to demonstrate the be-

haviour of the proposed method on two possible use cases, namely,

when the difference between the designed random variables does

exist and when it does not. It shall clearly produce low p-values
in the first case and high p-values in the second case. In order to

perform the experiments, the following functions were designed:

T1(n) = n ln(n + 1) · (1.00 + 0.1 · N(0, 1));

T2(n) = n ln(n + 1) · (1.05 + 0.1 · N(0, 1)).

These functions are chosen in such a way that, for every n, the
corresponding random variables substantially overlap, but the over-

lap ratio is fixed and does not depend on n. In the first experiment

we compare T1(n) and T2(n), and in the second experiment we com-

pare T1(n) with itself. To perform the comparison, we sample, for

1785

Towards Better Estimation of Statistical Significance. . . GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

every n ∈ [1..200], five realizations of each side of the comparison,

with every value of n serving as a separate benchmark, and then use

the Kolmogorov-Smirnov test to estimate the differences between

the distribution functions. The results of experimental comparison

of T1 and T2 are presented in Table 1, while the results of comparing

T1 with itself are presented in Table 2. These tables illustrate five

independent trials of comparisons, one trial per row. They also

display the statistics of the individual p-values reported for various

n using the Kolmogorov-Smirnov test.

Note that, based on just five samples for every problem size

n, we achieve a minimum p-value of approximately 0.007937 for

every separate run of the Kolmogorov-Smirnov test. We can see

that in Table 1 only at most 7 out of 200 comparisons ended up

with p = 0.007937, while all others result in p > 0.079. As a result,

the Holm-Bonferroni correction, in either the Holm step-down or

the Hochberg step-up [8] flavour, will not reject any of the null

hypotheses when comparing T1 and T2 with the sample size of five,

200 comparisons and the significance level α = 0.05. The proposed

method, on the contrary, consistently produced global p-values of
10
−4 . . . 10−6, so it distinguished the slightly differing functions.

On the other hand, just as expected, the null hypothesis was not

rejected in any of the trials regarding comparison of T1 with itself

(Table 2). The observedp-values happened to be all greater than 1/3,
which is way above any common significance thresholds, despite

the p-values resulting from individual comparisons occasionally fall

below 0.08 and, once or twice in 200 runs, even below 0.008. This

indicates that our method is capable of getting rid of spurious false

positives resulting from occasionally producing non-overlapping

measurements for some of the benchmarks, as long as there is no

significant difference in the remaining benchmarks.

Note that our method derives its conclusions not solely from

the “good-looking” outcomes of the statistical tests: for example,

the fourth trial in Table 1 has only one benchmark with the small-

est p-value, similar to three trials in Table 2, however, the global

p-value is still well below 10
−4

thanks mostly to a completely dif-

ferent distribution of benchmarks among other p-values, which are

themselves well above the commonly used significance thresholds.

To assess the benefits of our method from the computational

budget perspective, we conducted a similar study, involving com-

parison of T1 with T2, using the Kolmogorov-Smirnov test to de-

rive a p-value for each of the 200 problem sizes, but this time with

k ∈ {20, 40, 60, 80, 100} samples for each problem size. The resulting

p-values are then processed using the Holm-Bonferroni correction

logic, and the minimum among the corrected p-values is reported
(Table 3). From these results we can observe that it takes k ≥ 80

to reach the same order of p-values which are possible with our

method and k = 5, resulting in a budget reduction of roughly 15x.

4.2 Spotting the Impact of Better Initialization
In the paper [3], an impact of having a better initialization on the ex-

pected running time has been studied. More precisely, the OneMax

problem was considered, randomized local search (RLS) was chosen

for the algorithm, and the best-of-k strategy was analyzed for choos-

ing the initial individual. With the runtime of RLS on OneMax is

known to be Θ(n logn) for the problem size n (more precisely, it is

nHn/2 − 1/2 ± o(1), where Ht is the t-th harmonic number [5]), the

Table 1: Results of smoke testing, T1 versus T2. Each row rep-
resents a single independent trial of 200 × 5 measurements
for both sides.

Number of n with this p-value (sums up to 200) Global

0.00794 0.07937 0.35714 0.87302 1.00000 p-value

6 24 70 84 16 1.043 · 10−6

4 28 59 86 23 3.169 · 10−4

3 27 71 81 18 5.060 · 10−6

1 28 66 89 16 6.309 · 10−5

7 22 74 76 21 2.326 · 10−6

Table 2: Results of smoke testing, T1 versus T1. Each row rep-
resents a single independent trial of 200 × 5 measurements
for both sides.

Number of n with this p-value (sums up to 200) Global

0.00794 0.07937 0.35714 0.87302 1.00000 p-value

2 13 50 116 19 0.532

2 14 55 107 22 0.395

1 22 57 89 31 0.216

1 15 50 106 28 0.782

1 16 55 105 23 0.395

best-of-k strategy results in a roughly

√
n logn + O(

√
n) additive

speed-up when k =
√
n/logn is chosen — even despite the fact that

sampling these k individuals also counts toward the total number

of fitness evaluations.

Note that, contrary to the previous setting, the expected additive

speed-up is of a lower order of magnitude compared to the actual

running time. For instance, the theoretically proven difference be-

tween the expected running times is roughly 42 for n = 1000 when

k = 16 is chosen [3, Fig. 1]. Compared to the expected runtime

RLS on OneMax of roughly 6792.32, especially paying attention

to the noticeable standard deviation of this random variable, this

difference is quite small.

We aim at spotting the difference between the original RLS and

RLSk that uses the best-of-k strategy in experimental results. Given

the considerations above, this is quite a hard problem. Our experi-

mental setup for this problem is as follows. We take different values

of n ∈ {100, 200, 300, 400, 500} and different number of samples

s ∈ {100, 200, 300, 400, 500}. For each combination of n and s , we
make up a problem with n benchmarks, each having a problem size

Table 3: The minimum p-values after the Holm-Bonferroni-
style correction: pi ← pi · (k − i + 1), where k is the number
of samples and pi are initially sorted. Each column consists
of five independent trials, columns are sorted.

k = 20 k = 40 k = 60 k = 80 k = 100

0.054 2.469 · 10−5 2.317 · 10−5 3.754 · 10−7 8.828 · 10−7

0.054 2.469 · 10−5 7.028 · 10−5 8.543 · 10−6 1.323 · 10−5

0.054 3.776 · 10−4 7.028 · 10−5 2.272 · 10−5 3.079 · 10−5

0.054 1.322 · 10−3 5.646 · 10−4 2.272 · 10−5 3.095 · 10−5

0.222 1.322 · 10−3 1.506 · 10−3 1.457 · 10−4 3.110 · 10−5

1786

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Maxim Buzdalov

Table 4: The derived p-values for experiments comparing RLS and RLSk (theDiff columns), as well as RLS with itself (the Same
columns). For every n and every number of samples, five independent experiment runs were conducted, and the resulting p-
values are written columnwise and sorted, smaller values at the top.

n 100 samples each 200 samples each 300 samples each 400 samples each 500 samples each

Same Diff Same Diff Same Diff Same Diff Same Diff

100

0.690 0.025 0.832 2.722 · 10−6 0.744 9.108 · 10−7 0.349 4.066 · 10−14 0.182 5.051 · 10−18

0.833 0.032 0.977 3.528 · 10−4 0.883 6.253 · 10−6 0.768 2.869 · 10−10 0.969 1.723 · 10−16

0.937 0.047 0.991 6.534 · 10−3 0.958 2.048 · 10−5 0.952 3.577 · 10−10 0.988 2.252 · 10−14

0.967 0.053 0.996 0.012 0.965 2.129 · 10−3 0.989 4.142 · 10−10 0.994 2.971 · 10−11

0.996 0.334 0.998 0.111 0.985 0.077 0.998 2.084 · 10−8 0.999 8.903 · 10−10

200

0.113 0.043 0.739 6.034 · 10−6 0.731 1.144 · 10−9 0.622 4.986 · 10−10 0.541 3.226 · 10−17

0.733 0.235 0.889 1.754 · 10−3 0.888 1.748 · 10−9 0.779 2.305 · 10−9 0.736 2.174 · 10−15

0.883 0.448 0.939 5.254 · 10−3 0.935 6.084 · 10−9 0.963 4.498 · 10−9 0.903 2.597 · 10−15

0.929 0.525 0.989 0.050 0.988 1.830 · 10−7 0.972 1.009 · 10−8 0.971 6.797 · 10−10

0.976 0.570 0.993 0.141 0.998 1.091 · 10−3 0.989 5.089 · 10−7 0.999 9.940 · 10−10

300

0.571 3.944 · 10−4 0.466 1.681 · 10−9 0.659 7.109 · 10−13 0.931 3.879 · 10−13 0.892 9.353 · 10−24

0.689 0.010 0.515 2.938 · 10−7 0.902 4.558 · 10−10 0.991 1.187 · 10−12 0.971 3.230 · 10−14

0.763 0.048 0.841 1.079 · 10−4 0.942 1.275 · 10−8 0.992 6.814 · 10−10 0.980 5.531 · 10−11

0.782 0.069 0.969 5.000 · 10−4 0.982 5.429 · 10−8 0.993 8.887 · 10−10 0.992 1.170 · 10−10

0.988 0.943 1.000 0.095 0.997 1.909 · 10−7 0.999 8.317 · 10−8 0.993 3.519 · 10−10

400

0.422 0.050 0.016 6.194 · 10−7 0.617 1.095 · 10−9 0.806 4.633 · 10−18 0.581 4.060 · 10−24

0.448 0.133 0.668 5.822 · 10−5 0.906 1.251 · 10−9 0.969 3.538 · 10−17 0.822 2.770 · 10−21

0.620 0.167 0.833 6.362 · 10−4 0.935 1.491 · 10−7 0.984 8.080 · 10−13 0.868 1.247 · 10−19

0.902 0.199 0.919 7.702 · 10−4 0.935 1.364 · 10−4 0.984 5.306 · 10−12 0.978 2.357 · 10−19

0.963 0.572 0.976 2.161 · 10−3 0.947 3.646 · 10−4 1.000 1.251 · 10−8 0.981 5.321 · 10−18

500

0.672 2.199 · 10−3 0.522 1.233 · 10−4 0.312 2.707 · 10−13 0.546 2.451 · 10−16 0.568 3.273 · 10−26

0.759 0.093 0.702 1.515 · 10−3 0.785 3.588 · 10−11 0.775 1.181 · 10−15 0.760 1.426 · 10−22

0.855 0.137 0.958 1.687 · 10−3 0.964 2.414 · 10−9 0.925 3.337 · 10−14 0.929 6.458 · 10−22

0.963 0.236 0.960 5.525 · 10−3 0.998 1.067 · 10−5 0.962 1.775 · 10−13 0.933 1.208 · 10−18

0.965 0.727 0.981 0.017 0.999 3.531 · 10−4 0.986 2.083 · 10−12 0.998 4.781 · 10−18

n′ ∈ [1..n], where for every benchmark s independent algorithm
runs are conducted, and the number of fitness function evaluations

needed to reach the optimum is recorded.

Table 4 indicates that this problem is indeed harder than the

previous one, but our method is able to find the difference for every

value of n and large enough number of samples s . The columns

labeled “Diff” present the p-values resulting from comparison of

RLS and RLSk for k set as above, which get stabilized at small values

when the number of samples s is at least 400. Small p-values start
to appear already at s = 200, however, occasionally large p-values
are also produced for s ≤ 300. The fact that p-values may differ

in order by as large as 10
14

for different trials of the same process

deserves more attention, which we leave for the future work.

On the contrast, the control columns labeled “Same” indicate that

our method is not misled by deriving conclusions from multiple

comparisons, some ofwhich occasionally produce extreme statistics,

even for up to 500 samples in up to 500 benchmarks. The only

observed occasion for such a p-value to be noticeably small (0.016,

occurring at n = 400, s = 200) does not contradict this statement,

as it happened only once in 125 trials, which can be filtered out by

any post-hoc correction in practice.

Note that Table 4 does not show a noticeable increase of pre-

cision with the growth of n. This is explained by a fact that was

mentioned earlier, namely, the relative difference between RLS and

Table 5: The p-values for comparing RLS and RLS2. In this
table, n = 100 and s = 500.

Same Diff

0.826 7.085 · 10−7

0.835 1.653 · 10−6

0.970 3.761 · 10−6

0.992 1.060 · 10−4

0.996 6.479 · 10−4

RLSk decreases as n increases, so the effective “weights” of those

n′ ≤ n where this difference is noticeable reduce when n grows.

In fact, we can even spot the difference between RLS and RLS2,

where the initial individual is chosen to be the best out of just two

randomly sampled individuals. Table 5 shows the similar report

for this case, limited by n = 100 and s = 500. Note that the p-
values from the “Diff” column are much larger than the ones in the

matching cell of Table 4, which reflects a smaller difference between

RLS and RLS2 compared to the one between RLS and RLSk .

5 CONCLUSION
We presented our first step towards statistical tests designed spe-

cially for the settings common in evolutionary computation, and

1787

Towards Better Estimation of Statistical Significance. . . GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

probably for computational intelligence in general. Our method,

the rank-sum result joiner, runs the existing statistical tests on the

results for every separate benchmark, and then joins their results

together, assuming all runs of the algorithms on all benchmarks are

independent. This is done using dynamic programming without

any extra assumptions and approximations. The result is a single

p-value for the null hypothesis constructed as an intersection of

the null hypotheses of the subordinate tests.

Our first results are promising, suggesting that good replace-

ments for the default statistical assessment procedures, which will

be able to produce significantly more precise results from the same

input data, are only a few steps ahead at least for some of the pos-

sible applications. Our method is rather generic and requires only

a moderate change of the commonly used interfaces to the statis-

tical tests, so its adaptation to any other statistical tests than the

two-sided Kolmogorov-Smirnov test shall be very straightforward.

In particular, using the outcomes of different statistical tests, for
different benchmarks, is also supported. Although the users would

need to be much more accurate, as running multiple tests on the

same data no longer satisfies the independence assumptions, this is

still a good feature which potentially increases the applicability of

the proposed method.

A few drawbacks of the proposed method are already recognized

during the presented experiments:

• A noticeable computation cost. As our current implementa-

tion does not perform any approximation, even where theo-

retically feasible, the running time, apart from running the

exact versions of the statistical tests, is an additional O(Σ2)
term, where Σ is the sum of numbers of possible statistic

values among all subordinate statistical tests. For the number

of benchmarks n = 500 and the number of samples s = 500

for each benchmark, this is order 500
4
with the Kolmogorov-

Smirnov test, or several minutes on an ordinary computer.

More work towards understanding where the central limit

theorems are applicable will of course reduce this to the

tolerable values.

• In the presence of different sample sizes at different bench-

marks, the current implementation will effectively pay more

attention to the results corresponding to larger sample sizes.

This seems to require only a little more work, as it is possible

to rescale the ranks of statistics in order to have identical ef-

fective weights. However, a straightforward implementation

of this idea increases the computational complexity.

• The consistency of the produced p-values across multiple

trials shall also be further investigated.

The proposed method is currently implemented as a part of a

small data analysis software package by the author of this paper
1
,

and it is used to decide which of the benchmarks to restart during

continuous integration in one of his projects
2
. The author thinks

that a similar approach might be helpful to monitor the changes in

performance of evolutionary algorithms while maintaining bench-

marking software, such as COCO
3
or IOHprofiler

4
.

1
Available on GitHub: https://github.com/mbuzdalov/data-slicer.

2
https://github.com/mbuzdalov/non-dominated-sorting

3
https://github.com/numbbo/coco

4
https://github.com/IOHprofiler

Finally, we must note that the evolutionary computation com-

munity needs to learn how to set the statistical questions right, and

only then to search for tools that can answer these questions — or

to build their own tools. Correct formulation of null and alternative

hypotheses is a difficult question, and only occasionally these for-

mulations can be straightforward (e.g. runtime distribution equality,

or stochastic dominance). The inherent limitation for the statistical

outcomes to be sample-based further complicates these questions,

as, for instance, it is not easy to formulate a hypothesis about the

asymptotically smaller runtime of an algorithm A compared to the

algorithm B using only sample-based language.

ACKNOWLEDGMENTS
This research was supported by the Russian Scientific Foundation,

agreement No. 17-71-20178.

REFERENCES
[1] 2015. Bayesian statistics. Nature Methods 12 (2015), 377–378.
[2] William Jay Conover. 1999. Practical Nonparametric Statistics (3rd ed.). Wiley.

[3] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr. 2015. Money

for Nothing: Speeding Up Evolutionary Algorithms Through Better Initialization.

In Proceedings of Genetic and Evolutionary Computation Conference. 815–822.
[4] Joaquin Derrac, Salvador Garcia, Daniel Molina, and Francisco Herrera. 2011. A

Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology

for Comparing Evolutionary and Swarm Intelligence Algorithms. Swarm and
Evolutionary Computation 1, 1 (2011), 3–18.

[5] Benjamin Doerr and Carola Doerr. 2016. The Impact of Random Initialization

on the Runtime of Randomized Search Heuristics. Algorithmica 75, 3 (2016),

529–553.

[6] Olive Jean Dunn. 1961. Multiple Comparisons Among Means. J. Amer. Statist.
Assoc. 56, 293 (1961), 52–64.

[7] Milton Friedman. 1940. A comparison of alternative tests of significance for the

problem ofm rankings. The Annals of Mathematical Statistics 11, 1 (1940), 86–92.
[8] Yosef Hochberg. 1988. A Sharper Bonferroni Procedure for Multiple Tests of

Significance. Biometrika 75, 4 (1988), 800–802.
[9] Myles Hollander, Douglas A. Wolfe, and Eric Chicken. 2007. Nonparametric

Statistical Methods (3rd ed.). Wiley.

[10] Andrey Kolmogorov. 1933. Sulla determinazione empirica di una legge di dis-

tribuzione. Giornale dell’Istituto Italiano degli Attuari 4 (1933), 83–91.
[11] William H. Kruskal and W. Allen Wallis. 1952. Use of ranks in one-criterion

variance analysis. J. Amer. Statist. Assoc. 47 (1952), 583–621.
[12] Henry B. Mann and Donald R. Whitney. 1947. On a Test of Whether one of Two

Random Variables is Stochastically Larger than the Other. Annals of Mathematical
Statistics 18, 1 (1947), 50–60.

[13] R Core Team. 2013. R: A Language and Environment for Statistical Computing.

http://www.R-project.org/. http://www.R-project.org/

[14] John A. Rice. 2007. Mathematical Statistics and Data Analysis (3rd ed.). Cengage

Learning.

[15] Nikolai Smirnov. 1948. Table for estimating the goodness of fit of empirical

distributions. Annals of Mathematical Statistics 19, 2 (1948), 279–281.
[16] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics

Bulletin 1, 6 (1945), 80–83.

1788

https://github.com/mbuzdalov/data-slicer
https://github.com/numbbo/coco
https://github.com/IOHprofiler
http://www.R-project.org/

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Hypothesis Testing
	2.2 Hypothesis Testing in Evolutionary Computation
	2.3 Statistical Tests Used in This Paper
	2.4 Algorithms and Problems Used in Experiments

	3 The Method: Rank-Sum Result Joiner
	3.1 Motivation for the Design
	3.2 The Structure of the Method

	4 Experiments
	4.1 A Smoke Test
	4.2 Spotting the Impact of Better Initialization

	5 Conclusion
	Acknowledgments
	References

