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ABSTRACT
Since around 2000, it has been considered that elitist evolutionary
multi-objective optimization algorithms (EMOAs) always outper-
form non-elitist EMOAs. This paper revisits the performance of
non-elitist EMOAs for bi-objective continuous optimization when
using an unbounded external archive. This paper examines the
performance of EMOAs with two elitist and one non-elitist environ-
mental selections. The performance of EMOAs is evaluated on the
bi-objective BBOB problem suite provided by the COCO platform.
In contrast to conventional wisdom, results show that non-elitist
EMOAs with particular crossover methods perform significantly
well on the bi-objective BBOB problems with many decision vari-
ables when using the unbounded external archive. This paper also
analyzes the properties of the non-elitist selection.
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1 INTRODUCTION
Since no solution can simultaneously minimize multiple conflicting
objective functions in general, the ultimate goal of multi-objective
optimization problems (MOPs) is to find a Pareto optimal solution
preferred by a decision maker [27]. When the decision maker’s
preference information is unavailable a priori, an “a posteriori”
decision making is performed. The decision maker selects the final
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solution from a solution set that approximates the Pareto front in
the objective space.

An evolutionary multi-objective optimization algorithm (EMOA)
is frequently used to find an approximation of the Pareto front for
the “a posteriori” decision making [8]. A number of EMOAs have
been proposed in the literature. Classical EMOAs include VEGA
[29], MOGA [16], and NSGA [31] proposed in the 1980s and 1990s.
They are non-elitist EMOAs, which do not have a mechanism to
maintain non-dominated solutions in the population. Some elitist
EMOAs (e.g., SPEA [38], SPEA2 [37], and NSGA-II [10]) have been
proposed in the early 2000s. Elitist EMOAs explicitly keep non-
dominated solutions found during the search process.

Some EMOAs store non-dominated solutions found so far in an
unbounded or bounded external archive independently from the
population. For example, MOGLS [21] proposed in the mid-1990s
does not maintain elite solutions in the population but stores all non-
dominated solutions found so far in the unbounded external archive.
ϵ-MOEA [13] stores non-dominated solutions in the population
and ϵ-nondominated solutions in the unbounded external archive.
PESA [7] uses the non-elitist population and the elitist bounded
external archive. The external archive in these EMOAs (e.g., MOGLS,
ϵ-MOEA, and PESA) plays two roles. The first role is to provide
non-dominated solutions found so far to the decision maker. The
performance of these types of EMOAs is also evaluated based on
solutions in the external archive, rather than the population. The
second role is to perform an elitist search. For example, parents
for mating are selected from the external archive in PESA. Some
elitist individuals in the external archive can enter the population
in MOGLS. Since these types of EMOAs explicitly exploit elitist
solutions as explained above, they can be categorized into elitist
EMOAs.

Apart from algorithm development, the external archive has
been used only for the first role (e.g., [4, 5, 16, 25, 35]). As pointed
out in [4], good potential solutions found so far are likely to be
discarded from the population. The external archive that stores all
non-dominated solutions independently from EMOAs can address
this issue. The external archive for the first role can be incorporated
into all EMOAs without any changes in their algorithmic behavior.
The external archive is useful for real-world problems where the
evaluation of each solution is expensive, i.e., the total number of
examined solutions is limited, and the archive maintenance cost is
relatively small in comparison with the solution evaluation cost.
If the decision maker wants to examine a small number of non-
dominated solutions, solution selection methods are available such
as hypervolume indicator-based selection methods (e.g., [4]) and
distance-based selection methods (e.g., [30]).
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This paper revisits non-elitist EMOAs with the unbounded exter-
nal archive only for the first role (performance evaluation). When
the performance of EMOAs is evaluated based on solutions in the
external archive as in [4, 5, 25, 35], the role of EMOAs is only
to find non-dominated solutions with high quality. Thus, EMOAs
do not need to maintain non-dominated solutions found so far in
the current population with the population size µ. We investigate
three environmental selections: best-all (BA), best-family (BF), and
best-children (BC). While BA and BF are elitist selections, BC is a
non-elitist selection. Although BA is a traditional (µ + λ)-selection,
BF and BC restrict a selection only among k parents and λ children.
Thus, µ − k non-parents do not directly participate in the selection
process in BF and BC unlike traditional (µ+λ)- and (µ, λ)-selections.
In BC, all k parents are removed from the population regardless
of their quality. Then, the top-ranked k out of λ children enter the
population. Subsection 2.3 explains BA, BF, and BC in detail. We
examine the performance of EMOAs with the three selections on
the bi-objective BBOB problem suite [33]. We use five crossover
methods and four ranking methods in representative EMOAs.

Our contributions in this paper are at least threefold:

• We demonstrate that the non-elitist BC selection performs
significantly well on the bi-objective BBOB problems with
many decision variables when using the unbounded external
archive. Although most EMOAs proposed in the 2000s are
elitist EMOAs, our results indicate that efficient non-elitist
EMOAs could be designed. Thus, our results significantly
expand the design possibility of EMOAs.
• We demonstrate that restricted replacements in BF and BC
are suitable for crossover methods with the preservation of
statistics [23] (e.g., the property where the covariance matrix
of children is the same as that of the parents) such as SPX
[32] and REX [2].
• We discuss why the simple BA selection performs worse
than the restricted BF and BC selections. We also analyze
the properties of the non-elitist BC selection.

The rest of this paper is organized as follows. Section 2 provides
some preliminaries of this paper, including the definition of MOPs,
the five crossover methods, and the three environmental selections.
Section 3 describes the experimental setup. Section 4 examines
the performance of the three environmental selections. Section 5
concludes this paper with discussions on future research directions.

2 PRELIMINARIES
2.1 Definition of continuous MOPs
A continuous MOP is to find a solution x ∈ S that minimizes a given
objective function vector f : Rn → Rm ,x 7→ f (x ). Here, S ⊆ Rn
is the n-dimensional solution space, and Rm is them-dimensional
objective space. n is the number of decision variables, andm is the
number of objective functions.

A solution x (1) is said to dominate x (2) iff fi (x (1) ) ≤ fi (x (2) )
for all i ∈ {1, ...,m} and fi (x (1) ) < fi (x (2) ) for at least one index i .
If x∗ is not dominated by any other solutions in S, x∗ is a Pareto
optimal solution. The set of all x∗ is the Pareto optimal solution set,
and the set of all f (x∗) is the Pareto front. The goal of MOPs for the

Table 1: Properties of the five crossover methods, including
the center of the distribution of children (parent or mean),
the type of probability distribution (U: uniform or N: nor-
mal), the rotational invariance, the preservation of statistics,
the number of parents k , and other control parameters.

Cent. Prob. Rot. Sta. k Parameters

SBX parent ? 2 ηc = 20, ηm = 20
BLX mean U 2 α = 0.5
PCX parent N ✓ 3 σ 2

ζ = 0.1, σ 2
η = 0.1

SPX mean U ✓ ✓ n + 1 ϵ =
√
n + 2

REX mean N ✓ ✓ n + 1 σ 2 = 1/(k − 1)

“a posteriori” decision making is to find a non-dominated solution
set that approximates the Pareto front in the objective space.

2.2 Crossover methods in real-coded GAs
We use the following five crossover methods in real-coded GAs:
simulated binary crossover (SBX) [9], blend crossover (BLX) [15],
parent-centric crossover (PCX) [11], simplex crossover (SPX) [32],
and real-coded ensemble crossover (REX) [2]. Here, we briefly ex-
plain the five crossover methods.

Traditional GAs use two variation operators: crossover and mu-
tation. In contrast, real-coded GAs with BLX, PCX, SPX, and REX do
not need the mutation operator because they can generate diverse
children by adjusting their control parameters (e.g., the expansion
rate ϵ in SPX). However, the polynomial mutation (PM) [9] is ap-
plied to two children generated by SBX in most studies. In other
words, SBX and PM have been considered to be a set. For this rea-
son, we apply PM to children generated only by SBX. We refer to
“SBX and PM” as “SBX” for simplicity.

Table 1 shows the properties of the five crossover methods. Al-
though SBX and BLX are traditional two-parent crossover methods,
PCX, SPX, and REX are multi-parent crossover methods. PCX, SPX,
and REX are rotationally invariant. The performance of EMOAs
with rotationally invariant operators does not depend on the co-
ordinate system. While PCX and REX use a Normal probability
distribution, BLX and SPX use a uniform probability distribution.
The probability distribution used in SBX is unclear. Although the
center of the distribution of children is the mean vector of k parents
in BLX, SPX, and REX, that is one of the parents in SBX and PCX.
SPX and REX have a property called the “preservation of statistics”
proposed in [23]. In a crossover method with this property, chil-
dren inherit the statistics (e.g., the mean vector and the covariance
matrix) from their parents.

Figure 1 shows the distribution of children generated by the
five crossover methods. SBX simulates the working principle of the
single-point crossover in binary-coded GAs. Since SBX is a variable-
wise operator, most children are generated along the coordinate
axes. The distribution of children is controlled by ηc in SBX (and
ηm in PM). In BLX, the j-th element (j ∈ {1, ...,n}) of a child is
uniformly randomly selected from the range [lj ,uj ]. Here, lj =
min(x (1)j ,x

(2)
j ) − α |x

(1)
j − x

(2)
j | and uj = max(x (1)j ,x

(2)
j ) + α |x

(1)
j −

x
(2)
j |. x

(1) and x (2) are parents, and α is the expansion factor.
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(a) SBX (b) BLX (c) PCX (d) SPX (e) REX

Figure 1: Distribution of children generated by the five crossover methods. Large red points are their parents.

PCX is a parent-centric version of UNDX-m [24], which is a
multi-parent extension of unimodal normal distribution crossover
(UNDX) [28]. While the center of the distribution of children is
the mean vector of parents in UNDX-m, that is one of the parents
in PCX. PCX requires two parameters σ 2

ζ and σ 2
η that control the

variances of two Normal distributions. SPX can be viewed as being
a rotationally invariant version of BLX. SPX uniformly generates
children inside an expanded simplex formed by k parents. The
theoretical analysis presented in [19] shows that SPX with the
expansion factor ϵ =

√
n + 2 satisfies the preservation of statistics.

REX is a generalized version of UNDX-m. REX using a zero-mean
Normal distribution with the variance σ 2 = 1/(k − 1) satisfies the
preservation of statistics [1].

2.3 Environmental selections
We consider a “simple” EMOA shown in Algorithm 1. After the
initialization of the population P with the population size µ (line
1), the following operations are repeatedly performed until a termi-
nation condition is satisfied. First, k parents are randomly selected
from P such that their indices are different from each other (line
3). Let R be a set of the k parents. Then, λ children are generated
by applying a crossover method to the same k parents λ times (line
4).1 To effectively exploit the neighborhood of the k parents, the
same parents are generally used to generate children in GAs for
single-objective optimization [1]. LetQ be a set of the λ children. At
the end of each iteration, the environmental selection is performed
using P , R, andQ (line 5).

Below, we explain the following three environmental selections:
best-all (BA), best-family (BF), and best-children (BC). Note that
our main contributions in this paper are analysis of BA, BF, and
BC in Section 4, not proposing BA, BF, and BC. Algorithms 2, 3,
and 4 show BA, BF, and BC, respectively. While BA and BF are
elitist selections, BC is a non-elitist selection. The three selections
require a method of ranking individuals based on their quality.
Similar to MO-CMA-ES [20], BA, BF, and BC can be combined with
any ranking method. In this paper, we use four ranking methods
in NSGA-II [10], SMS-EMOA [3], SPEA2 [37], and IBEA with the
additive ϵ indicator [36]. We denote their ranking methods as “NS”,
“SM”, “SP”, and “IB”, respectively. Individuals are ranked based on
their non-domination levels in NS and SM. The tie-breakers are
the crowding distance in NS and the hypervolume contribution in
SM. In SP and IB, individuals are sorted based on their so-called
1Since SBX generates two children in a single operation, SBX is performed λ/2 times.

Algorithm 1: The simple EMOA
1 t ← 1, initialize the population P = {x (1), ..., x (µ ) };
2 while The termination criteria are not met do
3 R ← Randomly select k parents from P ;
4 Q ← Generate λ children by applying the crossover method to

R ;
5 P ← environmentalSelection(P , Q , R );
6 t ← t + 1;

Algorithm 2: BA (the elitist selection)
1 Assign ranks to all individuals in P ∪Q ;
2 S ← P ∪Q and P ← ∅;
3 for i ∈ {1, ..., µ } do
4 x ← Select the best ranked individual from S ;
5 P ← P ∪ {x } and S ← S \ {x };

Algorithm 3: BF (the elitist restricted selection)
1 Assign ranks to all individuals in P ∪Q ;
2 S ← Q ∪ R and P ← P \ R ;
3 for i ∈ {1, ..., k } do
4 x ← Select the best ranked individual from S ;
5 P ← P ∪ {x } and S ← S \ {x };

Algorithm 4: BC (the non-elitist restricted selection)
1 P ← P \ R ;
2 Assign ranks to all individuals in P ∪Q ;
3 for i ∈ {1, ..., k } do
4 x ← Select the best ranked individual from Q ;
5 P ← P ∪ {x } and Q ← Q \ {x };

fitness values in descending order. In this paper, X-Y-Z represents
the EMOA (Algorithm 1) with an environmental selection X, a
crossover method Y, and a ranking method Z. For example, BA-
SBX-NS is the EMOA with BA, SBX, and NS.

In BA (Algorithm 2), the top-ranked µ individuals are selected
from the union of P and Q . BA is the traditional elitist (µ + λ)-
selection used in most EMOAs (e.g., NSGA-II and SPEA2). It should
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be noted that BA-SBX-NS is not identical to NSGA-II. The differ-
ences between BA-SBX-NS and NSGA-II are the random parent
selection and the children generation. The same k parents are used
to generate λ children in BA. For the same reason, BA-SBX-SP, BA-
SBX-SM, and BA-SBX-IB are not identical to SPEA2, SMS-EMOA,
and IBEA, respectively.

In BF (Algorithm 3), the environmental selection is performed
only among the so-called “family” that consists of λ children inQ
andk parents inR. After all individuals in the union of P andQ have
been ranked, only k parents in R are removed from P . Then, the
best k individuals are selected from the union ofQ and R. Although
non-parents in P do not directly participate in the selection process,
they contribute to assign ranks to individuals in the union ofQ and
R. While the maximum number of individuals replaced by children
is µ in BA, that is k in BF. Since only k parents can be replaced by
children in BF, non-parents can survive to the next iteration with
no comparison. Selections among families as in BF are used in GAs
for single-objective optimization (e.g., the deterministic crowding
[26]).

In BC (Algorithm 4), the environmental selection is performed
among λ children inQ . We assume that λ ≥ k . After k parents in R
have been removed from P , all individuals in the union of P andQ
are ranked. Then, the best k individuals are selected fromQ . Since
all k parents are deleted from P regardless of their quality, BC does
not maintain non-dominated individuals in P . Thus, BC is a non-
elitist selection in contrast to the elitist BA and BF selections. While
µ individuals in P are replaced with λ children inQ in most classical
(µ, λ)-EMOAs (e.g., MOGA), only k parents in R are replaced with
the best k out of λ children inQ in BC. Thus, BC is different from
the traditional (µ, λ)-selection.

BC can be viewed as being an extension of just generation gap
(JGG) [1] to multi-objective optimization. JGG is an environmen-
tal selection in GAs for single-objective continuous optimization.
The only difference between BC and JGG is how to assign ranks
to individuals. Individuals x (1) ,x (2) , ... are ranked based on their
objective values f (x (1) ), f (x (2) ), ... in JGG and their objective vec-
tors f (x (1) ), f (x (2) ), ... in BC. The results presented in [1] show
that non-elitist GAs with JGG significantly outperform elitist GAs
on single-objective test problems (especially multimodal problems)
when using crossover methods with the preservation of statistics.

3 EXPERIMENTAL SETTINGS
We conducted all experiments using the comparing continuous opti-
mizers (COCO) platform [17]. COCO is the standard platform used
in the black box optimization benchmarking (BBOB) workshops
held at GECCO (2009–present). We used the latest COCO software
(version 2.2.2) downloaded from https://github.com/numbbo/coco.
COCO provides six types of BBOB problem suites, including the
single-objective BBOB noiseless problem suite [18]. The bi-objective
BBOB problem suite [33] consists of 55 bi-objective test problems
f 1, ..., f 55 designed based on the idea presented in [5]. Each bi-
objective BBOB problem is constructed by combining two single-
objective BBOB problems. For example, the first and second ob-
jective functions of f 7 are the Sphere function and the rotated
Rastrigin function, respectively. The number of decision variables n

is n ∈ {2, 3, 5, 10, 20, 40}. For details of the 55 bi-objective test prob-
lems, see [33]. For each problem, 15 runs were performed. These
settings adhere to the analysis procedure adopted by the GECCO
BBOB community. The maximum number of function evaluations
was set to 104 × n.

COCO also provides the post-processing tool that aggregates
experimental data. COCO automatically stores all non-dominated
solutions found by an optimizer in the unbounded external archive.
The performance indicator ICOCO [6] in COCO is mainly based
on the hypervolume value of non-dominated solutions in the un-
bounded external archive. When no solution in the external archive
dominates a predefined reference point in the normalized objective
space, the ICOCO value is calculated based on the distance to the
so-called region of interest. For details of ICOCO, see [6].

We implemented all algorithms using jMetal [14]. Source codes
of all algorithms are available at https://sites.google.com/view/
nemorgecco2019/. For all five crossover methods (except for PCX),
we used the control parameters recommended in the literature
shown in Table 1. Since PCX with k = 3 performed poorly in our
preliminary study, we set k to n + 1 similar to SPX and REX. For
comparison, we evaluated the performance of the original NSGA-II,
SPEA2, SMS-EMOA, and IBEA. SBX and PM with pc = 0.9, ηc = 20,
pm = 1/n, and ηm = 20 were used in the original EMOAs. As in
[34], µ was set to ⌊100 ln(n)⌋. The number of children λ was set
to 10n. We set the λ value based on our preliminary results and
studies of GAs for single-objective optimization (e.g., [1, 2]).

4 RESULTS
This section shows analysis of the three environmental selections
(BA, BF, and BC). Since SPX is suitable for BF and BC, we mainly
discuss results of EMOAs with SPX. Although results of EMOAs
with REX are similar to those with SPX, we do not show them here
due to space constraint. As shown in Subsection 4.4, SBX, BLX, and
PCX are not suitable for BA, BF, and BC.

Subsection 4.1 shows a comparison among BA-SPX-NS, BF-SPX-
NS, BC-SPX-NS, and the original NSGA-II. Subsection 4.2 inves-
tigates why BA performs poorly. Subsection 4.3 analyzes the ad-
vantages and disadvantages of the non-elitist BC compared with
the elitist BF. Subsection 4.4 examines the performance of BA, BF,
and BC with other crossover methods (SBX, BLX, PCX, and REX).
Subsection 4.5 presents a comparison of BA, BF, and BC with other
ranking methods (SP, SM, and IB).

4.1 Comparison of BA, BF, and BC
Figure 2 shows results of the original NSGA-II, BA-SPX-NS, BF-SPX-
NS, and BC-SPX-NS on all 55 BBOB problems with n ∈ {2, 10, 40}.
Due to space constraint, results for n ∈ {3, 5, 20} are not shown,
but they are similar to results for n ∈ {2, 10}. In this section, we
use the SPX crossover and the NS ranking method. In Figure 2,
“best 2016” is a virtual algorithm portfolio that is constructed from
the performance data of 15 algorithms participating in the GECCO
BBOB 2016 workshop. Note that “best 2016” does not mean the best
optimizer among the 15 algorithms.

Figure 2 shows the bootstrapped empirical cumulative distri-
bution (ECDF) of the number of function evaluations (FEvals) di-
vided by n (FEvals/n) for 58 target ICOCO indicator values {−10−4,
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Figure 2:Results of the originalNSGA-II, BA-SPX-NS, BF-SPX-NS, andBC-SPX-NS on all 55 bi-objectiveBBOB test problemswithn ∈ {2, 10, 40}
(higher is better). For the notation X-Y-Z, see Subsection 2.3.

−10−4.2, ..., 10−0.1, 100} for all 55 BBOB problems with each n. We
used the COCO software to generate all ECDF figures in this pa-
per. In Figure 2, the vertical axis indicates the proportion of target
ICOCO indicator values which a given optimizer can reach within
specified function evaluations. For example, in Figure 2 (b), BF-SPX-
NS reaches about 40 percent of all 58 target ICOCO indicator values
within 104×n evaluations on all 55 problems with n = 10 in all runs.
If an optimizer finds all Pareto optimal solutions on all 55 problems
in all runs, the vertical value becomes 1. More detailed explanations
of the ECDF (including illustrative examples) are found in [5, 6].

Statistical significance is also tested with the rank-sum test
(p = 0.05) for a given target value using the COCO software. How-
ever, statistical test results are almost consistent with ECDF fig-
ures. Additionally, the space of this paper is limited. For these
reasons, we show only ECDF figures. The statistical test results and
other ECDF figures are available at https://sites.google.com/view/
nemorgecco2019/.

Figure 2 shows that BA-SPX-NS performs the best until 103 × n
evaluations for n = 2. However, the increase of n deteriorates the
performance of BA-SPX-NS. The evolution of BA-SPX-NS clearly
stagnates for n ≥ 10. The original NSGA-II is the best performer
in the early stage for n ≥ 10. BF-SPX-NS and BC-SPX-NS perform
better than NSGA-II and BA-SPX-NS in the later stage for all n. In-
terestingly, the non-elitist BC-SPX-NS performs the best in the later
stage for n = 40. Although it has been believed that elitist EMOAs
always outperform non-elitist EMOAs for about two decades, our
results show that the non-elitist BC-SPX-NS performs better than
the elitist NSGA-II, BA-SPX-NS, and BF-SPX-NS on the bi-objective
BBOB problems with n = 40 when using the unbounded external
archive.

Note that BC-SPX-NS is not always the best optimizer on all 55
BBOB problems with n = 40. Figure 3 shows results on f 54 and
f 55 with n = 40. While BF-SPX-NS outperforms BC-SPX-NS on
f 54, BC-SPX-NS outperforms BF-SPX-NS on f 55. Similar to Figure
3, the best optimizer is different depending on the test problem.
We attempted to clarify which problem groups BC performs the
best (e.g., BC has the best performance on multimodal problems
with weak global structure such as f 54 and f 55). Unfortunately,
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Figure 3: Results of NSGA-II, BA-SPX-NS, BF-SPX-NS, and BC-SPX-
NS on f 54 and f 55 with n = 40.

we could not find such a result. An in-depth analysis is needed to
understand on which problems BC performs well or poorly.

4.2 Why does BA perform poorly?
Here, we discuss the poor performance of BA-SPX-NS observed
in Subsection 4.1. The biased distribution of children is likely to
cause the poor performance of BA-SPX-NS. As shown in Figure 1
(d), SPX generates λ children inside a simplex formed by k parents.
If the k parents are close to each other in the solution space, their
λ children are likely to be in local area. If non-parents in the pop-
ulation are ranked worse than the children, the non-parents are
replaced with the children in BA. This means that non-parents in
not-well-explored area cannot survive to the next iteration. Thus,
BA-SPX-NS is likely to lose diversity in the solution and objective
spaces as the search progresses.

One may think that the above-mentioned issue caused by the bi-
ased distribution of children can be addressed by setting λ to a small
value. Figure 4 shows BA-SPX-NS with λ ∈ {1n, 3n, 5n, 8n, 10n} on
all 55 BBOB problems with n ∈ {10, 40}. In Figure 4, “10n” is iden-
tical to BA-SPX-NS in Figure 2. Figure 4 also shows the results of
NSGA-II, BF-SPX-NS and BC-SPX-NS derived from Figure 2. Fig-
ure 4 shows that the performance of BA-SPX-NS can be improved
by setting λ to a small value. However, BA-SPX-NS with any λ is
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Figure 4: Results of BA-SPX-NS with various λ values.

outperformed by NSGA-II, BF-SPX-NS, and BC-SPX-NS at the later
stage.

In general, a large enough number of children are necessary
to find better solutions in the current search area [1]. Thus, BA
is in a dilemma. A large λ value is helpful for BA to exploit the
current search area, but it causes premature convergence. A small
λ value can prevent BA from the premature convergence, but it is
not sufficiently large to exploit the current search area. In addition
to SPX, we observed the same issue in other crossover methods
(except for SBX).

In contrast to BA, only k parents can be replaced with children
in BF and BC. This restricted replacement in BF and BC can help
the population to maintain the diversity. Even if non-parents in
not-well-explored area are dominated by the children, the non-
parents can survive to the next iteration with no comparison. Thus,
BF and BC can address the BA’s dilemma. In fact, BF-SPX-NS and
BC-SPX-NS perform significantly better than BA-SPX-NS.

4.3 Advantages and disadvantages of BC
As shown in Subsection 4.1, the non-elitist BC performs better
than the elitist BF for n = 40. Here, we discuss the advantages and
disadvantages of BC compared with BF.

Figure 5 (a) shows raw ICOCO indicator values of the population
in BF-SPX-NS and BC-SPX-NS on f 46 with n = 40, which consists
of two rotated Rastrigin function instances. In all 55 BBOB test
problems, f 46 can be viewed as being a representative multimodal
problem. We slightly modified the COCO software to calculate the
ICOCO value of the population (not the external archive). A lower
raw ICOCO value is better. The range of the ICOCO value in Figure
5 (a) is limited to [0.1, 0.5] in order to focus on the interesting
behavior of BC-SPX-NS. Although the ICOCO value of the elitist BF-
SPX-NS almost2 monotonically decreases as the search progresses,
that of the non-elitist BC-SPX-NS is unstable. Since BC does not
maintain best-so-far non-dominated solutions in the population, its
ICOCO value sometimes deteriorates compared with the previous
iteration.

Figure 5 (b) shows the cumulative number c of parents replaced
by children. In BF-SPX-NS, the evolution of c clearly stagnates after
105 function evaluations. This result means that BF-SPX-NS rarely
generates better children than parents. In fact, the raw ICOCO value

2The monotonic improvement of the hypervolume value over time is guaranteed only
when using the unbounded external archive [25].
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Figure 5: (a) Raw ICOCO indicator values on f 46 with n = 40 (lower
is better). (b) Cumulative number of parents replaced by children.
Results of a single run are shown.

of BF-SPX-NS is not significantly improved after 105 function eval-
uations, as shown in Figure 5 (a). Since BC-SPX-NS always replaces
k parents with the best k out of λ children for every iteration, c lin-
early increases. Thus, the replacement of individuals in BC occurs
more frequently than that in BF. This property of BC is helpful for
exploration of the search space.

The above observations indicate that BC has a similar advantage
to simulated annealing [22], which can move to a worse search
point. As pointed out by Deb and Goel [12], if an elitist EMOA
prematurely converges to local Pareto optimal solutions, it is very
likely to stagnate. Unless the elitist EMOA finds better solutions
far from the current search area, it cannot escape from local Pareto
optimal solutions. In contrast, the non-elitist BC always replaces k
parents with children regardless of the quality of k parents. While
most elitist environmental selections accept only “downhill” moves
on minimization problems, the non-elitist BC can accept “uphill”
moves as in simulated annealing. The uphill moves in BC help the
population to escape from local Pareto optimal solutions on some
multimodal problems.

However, BC has at least two disadvantages compared with the
elitist BF. First, as discussed in Subsection 4.1, BC performs worse
than BF on some problems even with n = 40. Second, as reported
in Subsection 4.1, BC performs worse than BF at the early stage.
Since BC can accept “uphill” moves as in simulated annealing, the
exploitative ability of BC is worse than that of BF. A deterministic
or adaptive method of switching BC and BF may be promising to
exploit their advantages.

4.4 Which crossover methods are suitable for
the non-elitist BC?

The results in Subsection 4.1 show that BC-SPX-NS outperforms
BA-SPX-NS, BF-SPX-NS, and NSGA-II for n = 40. Here, we examine
which crossover methods are suitable for BC. We are not interested
in which crossover method is best. Even though BC-SPX-NS out-
performs BC-PCX-NS, it does not mean that SPX performs better
than PCX. It only means that SPX is more suitable for BC than PCX.

Figure 6 shows results of the three selections with SBX, BLX,
PCX, and REX on all 55 BBOB problems with n = 40. Due to
space constraint, only results for n = 40 are shown here. The NS
ranking method is used in BA, BC, and BF. Figure 6 (a) shows
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(d) REX

Figure 6: Results of BA, BF, and BC with (a) SBX, (b) BLX, (c) PCX, and (d) REX on all 55 BBOB problems with n = 40. Results of the original
NSGA-II are also shown.
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Figure 7: Results of BA, BF, and BCwith the rankingmethods in (a) SPEA2, (b) SMS-EMOA, and (c) IBEA on all 55 BBOB problems with n = 40.
Results of the original SPEA2, SMS-EMOA, and IBEA are also shown.

that BA-SBX-NS outperforms BF-SBX-NS and BC-SBX-NS. This
good performance of BA-SBX-NS is inconsistent with the results
in Subsection 4.1. Since SBX can generate children far from their
parents as shown in Figure 1, the distribution of children discussed
in Subsection 4.2 does not significantly influence the performance of
BA. However, BA-SBX-NS performs worse than NSGA-II. Figure 6
(b) and (c) show similar results. The evolution of the three selections
with BLX and PCX clearly stagnates. Figure 6 (d) shows that results
with REX are consistent with the results with SPX. BC-REX-NS
is the best optimizer at the later stage. BF-REX-NS also performs
better than NSGA-II.

In summary, SPX and REX are suitable for BC and BF, while SBX,
BLX, and PCX are not suitable for them. These results indicate that
crossover methods with the preservation of statistics are suitable
for BC (and BF). As shown in Table 1, only SPX and REX satisfy
the preservation of statistics among the five crossover methods.
The results presented in [1] show that SPX and UNDX-n (a special
version of REX) are suitable for JGG (a similar selection to BC)
in GAs for single-objective continuous optimization. Interestingly,
our results on continuous MOPs are consistent with the results on
single-objective continuous optimization problems. A similarity
analysis between single-objective optimizers and multi-objective
optimizers as in [35] may be interesting.

4.5 Comparison of BA, BF, and BC with other
ranking methods

We used the NS ranking method in Subsection 4.1. We investigate
whether similar results can be obtained when using the SP, SM, and
IB ranking methods (see Subsection 2.3).

Figure 7 shows the comparison of BA, BF, and BC with SP, SM,
and IB for n = 40. We do not show results for n ∈ {2, 3, 5, 10, 20},
but they are similar to the results in Subsection 4.1. SPX is used as
a crossover method. Figures 7 (a), (b), and (c) also show results of
the original SPEA2, SMS-EMOA, and IBEA, respectively.

Figure 7 shows that results with SP, SM, and IB are consistent
with the results with NS. BF and BC outperform the original SPEA2,
SMS-EMOA, and IBEA at the later stage. BC is the best optimizer
at the later stage. The poor performance of BA can be observed in
Figure 7. Our results show that the relative performance of BA, BF,
and BC does not significantly depend on the choice of a ranking
method.

5 CONCLUSION
We examined the effectiveness of the two elitist selections (BA and
BF) and the non-elitist selection (BC) on the bi-objective BBOB
problem suite. We used five crossover methods and four ranking
methods. For about two decades, it has been considered that elitist
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EMOAs always outperform non-elitist EMOAs. Interestingly, our re-
sults show that the non-elitist BC performs better than the two elit-
ist selections and the four original EMOAs (NSGA-II, SPEA2, SMS-
EMOA, and IBEA) on the bi-objective BBOB problems with many
decision variables when using the unbounded external archive and
a crossover method with the preservation of statistics (i.e., SPX
and REX). The choice of a ranking method does not significantly
influence the relative performance of BC. We also analyzed the
advantages and disadvantages of the non-elitist BC selection.

A number of interesting directions for future work remain. Al-
though only elitist EMOAs have been studied in the 2000s, our
results indicate that efficient non-elitist EMOAs could be realized.
Designing non-elitist versions of MO-ES [35] and MO-CMA-ES
[20] based on BC may be promising.
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