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ABSTRACT
The extraction of 3D models represented by Constructive Solid
Geometry (CSG) trees from point clouds is a common problem in
reverse engineering pipelines as used by Computer Aided Design
(CAD) tools. We propose three independent enhancements on state-
of-the-art Genetic Algorithms (GAs) for CSG tree extraction: (1)
A deterministic point cloud filtering mechanism that significantly
reduces the computational effort of objective function evaluations
without loss of geometric precision, (2) a graph-based partitioning
scheme that divides the problem domain in smaller parts that can be
solved separately and thus in parallel and (3) a 2-level improvement
procedure that combines a recursive CSG tree redundancy removal
technique with a local search heuristic, which significantly im-
proves GA running times. We show in an extensive evaluation that
our optimized GA-based approach provides faster running times
and scales better with problem size compared to state-of-the-art
GA-based approaches.

CCS CONCEPTS
•Mathematics of computing→Combinatorial optimization;
Graph algorithms; Combinatorial optimization; • Theory of
computation→Evolutionary algorithms; •Computingmethod-
ologies → Shape representations; Reconstruction; Hierarchi-
cal representations; Shape modeling;
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1 INTRODUCTION
Reverse engineering a 3D object from a set of points sampled on
the surface of the object (also called a point cloud or point-set) is
a common step in Computer Aided Design (CAD) pipelines. The
surface points are typically obtained from laser scanners, RGB-
D cameras, or techniques based on photogrammetry. In order to
be able to manipulate or edit the recovered object, it is necessary
to extract a higher-level representation of it. One expressive and
intuitive approach for representing models in solid modeling is
Constructive Solid Geometry (CSG), where complex rigid solids
are defined by a tree structure consisting of Boolean set-operations
(union, intersection, difference, complement) in the internal nodes
and simple primitives (boxes, spheres, . . . ) in the leaves.
Evolving CSG trees from a given set of primitives with the help
of a Genetic Algorithm (GA)1 such that the corresponding model
represents the input point-set as accurately as possible is the topic
of this paper. While the usage of Genetic Algorithms or Genetic
Programming (GP) for this task has already been proposed in the
past [5], computing times for sufficiently complex models (> 15
primitives) are known to be quite large (several hours). In this
work, we propose a new GA-based approach that significantly
outperforms existing GA-based approaches in terms of wall-clock
times and scalability with problem size. In particular, this paper
makes the following contributions:

• A point cloud filtering heuristic that reduces point cloud size,
accelerating objective function evaluation.

• A problem partitioning scheme that accelerates the extrac-
tion process and simplifies the final merge of partial solu-
tions.

• A 2-level improvement procedure applied to all individuals
of a population that leads to faster convergence.

• A simplified objective function (compared to [5]) with a
reduced set of model-independent, user-defined parameters
that improves CSG tree shape controllability.

The rest of the paper is structured as follows: Basics on CSG trees
are covered in Section 2. Related work on reverse engineering, point
cloud to CSG conversion and the use of evolutionary methods in
geometry processing is covered in Section 3. The description of our
1In this text, we use the term Genetic Algorithm, but since it operates on tree structures,
one could have called it Genetic Programming instead.
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approach is provided in Section 4, followed by several experiments
and their results in Section 5. Section 6 concludes this paper.

2 BACKGROUND
First, we introduce some background material on how to represent
CSG models, the primitives and operations that we support and
how they are implemented. We also briefly describe the general
point cloud to CSG model extraction pipeline, from which one step
is handled by the approach described in this work.

2.1 CSG Tree Definition: Primitive Description
and Boolean Set-Operations

CSG modeling is a technique that allows the iterative creation of
complex geometric models by starting from simple shapes and
combining them with Boolean set-operations. Thus, a CSG tree
consists of simple primitives in the leaves combined with Boolean
set-operations in the internal nodes.

Primitives. In this work, we represent primitives with implicit
surfaces. In particular, we use signed distance functions whenever
possible. For a solid S , its boundary surface ∂S is implicitly defined
by the zero-set of its corresponding distance function fS : {x ∈

R3 : fS (x) = 0}. The surface normal at point x ∈ R3 is given by
the gradient of the distance function ∇fS (x). We consider boxes,
spheres, cones and cylinders as possible primitives.

Boolean Set-Operations. Currently supported Boolean set-operations
are intersection, union, complement and subtraction. These opera-
tions are implemented using min- and max-functions [14]:

• Intersection: S1 ∩ S2 := max(fS1 , fS2 )
• Union: S1 ∪ S2 := min(fS1 , fS2 )
• Complement: S := −fS
• Subtraction: S1 \ S2 := S1 ∩ S2

where Si is the solid corresponding to the set {x ∈ R3 : fSi ≤ 0}
(i = 1, 2).

2.2 Extraction Pipeline: From Point Cloud to
CSG Tree

The problem of extracting a CSG tree from a 3D point cloud relies
on several steps:

(1) Point cloud pre-processing: Raw point cloud data is typically
obtained from laser scanners, photogrammetry or RGB-D
cameras, among others. The acquired data contains at least
point coordinates and sometimes also comes with a surface
normal at each point or even color information. If the point-
wise surface normal is not available, it has to be estimated
numerically, since it is used in the segmentation and fitting
step as well as in the CSG extraction step. Additionally, data
acquired from sensors is noisy in general and needs to be
filtered, see [9] for a survey on point cloud filtering methods.

(2) Point cloud segmentation and fitting: In this step, the input
point cloud is clustered in subsets, each corresponding to a
possible type of primitive (box, sphere, . . . ). Parameters of
the most probable primitive are fitted to the corresponding
subset. Often, variants of RANSAC [15] are used in this step.
Recently, methods leveraging large collections of data-sets

used for training deep neural networks have started to appear
in literature [12].

(3) CSG tree extraction and optimization: The final step is to
extract a CSG tree that connects the fitted primitives of the
previous step via Boolean set-operations. Additional opti-
mization techniques can be applied during the CSG tree
expression construction to simplify its structure. The ap-
proach introduced in this paper is concerned with handling
this step.

3 RELATEDWORK
While several approaches have been proposed over the years for re-
constructing a 3D object from a set of points sampled on the surface,
see for example [1] for a recent survey, we are only interested in
approaches that allow the recovery of a CSG tree of the 3D object. A
related problem is the conversion from a Boundary-Representation
(B-Rep) model to a CSG model for which we describe existing solu-
tions first.

3.1 B-Rep to CSG Conversion
Conversion from B-Rep to CSG consists in finding a CSG expression
describing the same solid as the given B-Rep model. It was first
investigated in 2D for polygons bounded by line segments, then
extended for curved polygons in [17] and [16]. Optimization of
the CSG expression and extension to 3D was discussed in [18] and
[19], then later improved in [2]. Additionally, Shapiro and Vossler
made the important remark in [19] that the boundary primitives
obtained from the B-Rep model are not sufficient to describe the
solid by CSG, and that additional separating primitives are neces-
sary. The problem of these approaches is that they rely on exact
representations, where patches form a partition of the input solid.
In practice, input point clouds are often noisy, contain holes and
thus lead to approximate representations that have negative impact
on the achievable result quality.

3.2 Point Cloud to CSG Tree
To the best of our knowledge, the first work that dealt with extract-
ing a CSG model from a point cloud was the work of Silva et al. in
[21], where strongly typed Genetic Programming was combined
with techniques to limit the size of the CSG tree. The results were
limited to very simple point clouds, yet the generated CSG trees
were quite complex. In [5], the problem of point cloud to CSG con-
version was broken down into two stages: A segmentation/fitting
procedure was performed in the first step. Fitted primitives were
then combined in a second step by Genetic Programming to evolve
a CSG tree. Results on more complicated point clouds were demon-
strated and the extracted CSG trees have reasonable sizes.
Recently, the problem of extracting a CSG model from a point cloud
has received a lot of attention [3, 20, 23]. In [20], a deep recurrent
neural network is used to learn the production of CSG expressions.
The results are limited to simple objects with small primitive-sets.
In [23], primitives are clustered in groups of intersecting primitives.
Each group contains only a few primitives and the CSG expression
is generated by brute force. The final CSG expression is obtained by
considering the union of all such CSG expressions. While providing
good results for smaller models, scaling and precision issues arise
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due to the need of a per-primitive sampling procedure for geometric
quality evaluation. Du et al. use program synthesis [11] to evolve
CSG expressions in [3]. To keep the time complexity low, they first
apply a clustering algorithm to the input point cloud.

3.3 Evolutionary Based Approaches in
Geometry Processing

Interfacing a geometric modeling kernel with Genetic Program-
ming was proposed by Hamza and Saitou in [8] to automatically
produce CSG models satisfying some constraints.
In [22], Evolutionary Algorithms are used to optimize CAD specifi-
cation trees such that they satisfy structural optimization problems.
Genetic Programming is used in [21] to produce a CSG tree from
an input point cloud. Only simple point clouds are processed while
generating complex CSG trees. The problem of point cloud to CSG
tree conversion is split into two steps: Segmentation and fitting first,
followed by Genetic Programming to combine the fitted primitives
in a CSG tree in [5], allowing to handle more complex objects. The
acceleration of the CSG tree extraction process is considered in
[7] via geometric partitioning and parallelization of the computa-
tion on the different partitions. However, the proposed partitioning
scheme is complex and does not guarantee tree size optimality after
merge.

4 CONCEPT
We assume that the input point cloud is already segmented with a
primitive fitted to each of the subsets, i.e. a primitive is assigned to
each subset and its parameters are fitted. The input to our approach
is thus a set of primitives P , where each primitive p ∈ P is a 4-tuple
(R,O,N , fS ) of geometric parameters R (e.g. center and radius of a
sphere), surface points O , surface normals N and signed distance
function fS describing the primitive as a solid. The proposed extrac-
tion pipeline that outputs a CSG tree based on such input is made
of different steps shown in Fig. 1 and described in the following
subsections.

4.1 Intersection Graph Extraction
Our point cloud selection and problem partitioning approaches
both rely on a graph called the intersection graph I = (P, E) that
has primitives P as vertices and edges E between vertices where
corresponding primitives intersect. The graph is generated based
on the primitive’s parameters. For simple shapes based on Quadrics
(e.g. cones, spheres, cuboids, cylinders, . . . ), a closed formula for
intersection detection exists. If shapes get more complex, we ap-
proximate them with triangle meshes that serve as tight hulls for
the shapes induced by the signed distance functions. In order to
improve computational efficiency, we use an axis-aligned bounding
box around the shape for early overlap testing.

4.2 Point Cloud Pre-Processing and Selection
Point cloud size has significant impact on the time needed to evalu-
ate the objective function. Our method selects only six points for
each connection between two primitives, reducing the computa-
tional complexity of an objective function evaluation to O(|E |). The
reduced point-set is still sufficient for model extraction.
In a first step, points of all primitives are pre-processed in order

to cope with noisy input data. The following processing steps are
applied:

Initial Filtering. We use the Median Absolute Deviation (MAD)
measure madi = med (| fSi (oi j ) −med(Fi )|) for the detection of
outliers in primitive point cloudsOi , where Fi is the set of distances
to the surface of primitive pi for each point in Oi and med(·) is the
median operator. A point oi j is an outlier if it is more than three
scaled MADs away from the median surface distance:

| fSi (oi j )| > 3c ·madi , (1)

where the scale factor c = −1/(
√
2 · erfcinv(3/2)) with erfcinv(·)

being the Inverse Complementary Error Function.

Surface Normal Alignment. Surface normals for each point are
required to compute the matching quality between the point cloud
and the CSG model. They are usually estimated and thus tend to
be unstable at edges and regions with low point density. Since the
primitive a point belongs to is known, we can evaluate the gradient
of the primitive’s distance function at that point to get a precise
surface normal:

ni j =

{
∇fSi (oi j ), if orientation of pi is outwards
−∇fSi (oi j ), else

, (2)

where i ∈ [1, |P |] and j ∈ [1, |Oi |]. The surface orientation (out-
wards or inwards) is estimated by counting the primitive’s original
point normals that point outwards. If the result is greater than
|Oi |/2, the primitive’s orientation is considered to be outwards and
inwards otherwise.

Point Projection. All points are relocated to their corresponding
primitive’s surface:

oi j = oi j − fSi (oi j ) · ∇fSi (oi j ) (3)
This eliminates the effects of noise in point positions and further
stabilizes the objective function evaluation.

Additional Filtering. We further increase robustness by filtering
out points that are close (in terms of a user-defined ϵ) to neigh-
boring primitives with a different surface orientation. In addition,
points that are closer to neighboring primitives than to their as-
signed primitive are removed as well.

The second step involves the point selection mechanism, which
works as follows: For each pair of primitives that share an edge in
the intersection graph, the distance of each corresponding point
to the centroid of the other primitive is computed and stored in a
sorted list (thus there is one list per primitive). Then, the points with
the maximum, the minimum and the median distance are extracted
from that list, resulting in three points per primitive and a total of
six points per primitive pair.

4.3 Partitioning
Before CSG extraction, the problem is partitioned based on the
intersection graph. The partitioning scheme works as follows: Ini-
tially, primitives from I that are not relevant for partitioning are
pruned. Then, so-called prime implicant primitives [17] are detected
and disconnected from I . Finally, all connected components of the
resulting graph with re-added pruned primitives are considered to
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Figure 1: CSG tree extraction pipeline with input (orange), two optimization steps (blue), GA (purple) and output (green).

be valid partitions of I . Our proposed scheme has the following
advantages:

• Computational complexity of the problem is significantly
reduced.

• Per-partition solutions can be computed in parallel.
• Probability to converge to a global minimum is increased for
smaller problem instances.

• Primitives in a partition are likely to be spatially close which
results in CSG trees that are more intuitively editable.

The different steps of the partitioning scheme are explained in the
following paragraphs and exemplified in Fig 2.

(a) Primitives with intersection graph. (b) Primitives to be pruned (red).

(c) Prime implicants (red) (d) Disconnected prime implicants.

(e) Connected components (yellow) (f) Partitions (brown).

Figure 2: Partitioning steps. Surface to cover in green.

Pruning. All primitives (vertices) that only have a single edge
are pruned from the intersection graph. In the example depicted in
Fig. 2(b), this is the case for primitives c, a, b and i.

Detecting Prime Implicants. Prime implicants are detected by
checking for each primitive pi ∈ P if no points of neighbor primi-
tives are inside pi and normal vectors of points of pi have the same
orientation as surface normals of pi . See Fig. 3 for an illustration.
Results of this step are shown in Fig. 2(c).

Figure 3: Primitive c is a prime implicant since there is no
point corresponding to neighbor primitives that is located
inside of c and none of the normal vectors of c’s points have
a different orientation than the surface normals of c.

Disconnecting Prime Implicants. Vertices of all found prime impli-
cants are disconnected by removing all corresponding edges from
the intersection graph (see Fig. 2(d)).

Identifying Connected Components. The connected components
of I build up the basis for the partitions (see Fig. 2(e)). Finding all
connected components in an undirected graph like I has a compu-
tational complexity of O(|P | + |E |) and can be implemented with a
breadth-first search.

Reattaching Pruned Primitives. Now that a partitioning of I exists,
the last step is to reattach vertices (primitives) that have been
pruned in the first step of the process. This results in the final
partitions (see Fig. 2(f)).

4.4 Per-Partition GA
The proposed GA extracts per-partition CSG trees by solving a
multi-objective optimization problem. It uses a similar mutation and
crossover operator and Tournament Selection for parent selection
as the GA proposed in [5]. See Fig. 4 for an overview of the whole
process with newly developed components in green. Please note
that for partitions with less than 3 primitives, the GA is replaced
with a brute force approach that tries all possible combinations.

Ranking. The fitness function that needs to be maximized has
two parts: A geometry term (Eдeo (·)) that measures how close a
CSG tree matches the point cloud and a tree size/depth penalty
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Figure 4: The GA used for extracting per-partition CSG trees
(adapted from [4]). Proposed extensions are highlighted in
green.

term that restricts the tree size and depth. The complete functional
reads

E(t) = Eдeo (t) − α ·

{
β ·

s(t)
smax

+ (1 − β) ·
d(t)
dmax

}
, (4)

where t is the tree candidate, s(·) returns the size of t , d(·) its depth.
smax and dmax are maximum size and depth of the trees in the
current population. The parameter α controls the influence of the
size penalty term and β weights tree size against tree depth, en-
abling fine-grained control of the tree’s size-to-depth ratio. Eдeo (·)
evaluates the geometrical fitness of t returning a value in the range
[0, 1] and reads

Eдeo (t) =
1

|P | |Oi |

|P |∑
i=1

|Oi |∑
j=1

{
1, if | ft (oi j )| < ϵ ∧ ∇ft (oi j ) · ni j ≥ 0
0, else

,

(5)
where ft is the semialgebraic signed distance function correspond-
ing to the CSG tree t . The geometric term checks for each point if it
is (a) on the surface induced by t and (b) if its normal has the same
orientation as that surface. The ranking implementation makes use
of a CSG tree caching mechanism. Experiments have shown that
approximately 50% of objective function evaluations can be avoided
that way.

2-Level Local Improvement. All CSG tree candidates are subjected
to a 2-level improvement mechanism before ranking. This can be
compared to a very narrow local search that is meant to impose
certain invariants on the candidates that help their overall fitness.
In contrast to general Memetic Algorithms [10, 13], e.g., the local
search uses a domain-specific deterministically generated neighbor-
hood around the respective tree candidate at stake. The introduction
of this local improvement mechanism is one of the contributions
of this paper.

The first step recursively traverses a tree and searches for redundant
structures, like:

• Operations with identical primitives as operands
• Operations with the null primitive as one or more operands.

The null primitive acts as a placeholder with which redundant struc-
tures are replaced. The procedure is repeated until the particular
tree does not contain redundant structures anymore.
The second step traverses a tree and searches for operations with
both operands being primitives. For each operator found, it checks
if the operands are connected in the intersection graph. If not, a
randomly chosen operand is replaced with a neighboring primitive.
Then, all possible operators (union, intersection, difference) are
tested and the one with the best geometry score (see Equation 5)
replaces the current one.

Termination Check. The proposed termination criterion exploits
the fact that the geometry term of the objective function evaluates
to 1 for trees that perfectly match the point cloud. As long as
the population does not contain any tree t with Eдeo (t) = 1, the
GA continues (or ends after a maximum iteration count has been
reached). If a tree in the population has a perfect geometry score,
an iteration counter is started. After a certain amount of additional
iterations (we empirically found out that 8 · |E | is a sufficient upper
bound), the GA is terminated.
The idea behind the stop criterion is that once a tree that perfectly
matches the input point cloud has been found, the GA should try
to find a minimal tree in terms of size and depth.
In [5], the geometry term is not normalized hence its maximum
is not known in advance. Thus, the GA is terminated if a user-
controlled maximum number of iterations has been reached, which
makes it harder to aim for a geometrically perfect representation.

Pareto Optimal Tree Selection. In each GA iteration, we search
and store the pareto optimal tree of all trees and populations ranked
so far. After termination, this tree is taken as the resulting tree.
In [5], best tree selection is solely based on its objective function
value. This might result in the selection of geometrically suboptimal
results due to the size penalty included in the objective function.

4.5 Merging
Due to the merge-friendly nature of the employed partitioning
scheme, the final CSG tree is just the union of all per-partition trees.
The merging step is simple and does not worsen the size-optimality
of the final CSG tree obtained after merging since it does not depend
on a correct detection of similar subtree structures like [7] does.

5 EVALUATION
We evaluated our CSG tree recovery approach in different scenarios
(with and without partitioning, with and without local improve-
ment, . . . ) on eight point clouds that represent both common and
edge cases. See Fig. 11 for renderings of the used models and Fig. 5
for a resulting CSG tree for model M0. Each scenario was evalu-
ated three times in order to get an adequate understanding of the
result variance for identically parametrized runs. The details of
used data-sets are depicted in Table 1. GA parameters that were
used throughout the experiments are summarized in Table 2. All
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Figure 5: Resulting CSG tree for modelM0.

M0 M1 M2 M3
# Primitives 9 5 7 4
# Points 25k 18.9k 26.3k 25.9k
# Partitions 1 1 1 1

M4 M5 M6 M7
# Primitives 38 40 37 86
# Points 10.8k 105.1k 111.7k 190.5k
# Partitions 1 16 13 8

Table 1: Details for the different input point clouds used in
the evaluation. "# Points" corresponds to the total number of
points in the input point clouds. "# Primitives" corresponds
to the total number of primitives used for the description of
the object. "# Partitions" corresponds to the number of parti-
tions computed by the partitioning scheme (see Section 4.3).

Parameter Name Value
Population size 150
# Best parents 2
Crossover probability 0.4
Mutation probability 0.3
Subtree replacement probability 0.5
Tournament selection parameter 2
Tree size weight α 1.0
Tree size/depth weight β 0.7

Table 2: GA parameters used for all conducted experiments.

experiments were conducted on a virtual machine with 8 GB of
RAM and 32 assigned 2.2GHz Xeon cores.

5.1 2-Level Local Improvement
We evaluated our approach on all data-sets in different improve-
ment scenarios: (1) No improvement, (2) using both improvement

steps, (3) using only the second improvement step. Refer to Sec-
tion 4.4 for a description of both steps. For this experiment, all
runs were stopped if the current population contained a tree with
Eдeo (tbest) = 1.0. Furthermore, the partitioning scheme was dis-
abled such that the GA is applied to the full problem instance instead
of running multiple GAs in parallel, one for each detected partition.
The results (number of iterations and time taken until Eдeo (tbest) =
1.0) are illustrated in Fig. 6 and Fig. 7. We can observe that using an
improvement strategy is always preferable to not using any (both in
terms of number of iterations and running times). The only excep-
tion is objectM5, where applying the complete 2-level improvement
strategy gives worse results than using none at all. Interestingly,
we can also observe that on the simpler models (M0,M1,M2,M3)
the 2-level improvement strategy almost always provides better
results than using the second improvement step only (exception:
M3). However, on the more complex objects (M4,M5,M6,M7), us-
ing only the second improvement step is preferable to using both
steps in most cases (exception:M4).
This seems to suggest that the first improvement step might not
be beneficial for the extraction of complex objects. This effect can
be explained by investigating the evolution of geometry score and
best tree size over executed iterations as shown in Fig. 8 for model
M5: With the first improvement step enabled, redundant structures
are removed too aggressively which results in significantly smaller
tree sizes. This hinders the GA to keep a sufficient level of diversity
in the population. While showing a higher convergence rate in
the beginning, the 2-level improvement strategy results in a slow
convergence mostly in the missing last 1%. Using only the second
improvement step outperforms the baseline (without improvement)
since redundancies are preserved, which keeps population diversity
on a sufficiently high level (visible in the larger tree sizes compared
to full 2-level improvement). Additionally, the best primitive selec-
tion performed by the second improvement step leads to a higher
convergence rate while its computational effort is neglectable.

Figure 6: Number of iterations needed to reach Eдeo (tbest) =
1.0.

5.2 Point Selection
We measured the running times with and without enabled point
selection for all data-sets together with second step only improve-
ment. For better comparability, only the first 200 iterations of each
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Figure 7: Time needed to reach Eдeo (tbest) = 1.0. Red bars
indicate the time spent in the improvement steps.

Figure 8: Geometry scores and tree sizes for model M5 and
all iterations until Eдeo (tbest) = 1.0. Standard deviation in
semi-transparent colors.

run were considered (for modelsM1 andM3, 75 and 66 iterations
are considered since this is the maximum number of iterations
reached in our experiments). Fig. 9 shows the results, whereas Ta-
ble 3 depicts the sizes of the selected point-sets. It is clearly visible
that point selection improves performance on the tested models
significantly by at least a factor of 1.34 (model M4). As expected,
the models with the largest corresponding point- and primitive-
sets (M5,M6,M7) profit the most from point selection (factors:
19.39, 16.26 and 19.07). M4 profits the least, which is mainly due

to the comparably low ratio between original point-set size and se-
lected point-set size, which is only 58.06. Together with the impact
of parallel tree ranking that is enabled throughout all benchmarks,
this results in a rather insignificant positive effect of point selection
in this particular case.

M0 M1 M2 M3
# Selected Points 96 48 114 36
Reduction Ratio 260.42 393.75 230.7 719.44

M4 M5 M6 M7
# Selected Points 186 432 564 780
Reduction Ratio 58.06 243.29 198.05 244.23

Table 3: Number of selected points for all models and the
reduction ratio #Points

#Selected Points .

Figure 9: Running times for all models for the first 200 iter-
ations with and without point selection (for modelsM1 and
M3, 75 and 66 iterations were considered).

5.3 Partitioning
The effects of partitioning were evaluated using all models with
more than a single partition (M5, M6, M7). These results are ob-
tained with both improvement steps enabled as well as with only
the second improvement step enabled. In addition, we also compare
single-threaded per-partition GA execution with a multi-threaded
variant that spawns a thread for each partition. Please note that
wall-clock times for the partitioning itself (connection graph com-
putation, pruning and prime implicant detection) are not considered
since they are in all cases negligible.
The results are presented in Fig. 10. The positive effect of partition-
ing on computation times is significant and ranges from a speed-up
factor of 3.46 (M7, second improvement step only, single-threaded)
to 32.85 (M5, second improvement step only, per-partition paral-
lelism). The inter-model difference in speed-up factors is due to the
different numbers of partitions (8 for M7, 16 for M5) and model
complexities (M7:86 primitives,M5:40 primitives). Another advan-
tage of the partitioning approach lies in the reduced running time
variance most visible for modelM6.
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An important aspect is the comparison of the two different im-
provement modes. The results provided in Section 5.1 indicate that
applying the full 2-level improvement strategy is beneficial for most
of the smaller models. Since partitioning leads to smaller partial
models, it is expected that it performs better than second step only
improvement. This is true for model M6 and M7 but not for M5.
As part of our future work, we plan to investigate the influence of
the model topology (as indicated by the intersection graph) on the
performance of the two considered improvement modes.

Figure 10: Running times for all modelsM5,M6 andM7with
and without partitioning for different improvement modes.

6 CONCLUSION & FUTUREWORK
We presented a new GA-based CSG tree extraction scheme that
comprises of three major optimization mechanisms: A point selec-
tion technique that significantly reduces objective function eval-
uation effort, a merge-friendly partitioning scheme that divides
the problem into smaller, simpler to solve problems and a 2-level
improvement approach applied to all trees of a population in each
iteration which further improves running times.
For future work, we would like to investigate the potential of struc-
tural pattern detection. The idea is that the CSG tree for similar
structures should be extracted only once. In addition, a primitive
detection and fitting pipeline could increase the usability of our
system significantly.
Another interesting research direction yet to be explored is the use
of alternative metaheuristics for solving the CSG tree extraction
and optimization problem. Of particular interest for us are methods
that rely at least partially on formulations suitable for the execu-
tion on Quantum Annealing (QA) hardware as proposed in [6]. An
interesting research question is to what extent the problem can be
transformed into a suitable formulation and what parts of it remain
to be solved by classic algorithms. We believe that the potential of
such hybrid quantum algorithms for our problem domain is worth
exploring more thoroughly.
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