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ABSTRACT
We contribute to the theoretical understanding of randomized
search heuristics for dynamic problems. We consider the classi-
cal graph coloring problem and investigate the dynamic setting
where edges are added to the current graph. We then analyze the
expected time for randomized search heuristics to recompute high
quality solutions. This includes the (1+1) EA and RLS in a setting
where the number of colors is bounded and we are minimizing the
number of conflicts as well as iterated local search algorithms that
use an unbounded color palette and aim to use the smallest colors
and – as a consequence – the smallest number of colors.

We identify classes of bipartite graphs where reoptimization
is as hard as or even harder than optimization from scratch, i. e.
starting with a random initialization. Even adding a single edge
can lead to hard symmetry problems. However, graph classes that
are hard for one algorithm turn out to be easy for others. In most
cases our bounds show that reoptimization is faster than optimizing
from scratch. Furthermore, we show how to speed up computations
by using problem specific operators concentrating on parts of the
graph where changes have occurred.

CCS CONCEPTS
• Theory of computation → Theory of randomized search
heuristics;

KEYWORDS
Evolutionary algorithms, dynamic optimization, running time anal-
ysis, theory.
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1 INTRODUCTION
Evolutionary algorithms and other bio-inspired computing tech-
niques have been used for a wide range of complex optimization
problems [1, 7]. They are easy to apply to a newly given problem
and are able to adapt to changing environments. This makes them
well suited for dealing with dynamic problems where components
of the given problem change over time [22].

We contribute to the theoretical understanding of evolutionary
algorithms in dynamically changing environments. Providing a
sound theoretical basis on the behaviour of these algorithms in
changing environments helps to develop better performing algo-
rithms through a deeper understanding of their working principles.

Dynamic problems have been studied in the area of runtime
analysis for simple algorithms such as randomized local search
(RLS) and the classical (1+1) EA. An overview on rigorous runtime
results for bio-inspired computing techniques in stochastic and
dynamic environments can be found in [26]. Early work focused
on artificial problems like a dynamic OneMax problem [9], the
function Balance [23] where rapid changes can be beneficial, the
function MAZE that features an oscillating behavior [15] and prob-
lems involving moving Hamming balls [6].

In terms of classical combinatorial optimization problems, promi-
nent problems such as single-source-shortest-paths [16], makespan
scheduling [18], and the vertex cover problem [19, 20, 27] have
been investigated in a dynamic setting. Furthermore, the behaviour
of evolutionary algorithms on linear functions with dynamic con-
straints has been analyzed in [28] and experimental investigations
for the knapsack problem with a dynamically changing constraint
bound have been carried out in [24]. These studies have been ex-
tended in [25] to a broad class of problems and the performance
of an evolutionary multi-objective algorithm has been analyzed in
terms of its approximation behaviour dependent on the submodu-
larity ratio of the considered problem.

We consider graph coloring, a classical NP-hard optimization
problem. In the context of problem specific algorithms, algorithms
have been designed to update solutions after a dynamic change has
happened. Dynamic algorithms have been proposed to maintain
proper coloring for graphs with maximum degree at most ∆1, with
the goal of using as few colors as possible while keeping the (amor-
tized) update time small [4, 5]. There exist algorithms that aim to
perform as few (amortized) vertex recolorings as possible in order to

1In such graphs, there always exist a proper (∆ + 1)-vertex coloring. Furthermore,
such a proper coloring can be found in linear time.
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maintain a proper coloring in a dynamic graph [3, 29]. There have
also been studies of k-list coloring in a dynamic graph such that
each update corresponds to adding one vertex (together with the
incident edges) to the graph (e.g. [11]). The related problem of main-
taining a coloring with minimal total colors in a temporal graph
has recently been studied [17]. From a practical perspective, incre-
mental algorithms or heuristics have been proposed that update
the graph coloring by exploring a small number of vertices [21, 32].

Graph coloring has been studied for specific local search and
evolutionary algorithms in [10, 30, 31]. Fischer and Wegener [10]
studied a problem inspired by the Ising model in physics that on
bipartite graphs is equivalent to the vertex coloring problem. They
showed that on cycle graphs the (1+1) EA and RLS find optimal
colorings in expected time O(n3). This bound is tight under a sen-
sible assumption. They also showed that crossover can speed up
the optimization time by a factor of n. Sudholt [30] showed that
on complete binary trees the (1+1) EA needs exponential expected
time, whereas a Genetic Algorithm with crossover and fitness shar-
ing finds a global optimum in O(n3) expected time. Sudholt and
Zarges [31] considered a different representation with unbounded-
size palettes, where the goal is to use small color values as much as
possible. They considered iterated local search (ILS) algorithms with
operators based on so-called Kempe chains that are able to recolor
large connected parts of the graph, while maintaining feasibility.
This approach was shown to be efficient on paths and for coloring
planar graphs of bounded degree (∆ ≤ 6)with 5 colors. The authors
also gave a worst-case graph, a tree, where Kempe chains fail, but a
new operator called color elimination that performs Kempe chains
in parallel, succeeds in 2-coloring all bipartite graphs efficiently.
Table 1 (top row) gives an overview over previous results.

We revisit these algorithms and graph classes for a dynamic
version of the graph coloring problem. We assume that the graph
is altered by adding T edges to it. This may create new conflicts
that need to be resolved. Note that deleting edges from the graph
can never worsen the current coloring, hence we focus on adding
edges only2. Our goal is to estimate the expected reoptimization
time, that is, the time to rediscover a proper coloring after T edges
have been added, and how this time depends on T and the size of
the graph, n. Our results are summarized in Table 1 (center row).

We start by considering bipartite graphs in Section 3. We find
that even adding a single edge can create a hard symmetry problem
for RLS and the (1+1) EA: expected reoptimization times for paths
and binary trees are as bad as, or even slightly worse, than the
corresponding bounds for optimizing from scratch. In contrast, ILS
with Kempe chains or color elimination reoptimizes these instances
efficiently. While ILS with color eliminations reoptimizes every
bipartite graph in expected time O(

√
Tn logn) or better, ILS with

Kempe chains needs expected time Θ(2n/2) even when connecting
a tree with an isolated edge. This instance is easy for all other
algorithms as they all have reoptimization timeO(n log+T ) (where
log+T = max{1, logT } is used to avoid expressions involving a
factor of logT becoming 0 when T = 1).

2In general, the chromatic number of a graph can decrease when removing edges. We
focus on graphs that can be colored with 2 or 5 colors, respectively. For 2-colorable
graphs the chromatic number can only decrease if the graph becomes empty. For our
results on 5-coloring graphs the real chromatic number will be irrelevant.

In Section 4 we show that ILS with either operator is also able to
efficiently rediscover a 5-coloring for planar graphs with maximum
degree ∆ ≤ 6 in expected time O(n log+T ).

Finally, in Section 5 we design mutation operators that focus
on the areas in the graph where a dynamic change has happened.
We show that such conflict-aware approaches can reoptimize most
graph classes in time O(1) after inserting one edge, however they
cannot prevent exponential times in cases where the algorithm is
inefficient. All our results are shown in Table 1 (bottom row).

2 PRELIMINARIES
Let G = (V ,E) denote an undirected graph with vertices V and
edges E. We denote by n := |V | the number of vertices in G. A
vertex coloring of G is an assignment c : V → {1, . . . ,n} of color
values to the vertices ofG . Let deg(v) be the degree of a vertexv and
c(v) be its color in the current coloring. Every edge (u,v) ∈ E where
c(v) = c(u) is called a conflict. A color is called free for a vertex
v ∈ V if it is not assigned to any neighbor of v . The chromatic
number χ (G) is the minimum number of colors that allows for
a conflict-free coloring. A coloring is called proper is there is no
conflicting edge.

2.1 Algorithms with Bounded-Size Palette
In this representation, the total number of colors is fixed, i.e., the
color palette has fixed size k ≤ n. The search space is {1, . . . ,k}n
and the objective function is to minimize the number of conflicts.

We assume that in the static setting all algorithms are initialized
uniformly at random. In a dynamic setting we assume that a proper
k-coloringx has been found. Then the graph is changed dynamically
and x becomes an initial solution for the considered algorithms.

We define the dynamic (1+1) EA for this space as follows. Assume
that the current solution is x . We consider all algorithms as infinite
processes as we are mainly interested in the expected number of
iterations until good solutions are found or rediscovered.

Algorithm 1 (1+1) EA (x )

1: while optimum not found do
2: Generate y by deciding to mutate each component xi with

probability 1/n: if yes, choose a new value yi ∈ {1, . . . ,k} \
{xi } uniformly at random.

3: If y has no more conflicts than x , let x := y.

We also define randomized local search (RLS) as a variant of the
(1+1) EA where exactly one component is mutated.

Algorithm 2 RLS (x )

1: while optimum not found do
2: Generate y by choosing an index i ∈ {1, . . . ,n} uniformly

at random, choosing a new value yi ∈ {1, . . . ,k} \ {xi }
uniformly at random and setting yj = x j for all j , i .

3: If y has no more conflicts than x , let x := y.
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Bounded-size palette Unbounded-size palette: ILS with. . .
Setting Graph class (1+1) EA RLS Kempe Chains Color Eliminations

Static

paths O(n3) [10] O(n3) [10] O(n) [31] O(n logn) [Thm 3.5]
binary trees exp(Ω(n)) [30] ∞ O(n logn) [Thm 3.3] O(n logn) [Thm 3.3]
depth-2 star O(n logn) [Thm 3.8] O(n logn) [Thm 3.8] exp(Ω(n)) [31] O(n2 logn) [31]
any bipartite exp(Ω(n)) [30] ∞ exp(Ω(n)) [31] O(n2 logn) [31]
planar, ∆ ≤ 6 O(n logn) [31] O(n logn) [Thm 4.1]

Adding T edges
(conflict-unaware
algorithms)

paths Θ(n3) [Thm 3.1] Θ(n3) [Thm 3.1] O(n) [31] O(n log+T ) [Thm 3.5]

binary trees Ω(n(n−3)/4) [Thm 3.2] ∞ O(n logn) [Thm 3.3] O(n logn) [Thm 3.4]

depth-2 star O(n log+T ) [Thm 3.8] O(n log+T ) [Thm 3.8] Θ(2n/2) [Thm 3.6] O(n log+T ) [Thm 3.7]

any bipartite Ω(n(n−3)/4) [Thm 3.2] ∞ Ω(2n/2) [Thm 3.6] O(min{
√
T , Γ}n logn) [Thm 3.4]

planar, ∆ ≤ 6 O(n log+T ) [Thm 4.1] O(n log+T ) [Thm 4.1]

Adding one edge
(conflict-aware
algorithms)

paths Θ(n2) [Thm 5.1] Θ(n2) [Thm 5.1] O(1) [Thm 5.2] O(1) [Thm 5.3]

binary trees Ω(n(n−7)/4) [Thm 5.6] ∞ O(1) [Thm 5.2] O(1) [Thm 5.3]

depth-2 star O(1) [Thm 5.5] O(1) [Thm 5.5] Θ(2n/2) [Thm 5.7] O(1) [Thm 5.3]

any bipartite Ω(n(n−7)/4) [Thm 5.6] ∞ Ω(2n/2) [Thm 5.7] O(1) [Thm 5.3]
planar, ∆ ≤ 6 O(1) [Thm 5.4] O(1) [Thm 5.4]

Table 1: Worst-case expected times for (re-)discovering proper 2-colorings for bipartite graphs and proper 5-colorings for
planar graphs in different settings. We use the notation log+T = max{1, logT }.

2.2 Algorithms with Unbounded-Size Palette
In this representation, the color palette size is sufficiently large (say
has size n). Our goal is to maintain a proper vertex coloring (i.e.,
without any conflicting edge) such that the color-occurrence vector
is as close to optimum as possible (see Definition 2.1 from [31]).

Definition 2.1. [[31]] For x ,y we say that x is better than y and
write x ⪰ y iff

• x has fewer conflicting edges than y or
• x and y have an equal number of conflicting edges and their
color frequencies are lexicographically ordered as follows.
Let ni (x) be the number of i-colored vertices in x , then
ni (x) < ni (y) for the largest index i with ni (x) , ni (y).

As remarked in [31], decreasing the number of vertices with the
currently highest color (and not introducing yet a higher color)
yields an improvement. If this number decreases to 0, the number
of colors has decreased.

Grundy local search. We use the same local search operator as
in [31] called Grundy local search (Algorithm 3). A vertex v is
called a Grundy vertex if v has the smallest color value not taken
by any of its neighbors, formally c(v) = min{i ∈ {1, . . . ,n} |

∀w ∈ N(v) : c(w) , i}, whereN(v) denotes the neighborhood ofv .
A coloring is called a Grundy coloring if all vertices are Grundy
vertices [33]. Note that a Grundy coloring is always proper.

Algorithm 3 Grundy local search [12]

1: while the current coloring is not a Grundy coloring do
2: Choose a non-Grundy vertex v .
3: Set c(v) := min{i ∈ {1, . . . ,n} | ∀w ∈ N(v) : c(w) , i}.

The analysis in [12] reveals that one step of the Grundy local
search can only increase the color of a vertex if there is a conflict;

otherwise the color of vertices can only decrease. Sudholt and
Zarges [31] point out that the application of Grundy local search
can never worsen a coloring. If y is the outcome of Grundy local
search applied to x then y ⪰ x . If x contains a non-Grundy node
then y is strictly better, i. e., y ⪰ x and x ⪰̸ y.

We also introduce the Grundy number Γ(G) of a graph G (also
called first-fit chromatic number [2]) as the maximum number of
colors used in any Grundy coloring. Every application of Grundy
local search produces a proper coloring with color values at most Γ.

We consider the Kempe chain mutation operator defined in [31],
which is based on so-called Kempe chain [13] moves. This mutation
exchanges two colors in a connected subgraph. By Hi j we denote
the set of all vertices colored i or j inG . ThenHj (v) is the connected
component of the subgraph induced by Hc(v)j that contains v .

Algorithm 4 Kempe chain [31]

1: Choose v ∈ V and j ∈ {1, . . . , deg(v)+ 1} uniformly at random.
2: Let i := c(v)
3: for all u ∈ Hj (v) do
4: if c(u) = i then c(u) := j else c(u) := i .

The Kempe chain operator (Algorithm 4) is applied to a vertex
v and it exchanges the color of v (say i) with a color j. We restrict
the choice of j to the set {1, . . . , deg(v) + 1} since larger colors will
be replaced in the following Grundy local search. In the connected
component Hj (v) the colors i and j of all vertices are exchanged.
As no conflict within Hj (v) is created and Hj (v) is not neighbored
to any vertex colored i or j, Kempe chains preserve feasibility.

An important point to note is that, when the current largest
color is cmax, Kempe chains are often most usefully applied to the
neighborhood of a cmax-colored vertex v . This can lead to a color
in v’s neighborhood becoming a free color, and then the following
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Grundy local search will decrease the color of v . In contrast, ap-
plying a Kempe chain to v directly will spread color cmax to other
parts of the graph, which might not be helpful.

Sudholt and Zarges [31] introduced a mutation operator called a
color elimination (Algorithm 5): it tries to eliminate a smaller color i
in the neighborhood of a vertex v in one shot by trying to recolor
all these vertices with another color j using parallel Kempe chains.

Algorithm 5 Color elimination [31]
1: Choose v ∈ V uniformly at random.
2: if c(v) ≥ 3 then
3: Choose i, j ∈ {1, . . . , c(v) − 1}, i , j , uniformly at random.
4: Let v1, . . . ,vℓ enumerate all i-colored neighbors of v .
5: for all u ∈ Hj (v1) ∪ · · · ∪ Hj (vℓ) do
6: if c(u) = i then c(u) := j else c(u) := i .

Iterated local search (ILS, Algorithm 6) repeatedly uses mutation
followed by Grundy local search. The mutation operator is not
specified yet, but regarded as a black box. In the initialization every
vertex v receives a uniform random color from {1, . . . , deg(v) + 1}.

Algorithm 6 Iterated local search (ILS) (x )
1: Replace x by the result of Grundy local search applied to x .
2: repeat forever
3: Let y be the result of a mutation operator applied to x .
4: Let z be the outcome of Grundy Local Search applied to y.
5: If z ⪰ x then x := z.

2.3 Reoptimization Times
We consider the batch-update model for dynamic graph coloring.
That is, given a graph G ′ = (V ,E ′) and its proper coloring, we
would like to find a proper coloring ofG = (V ,E) which is obtained
after a batch of T edge insertions to G ′. We are interested in the
reoptimization time, i.e., the number of iterations it takes to find a
proper coloring of the current graph G, given a proper coloring of
G ′. How does the expected reoptimization time depend on n andT ?
More precisely, we consider the worst case reoptimization time to
be the reoptimization time when considering the worst possible
way of inserting T edges into the graph.

Note that a bound for the reoptimization time can also yield a
bound on the optimization time in the static setting for a graph
G = (V ,E). This is because the static setting can be considered as a
dynamic setting where we start with n isolated vertices and then
add all T = |E | edges to the graph. The only small difference is that
with unbounded-size palettes, all vertices will have the smallest
color 1 when edges are inserted. In cases where we derive static
time bounds from dynamic ones, this difference is irrelevant.

3 REOPTIMIZATION TIMES ON BIPARTITE
GRAPHS

We start off by considering bipartite graphs, i. e. 2-colorable graphs.
For the bounded-size palette, we assume that only 2 colors are being
used, i. e. k = 2. We also consider unbounded-size palettes where
the aim is to eliminate all colors larger than 2 from the graph.

3.1 Paths and Binary Trees
We first show that even adding a single edge can result in difficult
symmetry problems. This can happen if two subgraphs are con-
nected by a new edge, and then the coloring in one subgraph has to
be inverted to find the optimum. Two examples for this are paths
and binary trees.

Theorem 3.1. If adding an edge completes an n-vertex path, the
worst-case expected time for the (1+1) EA and RLS to rediscover a
proper 2-coloring is Θ(n3).

Proof. The claim essentially follows from to the proofs of The-
orems 3 and 5 in [10] where the authors investigate an equivalent
problem on cycle graphs. Hence, we just sketch the idea here. Imag-
ine we link two properly colored paths of length n/2 each with an
edge (u,v)which introduces a single conflict. The conflict splits the
path into two paths that are properly colored and joined by a con-
flicting edge. Consider the length of the shortest properly colored
path. As argued in [10], both RLS and (1+1) EA can either increase
or decrease this length in fitness-neutral operations like recoloring
one of the vertices involved in the conflict. If it has decreased to 1,
the conflict has been propagated down to a leaf node where a single
bit flip can get rid of it. Fischer and Wegener calculate bounds for
the expected number of steps until this number reaches its min-
imum 1. This is achieved by estimating the number of so-called
relevant steps, which either increase or decrease the length of the
shortest properly colored path. The probability for a relevant step
is Θ(1/n). The expected number of relevant steps is Θ(n2) since
we have a fair random walk on states up to n/2. In summary, this
results in a runtime bound of Θ(n3). □

Theorem 3.2. If adding an edge completes an n-vertex complete
binary tree, the worst-case expected time for the (1+1) EA to rediscover
a proper 2-coloring is Ω

(
n(n−3)/4

)
. RLS is unable to rediscover a proper

2-coloring in the worst case.

Proof. The proof follows arguments from [30]. Let e = {r ,v}
be the added edge with r being the root of the n-vertex complete
binary tree. If c(r ) , c(v) we are done and the coloring is already
a proper 2-coloring. Hence, we assume that c(r ) = c(v) and there
is exactly one conflict. This situation is a worst-case situation in
vertex-coloring of complete binary trees, since many vertices must
be recolored in the same mutation to produce an accepted candidate
solution. LetW be the set of all worst-case colorings (there are
exactly 4 such colorings). Further, let A1 be the set of colorings
having exactly one conflict and A0 be the set of proper colorings.
Note that |A0 | = O(1) and |A1 | = O(n) since there are

(n−1
1

)
= n− 1

edges whose incident edges may be in conflict and there are exactly
two possible conflicting color assignments for the incident nodes.
Thus, there are only O(n) search points which may be accepted
if we start with x ∈ W as in the given dynamic scenario. The
Hamming distance from a worst-case coloring to another coloring
in (A1∪A0)\W is at least (n+1)/4 (we need to recolor a whole sub-
tree with root v). We use this fact to upper bound the probability
of the (1+1) EA to leaveW byO

(
n−(n+1)/4+1

)
. Hence, the expected

number of mutations is at least Ω
(
n(n−3)/4

)
.

It is obvious from the above that RLS is unable to leaveW . □
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In the above two examples, the reoptimization time is at least as
large as the optimization time from scratch. In fact, our dynamic
setting even allows us to create a worst-case initial coloring that
might not typically occur with random initialization. Theorem 3.1
gives a rigorous lower bound of order n3 as after adding an edge
connecting two paths of n/2 vertices each, we start the last “fitness
level” with a worst-case initial setup. Fischer and Wegener [10]
were only able to show a lower bound under additional assumptions.
Also in [30] the probability of reaching the worst-case situation
described in Theorem 3.2 was very crudely bounded from below
by Ω(2−n ). Our lower bounds for dynamic settings are hence a bit
tighter and/or more rigorous than those for the static setting.

The reason for the large reoptimization times in the above cases
is because for the (1+1) EA and RLS mutations occur locally, and
they struggle in solving symmetry problems where large parts
of the graph need to be recolored. Mutation operators in ILS like
Kempe chains and color eliminations operate more globally, and
can easily deal with the above settings.

Theorem 3.3. Consider a dynamic graph that is a path or a binary
tree after a batch of T edge insertions. The expected time for ILS with
Kempe chains to rediscover a proper 2-coloring on paths is O(n).

On binary trees, the expected time for ILS with either Kempe chains
or color eliminations to rediscover a proper 2-coloring or to find a
proper 2-coloring in the static setting is O(n logn).

Proof. The statement about paths follows from [31, Theorem 1]
as the expected time to 2-color a path is O(n) in the static setting.
(It is easy to see that the proof holds for arbitrary initial colorings.)

The Grundy number of binary trees is at most Γ ≤ ∆+ 1 ≤ 4. By
design of our selection operator, the number of 4-colored vertices is
non-increasing over time. For every 4-colored vertex v there must
be a Kempe chain operation recoloring a neighboring vertex whose
color only appears once in the neighborhood of v . If there are i
4-colored vertices, the probability of reducing this number is Ω(i/n)
and the expected time for color 4 to disappear is O(n) ·

∑n
i=1 1/i =

O(n logn). Afterwards, the same arguments apply to the number
of 3-colored vertices, leading to another O(n logn) term. □

3.2 Results for General Bipartite Graphs
Sudholt and Zarges [31] showed that ILS with color eliminations
can color every bipartite graph efficiently, in expected O(n2 logn)
iterations [31, Theorem 3]. The main idea behind this analysis was
to show that the algorithm can eliminate the highest color from
the graph by applying color eliminations to all such vertices. The
expected time to eliminate the highest color is O(n logn), and we
only have to eliminate at mostO(n) colors. In fact, the last argument
can be improved by considering that in every Grundy coloring of
a graph G the largest color is at most Γ(G). This yields an upper
bound of O(Γ(G)n logn) for both static and dynamic settings.

The following result gives an additional bound of O(
√
Tn logn),

showing that the number T of added edges can have a sublinear
impact on the expected reoptimization time.

Theorem 3.4. Consider a dynamic graph that is bipartite after
a batch of T edge insertions. Let Γ be the Grundy number of the
resulting graph. Then ILS with color eliminations re-discovers a proper
2-coloring in expected O(min{

√
T , Γ}n logn) iterations.

If only one conflicting edge is added, the expected time is Θ(n).

Proof. Consider the connected components of the original graph.
If an edge is added that runs within one connected component, it
cannot create a conflict. This is because the connected component
is properly 2-colored, with all vertices of the same color belonging
to the same set of the bipartition. Since the graph is bipartite after
edge insertions, the new edge must connect two vertices of different
colors. Hence added edges can only create a conflict if they connect
two different connected components that are colored inversely to
each other.

Consider the subgraph induced by the added edges that are
conflicting, and pick a connected component C in this subgraph.
Note that all vertices in C have the same color c ∈ {1, 2} be-
fore Grundy local search is applied. Now Grundy local search
will fix these conflicts by increasing the colors of vertices in C .
We bound the value of the largest color cmax used. For Grundy
local search to assign a color cmax to a vertex v ∈ C , all colors
1, . . . , cmax − 1 must occur in the neighborhood of v in the new
graph. In particular, C must contain vertices v3,v4, . . . ,vcmax−1 re-
spectively colored 3, . . . , cmax − 1 that are neighbored to v . This
implies that cmax − 3 edges incident to v , connecting v to a smaller
color, must have been added during the dynamic change. Applying
the same argument to v3,v4, . . . ,vcmax−1 yields that there must be
at least

∑cmax−3
j=1 j = (cmax−3)(cmax−2)/2 inserted edges inC . Thus

(cmax − 3)(cmax − 2)/2 ≤ T , which implies (cmax − 3)2 ≤ 2T ⇐⇒

cmax ≤
√
2T +3. Also cmax ≤ Γ by definition of the Grundy number.

Now we can argue as in [31, Theorem 3]: the largest color can
be eliminated from any bipartite graph in expected time O(n logn).
(Note that these color eliminations can increase the number of
vertices colored with large colors, so long as the number of the
vertices with the largest color decreases.) Since at most cmax − 2
colors have to be eliminated, a bound of O(cmaxn logn) follows.
Plugging in cmax = O(min{

√
T , Γ}) completes the proof.

Finally, if only one conflicting edge is inserted (T = 1) then there
will be one 3-colored vertex v after Grundy local search, and a
proper 2-coloring is obtained by applying a color elimination to v .
The expected waiting time for choosing vertex v is Θ(n). □

In the case of graphs with Grundy number Γ ≤ 3, the factor of
logn can be replaced by log+T . The considered graph class includes
graphs of maximum degree ∆ ≤ 2 (e. g. paths and cycles).

Theorem 3.5. Consider a dynamic graph that is bipartite and has
maximum degree ∆ ≤ 2 or Grundy number Γ ≤ 3 after a batch of T
edge insertions. Then ILS with color eliminations rediscovers a proper
2-coloring in expected time O(n log+T ).

Proof. Note that ∆ ≤ 2 implies Γ ≤ ∆ + 1 ≤ 3. By definition
of Γ, after Grundy local search the largest possible color is 3. Every
added edge leads to at most one conflict, and each conflict leads to
at most one vertex being colored 3 in the Grundy local search.

Following [31, Theorem 3], while there are i vertices colored 3, a
color elimination choosing such a vertex will lead to a smaller free
color, reducing the number of 3-colored vertices. The expected time
for this to happen is at most n/i , hence the total expected time to
eliminate all color-3 vertices is at most

∑T
i=1 n/i = O(n log

+T ). □
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Figure 1: Depth-2 star with n = 13 vertices. The dashed line
indicates the added edge. Left: coloring with a bounded-size
palette, right: coloring after Grundy local search with an
unbounded-size palette.

3.3 A Worst-Case Graph for Kempe Chains
While ILS with color eliminations efficiently reoptimizes all bipar-
tite graphs, for ILS with Kempe chains there are bipartite graphs
where even adding a single edge connecting a tree with an isolated
edge can lead to exponential times.

Theorem 3.6. For every n ≡ 1 mod 4 there is a forest Tn with n
vertices such that for every feasible 2-coloring the ILS with Kempe
chains needs Θ(2n/2) generations in expectation to re-discover a fea-
sible 2-coloring after adding an edge.

Proof. ChooseTn as the union of an isolated edge {u,v} where
c(u) = 2 and c(v) = 1 and a tree where the root r has N − 1 :=
(n − 3)/2 children and every child has exactly one leaf (cf. Figure 1).
This graph was also used in [31] as an example where ILS with
Kempe chains fail in a static setting. Since n ≡ 1 mod 4, N is an
even number. Every feasible 2-coloring will color the root and the
leaves in the same color and the root’s children in the remaining
color. Assume the root and leaves are colored 2 as the other case
is symmetric. Now add an edge {r ,u} to the graph. This creates a
star of depth 2 (termed the depth-2 star in the following) where the
root is the center and the root now has N children.

This creates a conflict at {r ,u} that is being resolved by recolor-
ing one of these vertices to color 3 in the next Grundy local search.
With probability 1/2, this is the root r .

From this situation, any Kempe chain affecting any vertex in
V \ {r } can swap the colors on an edge incident to a leaf. Let
X0,X1, . . . denote the random number of leaves colored 1, starting
with X0 = 1. We only consider steps in which this number is
changed; note that the probability of such a change is Θ(1) as
every Kempe chain on any vertex except for the root changes Xt
if an appropriate color value is chosen. There are N := (n − 1)/2
leaves and the number of 1-colored leaves performs a random walk
biased towards N /2: Pr (Xt+1 = Xt + 1 | Xt ) = (N − Xt )/N and
Pr (Xt+1 = Xt − 1 | Xt ) = Xt /N . This is the Ehrenfest urn model3.

When Xt ∈ {0,N } then a proper 2-coloring has been found. As
long as Xt ∈ {2, . . . ,N − 2}, all Kempe chain moves involving the
root will be rejected as the number of 3-colored vertices would
increase. WhileXt ∈ {1,N −1} a Kempe chain move recoloring the
root with the minority color will be accepted. This has probability
3This simple model was originally proposed to describe the process of substance
exchange between two bordering containers of equal size which are separated by a
permeable membrane. Consider N particles spread across the containers and denote
by X (t ) the number of particles in the left container w. l. o. g. at time t . In each step
one particle is chosen uniformly at random and swaps sides.

1/n · 1/(N − 1) = Θ(1/N 2) (as the color is chosen uniformly from
{1, . . . , deg(r )+1}) and then the following Grundy local search will
produce a proper 2-coloring. Also considering possible transitions
to neighbouring states 0 or N , whileXt ∈ {1,N −1} the conditional
probability that a proper 2-coloring is found before moving to a
state Xt ∈ {2,N − 2} is Θ(1/N ).

For the Ehrenfest model it is known that the expected time to
return to an initial state of 1 is 1!(N − 1)!/N ! · 2N = 2N /N [14,
equation (66)]. It is easy to show that this time remains in Θ(2N /N )

when considering N − 1 as a symmetric target state, and when
conditioning on traversing states {2, . . . ,N − 2}.

Along with the above arguments, this means that such a return
in expectation happens Θ(N ) times before a proper 2-coloring is
found. This yields a total expectation of Θ(2N ) = Θ(2n/2). □

Notably, this instance is easy for all other considered algorithms.

Theorem 3.7. On a graph where adding T edges completes a
depth-2 star, ILS with color eliminations rediscovers a proper 2-coloring
in expected time O(n log+T ).

Proof. We argue that the graph’s Grundy number is Γ = 3 as
then the claim follows from Theorem 3.5. Since all vertices but the
root have degree at most 2, their colors must be at most 3. Assume
for a contradiction that the root has a color larger than 3. Then
there must be a child v of color 3. But then v has a free color in
{1, 2}, contradicting a Grundy coloring. Hence also the root must
have color at most 3, completing the proof that Γ = 3. □

Theorem 3.8. On the depth-2 star both RLS and (1+1) EA both
have expected optimization time O(n logn) in the static setting and
O(n log+T ) to rediscover a proper 2-coloring after adding T edges.

Proof. First note that any conflict can be resolved by one or two
mutations. The latter is necessary in the unfavourable situation
of {r ,u}, {u,v} ∈ E, r being the root, with c(r ) = 2 = c(u) and
c(v) = 1. Then both u and v need to be recolored simultaneously or
in sequence. We show that every conflict has a constant probability
of being resolved within the next n steps. LetXt denote the number
of conflicts at time t ∈ N0. IfXt > 0, the probability of improvement
within n steps is at least

p ≥
1
2
·

(
n

2

)
·

(
1
n

)2
·

((
1 −

1
n

)n−1)2
·

(
1 −

2
n

)n−2
≥

(n − 1)
4ne4

= Ω(1).

Here, the term 1/2 ·
(n
2
)
describes all combinations of two relevant

mutations concerning nodes u and v in sequence. The next two
factors indicate that in the selected steps both u andv are recolored
and all remaining nodes are left apart. Finally, the last factor is the
probability of not mutating both vertices in the remaining n − 2
steps. Note that for RLS the penultimate factor disappears. Hence,
the expected number of conflicts after n steps is

E(Xt+n |Xt ) ≤ Xt − Xtp ≤ Xt − Xt ·
(n − 1)
4ne4

= Xt ·

(
1 −

(n − 1)
4ne4

)
and we obtain an expected multiplicative drift of

E(Xt − Xt+n |Xt ) ≥ Xt − Xt ·

(
1 −

(n − 1)
4ne4

)
= Xt

(n − 1)
4ne4

.
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Applying the multiplicative drift theorem [8] yields an upper bound
of E(T ) ≤ 8e2

1+1/n log(1 + xmax) = O(log+ xmax) for the expected
number of phases. Here, xmax ≤ n in the static setting and xmax ≤ T
in the dynamic setting denotes the maximum number of conflicts.
Hence, the runtime bounds are O(n logn) and O(n log+T ) in the
static and dynamic settings, respectively, for RLS and (1+1) EA. □

The conclusion from the above is that reoptimization times
strongly depend on the instance and the algorithms considered.

4 REOPTIMIZATION TIMES ON PLANAR
GRAPHS

We also consider planar graphs with degree bound ∆ ≤ 6. It is
well-known that all planar graphs can be colored with 4 colors,
but the proof is famously non-trivial. Coloring planar graphs with
5 colors has a much simpler proof, and this setting was studied
in [31]. The reason for the degree bound ∆ ≤ 6 is that in [31] it was
shown that for every natural number c there exist tree-like graphs
and a coloring where the “root” is c-colored, and no Kempe chain
or color elimination can improve this coloring. In the following
we only consider the unbounded palette as no results for general
planar graphs are known for bounded palette sizes.

Theorem 4.1. Consider adding T edges to a 5-colored graph such
that the resulting graph is planar with maximum degree ∆ ≤ 6.
Then the worst-case expected time for ILS with Kempe chains or color
eliminations to rediscover a proper 5-coloring is O(n log+T ).

Proof. Every edge can create at most one conflict, and every
conflict can lead to one vertex receiving a higher color than before
during Grundy local search. Hence after inserting T edges, there
will be at most T vertices colored 6 or 7.

In [31] it was shown that for each vertex v colored 6 or 7, there
is a Kempe chain operation affecting a neighbour of v such that
a color at v becomes a free color and v receives a color at most 5
after the next Grundy local search. If there are i nodes colored 6 or
7, the probability of a Kempe chain move reducing the number of
vertices colored with the highest color is at least i/(7n).

Let n6 and n7 denote the number of 6- and 7-colored vertices,
respectively. It is obvious thatn7 is non-increasing. However, during
an operation reducing n7, n6 may increase. We need to argue that
n6 does not increase too much.

Note that n6 can only increase if n7 decreases. Consider a vertex
v whose color is being decreased from 7 to some color c < 7 in
one iteration. Since the previous iteration’s coloring was a Grundy
coloring, all colors {1, . . . , 6} must have been present exactly once
in the neighborhood of v . If c = 6 then v and its 6-colored neigh-
bour u swap colors. Since u must have all colors {1, . . . , 5} in its
neighborhood and u has degree at most 6 (which means that its
degree must be exactly 6), u cannot have other 7-colored neighbors
and the Kempe chain does not change n6 and n7.

Now assume that c < 6. Then there must have been a Kempe
chain move that has recolored the c-colored neighbour of v to a
new color c ′ < 7. If c ′ , 6, n6 is unchanged. Hence assume c ′ = 6.
Let u1 be the unique c-colored neighbour of v . Each 6-colored
neighbour of u1 can only have at most two c-colored neighbours
itself, one of which is u1, as all colors {1, . . . , 5} must appear in

the neighbourhood of u1. Hence each 6-colored node leads on to
at most one new c-colored node. (But every c-colored node can
lead on to one or more 6-colored nodes.) So in total the number of
6-colored nodes is by at most 1 larger than the number of c-colored
nodes. This shows that, if n7 decreases, n6 can increase by at most 1.

There are at most T 7-colored nodes initially, and the expected
time to recolor them is O(n log+T ). Then there are at most T 6-
colored nodes, and the same arguments yield another term of
O(n log+T ). □

5 THE BENEFITS OF USING
CONFLICT-AWARE ALGORITHMS

Finally, we consider the performance of the original algorithms, but
enhancing them with tailored operators that focus on the region of
the graph that has been changed. The assumption here is that only
one edge is added at a time, and the algorithms are aware of the
vertices involved in the edge addition. Since many of the previous
results indicated that algorithm spendmost of their time just finding
the right vertex to apply mutation to, we expect the reoptimization
times to decrease when using conflict-aware operators.

We first define conflict-aware algorithms for the case of bounded-
size palettes. The (1+1) EA and RLS are modified so that they take
a conflict edge {u,v} as additional input and they mutate the end
points of said edge with constant probability. They further follow
the conflict: if amutationmoves the conflict to another edge {u ′,v ′},
the algorithm continues with {u ′,v ′}.

Algorithm 7 Conflict-aware (1+1) EA (x , (u,v))

1: while optimum not found do
2: Generate y by deciding to mutate each xw with probability

1/2 forw ∈ {u,v} and with probability 1/n forw < {u,v}:
if yes, choose a new valueyw ∈ {1, . . . ,k}\{xw } uniformly
at random. Forw < {u,v}, let yw = xw .

3: If y has no more conflicts than x , let x := y. If y also has a
conflict edge, let (u,v) denote the new conflict edge.

Algorithm 8 Conflict-aware RLS (x , (u,v))

1: while optimum not found do
2: Generate y by choosing a vertexw as follows. With proba-

bility 1/2 choosew uniformly at random from {u,v}, oth-
erwise choose w uniformly at random from all vertices.
Choose a new value yw ∈ {1, . . . ,k} \ {xw } uniformly at
random and set yj = x j for all j , w .

3: If y has no more conflicts than x , let x := y. If y also has a
conflict edge, let (u,v) denote the new conflict edge.

For unbounded-size palettes a new edge can lead to a higher
color emerging in exactly one vertex, as Grundy local search will
increase the color of a vertex involved in a conflict, resolving the
conflict. The conflict-aware ILS algorithm applies mutation to this
unique vertex v as follows. Color eliminations are applied to v di-
rectly. Kempe chains are most usefully applied in the neighborhood
of v , hence a neighbor of v is chosen uniformly at random. This is
repeated until the largest color has been eliminated from the graph.
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Algorithm 9 Conflict-aware ILS (x , (u,v)) with color eliminations
(resp. Kempe chains)
1: Let c be the largest color currently used.
2: Apply Grundy local search to x .
3: Letw ∈ {u,v} be the vertex with the largest color.
4: while c(w) = c + 1 do
5: Apply a color elimination tow (resp. apply a Kempe chain

to a vertex chosen uniformly at random from the neighbors
ofw) to generate a coloring y.

6: Let z be the outcome of Grundy Local Search applied to y.
7: if z ⪰ x then
8: x := z.
9: If there are no (c + 1)-colored vertices, stop. Otherwise

letw be the unique vertex with color c + 1.

Intuitively, the conflict-aware dynamic algorithms can save at
least a factor of n in the expected time compared with their conflict-
unaware counterparts since the latter need Θ(n) iterations to dis-
cover the conflict vertices u,v and then make progress from there.
This is the case for paths; inspecting the proof of Theorem 3.1
confirms the following result.

Theorem 5.1. If adding an edge completes an n-vertex path, the
worst-case expected time for the conflict-aware (1+1) EA and conflict-
aware RLS to rediscover a proper 2-coloring is Θ(n2).

Theorem 5.2. Consider a dynamic graph that is a path or binary
tree after one edge insertion. The expected time for conflict-aware ILS
with Kempe chains to rediscover a proper 2-coloring is O(1).

Proof. Let v denote the unique 3-colored vertex after Grundy
local search. For both paths and trees there is a Kempe chain oper-
ation applied to a neighbor of v that will create a free color for v ,
such that color 3 will disappear from the graph. This was mentioned
in the proof of Theorem 3.3 for trees and it is easy to see for paths:
every Kempe chain recoloring a neighbor u with the unique color
from {1, 2} \ {c(u)} leaves c(u) as a free color. In both scenarios, an
improving Kempe chain occurs with probability Ω(1). □

Theorem 5.3. Consider a dynamic graph that is bipartite after
one edge insertion. Conflict-aware iterated local search with color
eliminations re-discovers a 2-coloring in 1 iteration.

Proof. The proof follows from the proof of Theorem 3.4 and that
a color elimination is applied to the unique 3-colored vertex. □

Theorem 5.4. Consider adding one edge to a 5-colored graph such
that the resulting graph is planar with maximum degree ∆ ≤ 6. Then
the worst-case expected time for conflict-aware ILS with Kempe chains
or color eliminations to rediscover a proper 5-coloring is O(1).

Proof. Suppose that there will be a conflict after insertion and
letv be the vertex with degree 6 after local Grundy search. Since the
algorithm is aware of the v that is colored 6, it performs a Kempe
chain on a randomly sampled neighbor. We know from [31] and
the proof of Theorem 4.1 that there is a Kempe chain and a color
elimination that eliminates the color 6. The probability of applying
such a Kempe chain is Ω(1) as there are only O(1) neighbors and
O(1) possible colors. Color eliminations are always applied atv and

eliminate color 6 if the right color parameters are chosen. Since two
different colors are chosen uniformly at random from {1, . . . , 5},
the probability of a successful color elimination is Ω(1) as well. □

Theorem 5.5. On the depth-2 star from Theorem 3.6, conflict-
aware RLS and (1+1) EA both have expected optimization time O(1)
to rediscover a proper 2-coloring after adding one edge.

Proof. Any conflict can be resolved by one or two mutations
and each conflict has a constant probability of being resolved inO(1)
steps. The proof then follows from the proof of Theorem 3.8. □

However, conflict-aware operators cannot prevent exponential
times as shown for binary trees and depth-2 stars.

Theorem 5.6. If adding an edge completes ann-vertex complete bi-
nary tree, the worst-case expected time for the conflict-aware (1+1) EA
to rediscover a proper 2-coloring is Ω

(
n(n−7)/4

)
. Conflict-aware RLS

is unable to rediscover a proper 2-coloring in the worst case.

Proof. The proof is similar to proof of Theorem 3.2. The Ham-
ming distance between the worst-case coloring to any acceptable
coloring is still at least n+1

4 . We can save a factor of n as the algo-
rithm will mutate each of the endpoints of the conflict edge (u,v)
with 1/2 probability, rather than with probability 1/n as before. □

Theorem 5.7. On the depth-2 star from Theorem 3.6, conflict-
aware ILS with Kempe chains needs Θ(2n/2) generations in expecta-
tion to rediscover a proper 2-coloring.

Proof. Conflict-aware ILS with Kempe chains applies a Kempe
chain to uniformly chosen neighbors of the root. The transition
probabilities still follow an Ehrenfest urn model; the only difference
is that no Kempe chain can originate from the root itself. This does
not affect the proof of Theorem 3.6, and the same result applies. □

6 CONCLUSIONS
We have studied dynamic graph coloring in a setting whereT edges
are added to a properly colored graph. Our results in Table 1 show
that reoptimization can be much more efficient than optimizing
from scratch: in many upper bounds a factor of logn can be replaced
by log+T and we showed tighter general bound for bipartite graphs
of O(min{

√
T , Γ}n logn) as opposed to O(n2 logn) [31]. However,

this heavily depends on the graph class and algorithms. For instance,
depth-2 stars led to exponential times for Kempe chains and times
of O(n log+T ) for all other algorithms. Reoptimization can also be
more difficult as we can create difficult initial colorings. On paths
and binary trees the dynamic setting allows for negative results
that are stronger than those previously published [10, 30].

Conflict-aware repair operators can reduce the efficient run-
times by a factor of n, even down to O(1), but they cannot prevent
inefficient runtimes in the considered settings.
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