POET: Open-Ended Coevolution of Environments and their
Optimized Solutions

Rui Wang, Joel Lehman, Jeff Clune*, and Kenneth O. Stanley”
Uber Al
San Francisco, CA 94103
*co-senior authors
{ruiwang,joel.lehman,jeffclune kstanley}@uber.com

ABSTRACT

How can progress in machine learning and reinforcement learning
be automated to generate its own never-ending curriculum of chal-
lenges without human intervention? The recent emergence of qual-
ity diversity (QD) algorithms offers a glimpse of the potential for
such continual open-ended invention. For example, novelty search
showcases the benefits of explicit novelty pressure, MAP-Elites
and Innovation Engines highlight the advantage of explicit elitism
within niches in an otherwise divergent process, and minimal cri-
terion coevolution (MCC) reveals that problems and solutions can
coevolve divergently. The Paired Open-Ended Trailblazer (POET)
algorithm introduced in this paper combines these principles to
produce a practical approach to generating an endless progression
of diverse and increasingly challenging environments while at the
same time explicitly optimizing their solutions. An intriguing impli-
cation is the opportunity to transfer solutions among environments,
reflecting the view that innovation is a circuitous and unpredictable
process. POET is tested in a 2-D obstacles course domain, where it
generates diverse and sophisticated behaviors that create and solve
a wide range of environmental challenges, many of which cannot
be solved by direct optimization, or by a direct-path curriculum-
building control algorithm. We hope that POET will inspire a new
push towards open-ended discovery across many domains.

CCS CONCEPTS

« Computing methodologies — Artificial life; Evolutionary ro-
botics; Reinforcement learning; Neural networks;

KEYWORDS

Open-ended evolution, coevolution, evolution strategies, novelty
search, artificial life

ACM Reference Format:

Rui Wang, Joel Lehman, Jeff Clune*, and Kenneth O. Stanley®. 2019. POET:
Open-Ended Coevolution of Environments and their Optimized Solutions.
In Genetic and Evolutionary Computation Conference (GECCO °19), July

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO 19, July 13-17, 2019, Prague, Czech Republic

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-6111-8/19/07...$15.00
https://doi.org/10.1145/3321707.3321799

142

13-17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 15 pages.
https://doi.org/lo.l145/3321707.3321799

1 INTRODUCTION

While conventional machine learning (ML) and artificial life (alife)
have persisted historically as relatively disconnected pursuits with
differing ambitions, their separation is recently narrowing as some
of the themes emerging from alife-inspired research begin to inform
our understanding of long-term progress in machine learning as a
field. ML tends to mark progress through specific benchmarks or
challenge problems introduced by the community that are gradually
conquered and replaced by new benchmarks. For example, image
classification has progressed from the simple MNIST benchmark
[33] to breakthrough achievements like human-level performance
in ImageNet [11]. In reinforcement learning (RL) [59], modest be-
ginnings in pole balancing [1] have given way to learning to play
Atari from pixels [3]. In effect we see in hindsight trails of stepping
stones laid by the community, each in turn solved as a singular
objective.

What alife offers in this never-ending gauntlet is a lens on the
question of the scalability of such a process over vast spans of
progress. Beginning with the introduction of novelty search [38],
we have seen in the field a steady loss of confidence in the idea
that we can reliably set objectives, or even know what the right
objectives are, and pursue them to ambitious ends [65]. This grow-
ing realization points back to the broader strategic approach to
the field of machine learning as whole-we may need at some
point to liberate our algorithms from static objectives, and even
from externally-imposed benchmarks entirely, so that they may
autonomously generate their own stepping stones to the farthest
reaches of possibility.

At a practical level, in the years since the introduction of novelty
search [38], a new field has gradually emerged around the idea
of quality diversity (QD). The core idea in this field is to develop
algorithms that return not only the best or a set of best performers
on some problem, but instead a broad diversity of behaviors that are
still as high in quality as possible given such diversity [9, 37, 42, 45].
For example, Cully et al. [9] evolve a wide diversity of gaits for a
hexapod robot, where each gait is the best possible for a different
way of walking, such as not using one leg or a pair of legs. This
kind of repertoire is useful because it can then be used to select the
best controller as circumstances change in the environment or if
the robot becomes damaged.

While the practical side of QD is often emphasized in such results,
there is also a more fundamental and ambitious potential lurking
behind such algorithms, which is the possibility that they might


https://doi.org/10.1145/3321707.3321799
https://doi.org/10.1145/3321707.3321799

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

become open-ended. Once we achieve algorithms that can continu-
ally gather an expanding set of functional and diverse behaviors, if
such a process could continue indefinitely and with increasing com-
plexity, QD begins to look like a conduit to open-ended evolution
[2, 32, 55, 58, 60]. We might want such an open-ended process be-
cause the chain that leads from the capabilities of computers today
to the most ambitious imaginable possibilities (e.g. general human-
level intelligence) could stretch across vast and inconceivable paths
of stepping stones. There are so many directions we could go, and so
many problems we could tackle, that the curriculum that leads from
here to the farthest reaches of computation is beyond the scope of
our present imagination. QD is inspiring in part because it offers a
potential path to algorithms that traverse those vast reaches. In the
shorter term, the implication of such algorithms is that, because
the stepping stones to ambitious solutions are unknown a priori,
they may reach solutions that could not be reached by any other
means—not even by a curriculum aimed at the same target.

Interestingly, the progress of recent years in QD has produced
several fundamental insights that could advance the push towards
open-endedness, but at the same time, there are caveats to each
advance that ultimately limit its path to open-ended innovation.
For example, novelty search [38], which is a key predecessor to QD,
pushes indefinitely towards novelty, but provides no assurance of
the quality of anything that is discovered. Novelty search with local
competition (NSLC) [37] and MAP-Elites [9, 42] rectify this limita-
tion by adding a quality pressure (hence ushering in QD in earnest),
but they still inevitably hit the limit of what is possible to discover
in the particular environment where they are run-there are only so
many novel ways a hexapod can walk. Interestingly, the coevolu-
tion [10, 14, 26, 44, 62] of environments with their solutions could
provide a natural remedy to the limitation of static environments. In
particular, minimal criterion coevolution [5] offers a counterpoint
to this limitation by allowing the environment itself to change, but
it does so while dropping any explicit push towards novelty or qual-
ity, relying instead entirely upon genetic drift. Innovation Engines
[43] highlight the opportunity to transfer high-quality solutions
from one objective among many to another, and the combinato-
rial multi-objective evolutionary algorithm (CMOEA) extends the
Innovation Engine to combinatorial tasks [24, 25]. Both show the
circuitous nature of serendipitous stepping stones, yet both are
ultimately limited by the number of objectives in the problem space
in which they are run.

This cohort of algorithms offers a number of powerful ideas—
pressure towards novelty, combining novelty and quality pressure,
coevolution of environments and solutions, transfer of solutions
among different objectives being optimized simultaneously-yet
each seems to lack in isolation something essential to genuine
open-endedness. In response, the Paired Open-Ended Trailblazer
(POET) algorithm introduced in this paper harnesses the insight
that the shortcomings of each of these ideas are naturally remedied
by the strengths of the others. That is, if the environment might
run out opportunities for new solutions, then we can coevolve new
environments with the solutions. If the coevolution of solutions and
environments is too reliant on drift, then we can add a push towards
novelty in environments and quality in the solutions to them. If
there are many environments with completely disjoint solutions,
then we can try transferring those solutions among them.

143

Rui Wang, Joel Lehman, Jeff Clune*, and Kenneth O. Stanley”

POET is the first algorithm to seize the opportunity to pull all
these pieces together, with the result that increasingly diverse and
complex environments can be generated at the same time as their
solutions continually optimize to master them, leading to behaviors
that would be difficult to discover in any other way.

In this introduction of POET, it is evaluated in a simple 2-D
bipedal-walking obstacle-course domain in which the form of the
terrain is evolvable, from a simple flat surface to heterogeneous en-
vironments of gaps, stumps and rough terrain. The results establish
that (1) solutions found by POET for challenging environments can-
not be found directly on those same environmental challenges by
optimizing on them only from scratch; (2) neither can they be found
through a curriculum-based process aimed at gradually building up
to the same challenges POET invented and solved; (3) periodic trans-
fer attempts of solutions from some environments to others—also
known as “goal switching” [43]-is important for POET’s success;
(4) a diversity of challenging environments are both invented and
solved in the same single run. POET in effect reveals a rich land-
scape of new opportunities to investigate algorithms that invent
their own circuitous paths of problems and solutions to otherwise
inaccessible levels of achievement, and even open-endedness.

2 BACKGROUND

This section begins with foundational ideas in QD and then reviews
evolution strategies (ES) [47], which serves as the optimization
engine behind POET in this paper (though other reinforcement
learning algorithms could be substituted in the future).

2.1 Foundational Ideas

Population-based algorithms going back to novelty search (NS) [38]
that encourage behavioral (as opposed to genetic) diversity [9, 24,
25,42, 43, 45] have proven less susceptible to local optima, and thus
naturally align more closely with the idea of open-endedness as
they focus on divergence instead of convergence. These algorithms
are based on the observation that the path to a more desirable or
innovative solution often involves a series of waypoints, or stepping
stones, that may not increasingly resemble the final solution, and
are not known ahead of time.

Quality diversity (QD) algorithms [9, 37, 42, 45] elaborate on
NS by keeping track of many different niches of solutions that are
(unlike pure NS) being optimized simultaneously and in effect try
to discover stepping stones by periodically testing the performance
of offspring from one niche in other niches, a process referred to
as goal switching [43]. An approach called the Innovation Engine
[43] helps to cement the power of goal switching: It can evolve
a wide range of images in a single run that are recognized with
high-confidence as different image classes by a high-performing
deep neural network trained on ImageNet [31]. In that domain, the
Innovation Engine maintains separate niches for images of each
class, and periodically checks whether the best performer in one
class might be able to unseat the best performer in another. Interest-
ingly, the evolutionary path to performing well in a particular class
often must pass through other (oftentimes seemingly unrelated)
classes that ultimately serve as stepping stones to recognizable
objects [43]. POET will similarly harness goal-switching within
divergent search.



POET: Open-Ended Coevolution of Environments and their Optimized Solutions

It is also important to note, because POET will likely combine
with diverse RL algorithms in the future, that the idea of promoting
diversity and preserving stepping stones is also gaining prominence
in the RL literature. Examples include acquiring complex skills in RL
through diversity preservation by Eysenbach et al. [13], implement-
ing an NS-archive-like mechanism to overcome reward sparsity
by Savinov et al. [48], adding NS to ES [8], and the recent success
of storing diverse state-space discoveries in a QD-like manner in
Go-Explore [12] so that the search can return to them later.

One challenge remaining if conventional QD is to achieve open-
endedness is that although it applies pressure for ongoing diver-
gence in the solution space, the environment itself remains static,
limiting the scope of what can be found in the long run. Eventually,
for progress in ML to be truly automated, algorithms will need
to generate their own problems as well as solutions. The eventual
importance of generating problems recently has gained recognition
across a variety of related fields, such as goal generation [15] and
reverse curriculum generation in RL [16], intrinsically motivated
goal exploration processes (IMGEPs) [17], the POWERPLAY search
for an increasingly-general problem solver through new tasks [49],
and Teacher-Student Curriculum Learning [39]. The field of proce-
dural content generation (PCG) [52, 61] also offers inspiration for
generating new challenges (usually focused on gaming).

From an evolutionary perspective, one way to think about learn-
ing environments evolving along with their solutions is through
the coevolution [10, 14, 26, 44, 62] of the two. Following this prin-
ciple, an important predecessor to the POET algorithm in this pa-
per is the recent minimal criterion coevolution (MCC) algorithm
[5], which explores an alternative paradigm for open-endedness
through coevolution. In particular, it implements a novel coevolu-
tionary framework that pairs a population of evolving problems
(i-e. environmental challenges) with a co-evolving population of
solutions. Unlike conventional coevolutionary algorithms that are
usually divided between competitive coevolution [14] and coopera-
tive coevolution [62], MCC introduces a new kind of coevolution
that evolves two interlocking populations whose members earn the
right to reproduce by satisfying a minimal criterion [35, 53, 54] with
respect to the other population, as both populations are gradually
shifting simultaneously. The result in a demonstration coevolving
mazes and maze solvers is that the mazes increase in complexity and
the neural networks continually evolve to solve them [5]. However,
in MCC there is no force for optimization within each environment
(or maze in the example experiment). That is, once a maze is solved
there is no pressure to improve its solution; instead, it simply be-
comes a potential stepping stone to a solution to another maze.
There is also no opportunity for improvements in one environment
to transfer to another. In effect, MCC relies entirely on genetic drift,
whereas POET explicitly adds pressure for higher quality, as well as
the opportunity to transfer solutions through goal switching [43].

2.2 Evolution Strategies (ES)

In the POET implementation in this paper, ES plays the role of
the optimizer (although other optimization algorithms should also
work). Inspired by natural evolution, ES [46] represents a broad
class of population-based optimization algorithms. The method

144

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

referred to here and subsequently as “ES” is a version of ES pop-
ularized by Salimans et al. [47] that was recently applied with
large-scale deep learning architectures to modern RL benchmark
problems. This version of ES draws inspiration from Section 6 of
Williams [64] (i.e. REINFORCE with multiparameter distributions),
as well as from subsequent population-based optimization methods
including Natural Evolution Strategies (NES) [63] and Parameter-
Exploring Policy Gradients (PEPG) [51]. More recent investigations
have revealed the relationship of ES to finite difference gradient
approximation [34] and stochastic gradient descent [66].

In the typical context of RL, we have an environment, denoted as
E(-), and an agent under a parameterized policy whose parameter
vector is denoted as w. The agent maximizes its reward, denoted as
E(w), as it interacts with the environment. In ES, E(w) represents
the stochastic reward experienced over a full episode of an agent
interacting with the environment. Instead of directly optimizing w
to maximize E(w), ES seeks to maximize the expected fitness over a
population of w, J(6) = E,,~p,(w)[E(W)], where w is sampled from
a probability distribution pg(w) parameterized by 6. The complete
derivation of the ES of Salimans et al. [47], and used by POET is
given in Section A.1 of Supplemental Information (SI), which also
gives the ES step pseudocode, shown in Algorithm 1 of SI.

ES has exhibited performance on par with some of the tradi-
tional, simple gradient-based RL algorithms on difficult RL domains
(e.g. DON [41] and A3C [40]), including Atari environments and
simulated robot locomotion [8, 47]. More recently, NS and QD al-
gorithms have been shown possible to hybridize with ES to further
improve its performance on sparse or deceptive deep RL tasks, while
retaining scalability [8], providing inspiration for its hybridization
within an CMOEA- and MCC-like algorithm in this paper.

3 THE POET ALGORITHM

POET is designed to facilitate an open-ended process of discov-
ery within a single run. It maintains a population of environments
(for example, various obstacle courses) and a population of agents
(for example, neural networks that control a robot to solve those
courses), and each environment is paired with an agent to form
an environment-agent pair. POET in effect implements an ongoing
divergent coevolutionary interaction among all its agents and en-
vironments in the spirit of MCC [5], but with the added goal of
explicitly optimizing the behavior of each agent within its paired
environment in the spirit of Innovation Engines [43] and CMOEA
[24, 25]. 1t also elaborates on the minimal criterion in MCC by
aiming to maintain only those newly-generated environments that
are not too hard and not too easy for the current population of
agents. The result is a trailblazer algorithm, one that continually
forges new paths to both increasing challenges and skills within
a single run. The new challenges are embodied by the new envi-
ronments that are continually created, and the increasing skills are
embodied by the neural network controllers attempting to solve
each environment. Existing skills are harnessed both by optimizing
agents paired with environments and by attempting to transfer
current agent behaviors to new environments to identify promising
stepping stones.

The fundamental algorithm of POET is simple: The idea is to
maintain a list of active environment-agent pairs EA_List that



GECCO ’19, July 13-17, 2019, Prague, Czech Republic

begins with a single starting pair (E™it(.), 6'"), where EMit is a
simple environment (e.g. an obstacle course of entirely flat ground)
and 6™t is a randomly-initialized weight vector (e.g. for a neural
network). POET then has three main tasks that it performs at each
iteration of its main loop: (1) generating new environments E(-)
from those currently active, (2) optimizing paired agents within
their respective environments, and (3) attempting to transfer cur-
rent agents 6 from one environment to another.

Generating new environments is how POET continues to pro-
duce new challenges. To generate a new environment, POET simply
mutates (i.e. randomly perturbs) the encoding (i.e. the parameter
vector) of an active environment. However, while it is easy to gen-
erate perturbations of existing environments, the delicate part is
to ensure both that (1) paired agents in the originating (parent)
environments have exhibited sufficient progress to suggest that
reproducing their respective environments would not be a waste
of effort, and (2) when new environments are generated, they are
not added to the current population of environments unless they
are neither too hard nor too easy for the current population. Fur-
thermore, priority is given to candidate environments that are most
novel, which produces a force for diversification that encourages
many different kinds of problems to be solved in a single run.

These checks together ensure that the curriculum that emerges
from adding new environments is smooth and calibrated to the
learning agents. In this way, when new environments do make
it into the active population, they are genuinely stepping stones
for continued progress and divergence. The population of active
environments is capped at a maximum size, and when the size of
the population exceeds that threshold, the oldest environments are
removed to make room (as in a queue). That way, environments do
not disappear until absolutely necessary, giving their paired agents
time to optimize and allowing skills learned in them to transfer to
other environments.

POET optimizes its paired agents at each iteration of the main
loop. The idea is that every agent in POET should be continually
improving within its paired environment. In the experiments in this
paper, each such iteration is a step of ES, though any reinforcement
learning algorithm could conceivably apply. The objective in the
optimization step is simply to maximize whatever performance
measure applies to the environment (e.g. to walk as far as possible
through an obstacle course). The fact that each agent-environment
pair is being optimized independently affords easy parallelization,
wherein all the optimization steps can in principle be executed at
the same time.

Finally, attempting transfer is the ingredient that facilitates seren-
dipitous cross-pollination: it is always possible that progress in
one environment could end up helping in another. For example,
if the paired agent 64 in environment EA(-) is stuck in a local
optimum, one remedy could be a transfer from the paired agent 88
in environment EB(-). If the skills learned in the latter environment
apply, it could revolutionize the behavior in the former, reflecting
the fact that the most promising stepping stone to the best possible
outcome may not be the current top performer in that environment
[42, 43, 57]. Therefore, POET continually attempts transfers among
the active environments. These transfer attempts are also easily
parallelized because they too can be attempted independently.

145

Rui Wang, Joel Lehman, Jeff Clune*, and Kenneth O. Stanley”

Figure 1: A landscape from the Bipedal Walker environment

created by POET. Possible obstacles are stumps, gaps, stairs, and
surfaces with different amounts of roughness.

Each step of POET repeats environment generation and optimiza-
tion of paired agents. Transfer is attempted ever n steps (n = 25
in this paper’s implementation). Full pseudocode and complete
implementation details for POET are given in SI Section A.2.

As noted above, the independence of many of the operations
in POET, such as optimizing individual agents within their paired
environments and attempting transfers, makes it feasible to harness
the power of many processors in parallel. In the implementation
of the experiment reported here, each run harnessed 256 parallel
CPU cores. Our software implementation of POET (available at
https://github.com/uber-research/poet), allows such parallelization
over any number of cores.

Provided that a space of possible environmental challenges can
be encoded, the hope is that the POET algorithm can then start
simply and push outward in parallel along an increasingly difficult
frontier of challenges, some benefiting from the solutions to others.

4 EXPERIMENT SETUP AND RESULTS

An effective test of POET should address the hypothesis that it can
yield an increasingly challenging set of environments, many with
a satisfying solution, all in a single run. Furthermore, we hope to
see evidence for the benefit of cross-environment transfers. The
domain in this work is a modified version of the “Bipedal Walker
Hardcore” environment of the OpenAl Gym [6]. Its simplicity as a
2-D walking domain with various kinds of possible terrain makes it
easy to observe and understand qualitatively different ambulation
strategies simply by viewing them. Furthermore, the environments
are easily modified, enabling numerous diverse obstacle courses
to emerge to showcase the possibilities for adaptive specialization
and generalization. Finally, it is relatively fast to simulate.

4.1 Environment and Experiment Setup

The agent’s hull is supported by two legs (the agent appears on the
left edge of figure 1). The hips and knees of each leg are controlled
by two motor joints, creating an action space of four dimensions.
The agent has ten LIDAR rangefinders for perceiving obstacles and
terrain, whose measurements are included in the state space. The
14 other state variables include hull angle, hull angular velocity,
horizontal and vertical speeds, positions of joints and their angular
velocities, and whether legs touch the ground [6].

Guided by its sense of the outside world through LIDAR and its
internal sensors, the agent is required to navigate, within a time
limit and without falling over, across an environment of a generated
terrain that consists of one or more types of obstacles. These can
include stumps, gaps, and stairs on a surface with a variable degree
of roughness, as illustrated in figure 1. Reward is given for moving


https://github.com/uber-research/poet

POET: Open-Ended Coevolution of Environments and their Optimized Solutions

forward, keeping the hull straight, and minimizing motor torque:

-100, if robot falls
Reward per step = {130 x Ax — 5 x Ahull_angle
—0.00035 X applied_torque, otherwise.

The episode immediately terminates when the time limit (2,000
time steps) is reached, when the agent falls, or when it completes
the course. We define an environment as solved when the agent
both reaches the far end of the environment and obtains a score
> 230 (meaning the walker is reasonably efficient).

The three-layer neural network controller setup, which follows
Ha [21], and the ES hyperparameters are given in SI Section A.3.

4.2 Environment Encoding and Mutation

Intuitively, the system should begin with a single flat environment
whose paired policy can be optimized easily (to walk on flat ground).
From there, new environments will continue to be generated from
their predecessors, while their paired policies are simultaneously
optimized. The hope is that a wide variety of control strategies
and skill sets will allow the completion of an ever-expanding set of
increasingly complex obstacle courses, all in a single run.

To enable such a progression, a simple encoding represents the
search space of possible environments. There are five types of obsta-
cles that can be distributed throughout the environment: (1) stump
height, (2) gap width, (3) step height, (4) step number (i.e. number
of stairs), and (5) surface roughness. Three of these obstacles, e.g.
stump height, are encoded as a pair of parameters (or genes) that
form an interval from which the actual value for each instance of
that type of obstacle in a given environment is uniformly sampled.
As will be described below, in some experiments, some obstacle
types are intentionally omitted, allowing us to restrict the experi-
ment to certain types of obstacles. Table 2 in SI Section A.3 gives the
parameters for environmental initialization and mutation. When
selected to mutate for the first time, obstacle parameters are ini-
tialized to the corresponding initial values shown in Table 2 in SI
Section A.3. For subsequent mutations, an obstacle parameter takes
a mutation step (whose magnitude is given in Table 2), and either
adds or subtracts the step value from its current value. The value
of any given parameter cannot exceed its maximum value.

Because the parameters of an environment define a distribution,
the actual environment sampled from that distribution is the result
of a random seed. This seed value is stored with each environment
so that environments can be be reproduced precisely, ensuring
repeatability. (The population of many environments and the mu-
tation of environments over time still means that training overall
does not occur on only one deterministic environment.) With this
encoding, all possible environments can be uniquely defined by the
values for each obstacle type in addition to the seed that is kept
with the environment.

Any environments that meet the eligibility condition for repro-
duction are allowed to mutate to generate a child environment. In
our experiments, this condition is that the paired agent of the envi-
ronment achieves a reward of 200 or above, which indicates that
the agent can reach the end of the terrain (though slightly below
the full success criterion of 230). To create children, the set of eligi-
ble parent environments is sampled uniformly to choose a parent,
which is then mutated to form a child that is added to the list. This

146

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

process is repeated until a maximum number of children is reached
(512 in our experiments). Each child is generated from its parent
by independently picking and mutating some or all the available
parameters of the parent environment and then choosing a new
random seed. The minimal criterion (MC) 50 < Echild(gehildy < 30
then filters out child environments that appear too challenging
or too trivial for the current capability level of agents. In case the
number of child environments that satisfy the MC is more than
the maximum number of children admitted per reproduction, those
with lower scores (indicating more room to improve) are admitted
until the cap is reached. Algorithmic details are in Algorithm 3 (SI
Section A.2.1).

4.3 Results

Many of the behaviors reported in this section can be seen in the
video at https://youtu.be/D1IWWhQY9N4g.

An important motivating hypothesis for POET is that the step-
ping stones that lead to solutions to very challenging environments
are more likely to be found through a divergent, open-ended pro-
cess than through a direct attempt to optimize in the challenging
environment. Indeed, if we take a particular environment evolved
in POET and attempt to run ES (the same optimization algorithm
used in POET) on that specific environment from scratch, the result
is often premature convergence to degenerate behavior. The first
set of experiments focus on this phenomenon by running POET
with only one obstacle type enabled. That way, we can see that
even with a single obstacle type, the challenges generated by POET
(which POET solves) are too much for ES on its own.

In separate runs, POET generated environments with varying
gaps, surface roughness, stump heights, and staircase configura-
tions. We then chose challenging environments for each one of
these that were generated and solved by POET. For one environ-
ment from each of the four single-obstacle types of environments,
we ran ES five times with different initialization and random seeds
up to 16,000 ES steps (which is twice as long as Ha [21] gives agents
in the same domain with ES; in our experience all ES runs converge
long before this point). Such ES-optimized agent consistently get
stuck at local minima in these environments. The maximum scores
out of the five ES runs for the gap, roughness, stump, and staircase
environments are 17.9, 39.6, 13.6, and 24.0 respectively, far below
the success threshold of 230 that POET exceeds in each case. The
result is similar for a hybrid environment from a multi-obstacle
run of POET with roughness, gaps, and stumps, where ES achieves
a maximum score of just 19.2 on a POET-generated environment
where POET exceeds 230 (figure 5 in SI Section A.4). Statistical
testing (detailed in SI Section A.4) confirms that in all cases the
scores of agents optimized by ES alone are very unlikely to be from
a distribution near the POET-level solutions (p < 0.01). Note that
ES had previously been shown to be a competent approach [20]
on the original Bipedal Walker Hardcore environment in OpenAl
Gym, which, as illustrated later in Table 1, consists of similar, but
much less difficult obstacles. The implication is that the challenges
generated and solved by POET are significantly harder than the
original Hardcore environment and ES alone is unable to solve
them. Several examples of POET-solved environments where ES
gets stuck are shown in figure 2. SI Section A.4 includes additional
visualizations and statistics illustrating this result.


https://youtu.be/D1WWhQY9N4g

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

Rui Wang, Joel Lehman, Jeff Clune*, and Kenneth O. Stanley”

ES from scratch

e anl el

POET-generated
T e
el Bl Ll

(a) ES-/POET-generated agents attempting gaps

ES from scratch POET-generated ES from scratch

POET-generated

(b) ES-/POET-generated agents on(c) ES-/POET-generated agents at-

rough surfaces tempting stumps

Figure 2: POET creates challenging environments and cor-
responding solutions that cannot be obtained by optimizing
randomly initialized agents by ES. As illustrated in the top row
of (a) and the left panels of (b) and (c), agents directly optimized
by ES converge on degenerate behaviors that give up early in the
course. In contrast, POET not only creates these challenging en-
vironments, but also learns agents that overcome the obstacles to
navigate effectively, as shown in the bottom row of (a) and right
panels of (b) and (c).

One interpretation of POET’s ability to create agents that can
solve challenging problems is that it is in effect an automatic cur-
riculum builder. Building a proper curriculum is critical for learning
to master tasks that are challenging to learn from scratch due to
a lack of informative gradient. However, building an effective cur-
riculum given a target task is itself often a major challenge. Because
newer environments in POET are created through mutations of
older environments and because POET only accepts new environ-
ments that are not too easy and not too hard for current agents,
POET implicitly builds a curriculum for learning each environment
it creates. The overall effect is that it is building many overlapping
curricula simultaneously, and continually checking whether skills
learned in one branch might transfer to another.

A natural question then is whether the environments created
and solved by POET can also be solved by an explicit, direct-path
curriculum-building control algorithm. To test this approach, we first
collect a sample of environments generated and solved by POET,
and then apply the direct-path control to each one separately to
see if it can reach the same capabilities on its own. In this control,
the agent is progressively trained on a sequence of environments
of increasing difficulty that move towards the target environment.
This kind of incremental curriculum is intuitive and variants of it

147

Top Value Top Value
inrange of  inrange of Roughness
Stump Height Gap Width
This Work >24 > 6.0 > 4.5
Reference 2.0 3.0 1.0

Table 1: Difficulty level criteria. The difficulty level of an envi-
ronment is based on how many conditions it satisfies out of the
three listed here. The reference in the second row shows the corre-
sponding top-of-range values used in the original Hardcore version
of Bipedal Walker in OpenAI Gym [30].

appear in both the evolutionary and ML literature when a task is
too hard to learn directly [4, 18, 22, 27, 28]. The sequence of envi-
ronments starts with an environment of only flat ground without
any obstacles (which is easy enough for any randomly-initialized
agent to quickly learn to complete). Then each of the subsequent
environments are constructed by slightly modifying the current
environment. More specifically, to get a new environment, each ob-
stacle parameter of the current environment has an equal chance of
staying the same value or increasing by the corresponding mutation
step value in Table 2 (in SI the same step sizes used by POET) until
that obstacle parameter reaches that of the target environment.

In this direct-path curriculum-building control, the agent moves
from its current environment to the next when its score in the cur-
rent environment reaches the reproduction eligibility threshold for
POET, i.e. the same condition for when an environment reproduces
in POET. The control algorithm optimizes the agent with ES (just
as in POET). It stops when the target environment is reached and
solved, or when a computational budget is exhausted. To be fair,
each run of the control algorithm is given the same computational
budget (measured in total number of ES steps) spent by POET to
solve the environment, which includes all the ES steps taken in the
entire sequence of environments along the direct line of ancestors
(taking into account transfers) leading to the target.

The direct-path curriculum-building control is tested against a
set of environments generated and solved by POET that encompass
a range of difficulties. For these experiments, the environments
have three obstacle types enabled that can be combined in the same
obstacle course: gaps, roughness, and stumps. To provide a princi-
pled framework for choosing the set of generated environments to
analyze, they are classified into three difficulty levels. The difficulty
level of an environment is based on how many conditions it sat-
isfies out of the three listed in Table 1. In particular, a challenging
environment satisfies one of the three conditions; a very challeng-
ing environment satisfies two of the three; and satisfying all three
makes an environment extremely challenging. It is important to
note that these conditions all merit the word “challenging” because
they all are much more demanding than the corresponding values
from the original Hardcore version of Bipedal Walker in OpenAlI
Gym [30] used in Ha [21] (denoted as reference in Table 1).

In this experiment, each of three runs of POET takes up to 25,200
POET iterations with a population size of 20 active environments,
while the number of sample points for each ES step is 512. These
runs each take about 10 days to complete on 256 CPU cores. The
mean (with 95% confidence intervals) POET iterations spent on
solving challenging, very challenging, and extremely challenging



POET: Open-Ended Coevolution of Environments and their Optimized Solutions

RUN 1 RUN 2 RUN 3
o =
E g’ Gap_upper Stump_upper
e o MAX 8 MAX 3
" ®
L <
£
>
S o
=
' (@
=
(o))
c
o - - _
e
o | @ Q

Figure 3: POET versus direct-path curriculum-building con-
trols. Each rose plot depicts one environment that POET created
and solved (red pentagon). For each, the five blue pentagons indicate
what happens in control runs when the red pentagon is the target.
Each blue pentagon is the closest-to-target environment solved by
one of the five independent runs of the direct-path control algo-
rithm. The five vertices of each pentagon indicate the environment
parameters (see key, upper-left). The value after MAX in the key is
the maximum value at the outermost circle for each type of obstacle.
Each column contains sample solved environments from a single
independent run of POET.

environments starting from the iteration when they were first cre-
ated are 638 + 133, 1,180 + 343, and 2,178 + 368, respectively. Here,
one POET iteration refers to creating new environments, optimiz-
ing current paired agents, and possibly (i.e. every 25 iterations)
attempting transfers (i.e. lines 4-25 in Algorithm 2 in SI). The more
challenging environments clearly take more effort to solve.
Figure 3 compares the POET environments and the direct-path
curriculum-building control algorithm through a series of rose plots,
each of which compares the configuration of an environment solved

148

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

by POET (red pentagons) with the closest that the direct-path con-
trol could come to that configuration (blue pentagons). For each red
pentagon there are five such blue pentagons, each representing one
of five separate attempts by the control to achieve the red pentagon
target. The five vertices of each pentagon indicate roughness, the
lower and upper bounds of the range of the gap width, and those
of the stump height, respectively. Each column in figure 3 consists
of six representative samples (red pentagons) of environments that
a single run of POET up to 25,200 iterations created and solved. As
the rows descend from top to bottom, the difficulty level decreases
(all are randomly sampled from targets generated and solved at each
difficulty level in each run). Figure 3 clearly shows that attempts by
the direct-path control consistently fail to reach the same difficulty
level as environments that POET generated and solved.

To more precisely quantify these results, we define the nor-
malized distance between any two environments, E4 and Eg as
%“ e(Ea)—e(Ep)

e(Enax)
and Ejjay is a hypothetical environment (for normalization purpose)

with all genetic encoding values maxed out. (The maximum values
are roughness = 8, Gap_lower = Gap_upper = 8, Stump_lower
= Stump_upper = 3.) The constant = V5 is simply for normal-
ization so that the distance is normalized to 1 when E4 = Epax
and Ep is a purely flat environment (roughness zero) without any
obstacles (i.e. an all-zero genetic encoding vector). Based on this
distance measure, we can calculate the median values and statistics
of distances between target environments (created and solved by
POET) and the corresponding closest-to-target environments that
the control algorithms can solve.

An analysis of the results is based on the distance between the
closest environment reached by the direct-path control and the POET-
generated target. First, we can examine whether that distance is
significantly greater the higher the challenge level. Indeed, Mann-
Whitney U tests show that the difference between such distances
between challenging and very challenging environments is indeed
very significant, as is the difference between such distances be-
tween very challenging and extremely challenging (p < 0.01 for
both). This test gives a quantitative confirmation of the intuition
that these challenge levels are indeed meaningful, and the higher
they go, the more out of reach they become for the control. Second,
a single-sample t-test (which was previously used when compar-
ing POET to the ES-alone control, detailed in SI Section A.4) can
also here provide confidence that the distances from the targets
are indeed far in an absolute sense: indeed, even at the lowest
challenge level (and for all challenge levels), the one-sample t-test
measures high significance (p < 0.01) between the distribution of
distances from the target and the target level. Qualitatively, the
main result is that POET creates and solves environments that the
control algorithm fails to solve at very and extremely challenging
difficulty levels, while the curriculum-based control algorithm can
sometimes (though not always) solve environments at the lowest
challenge level. One implication of these results is that the direct-
path curriculum-building control is valid in the sense that it does
perform reasonably well at solving minimally challenging scenar-
ios. However, the very and extremely challenging environments
that POET invents reach significantly beyond what the direct-path
curriculum can match.

|2, where e(E) is the genetic encoding vector of E,



GECCO ’19, July 13-17, 2019, Prague, Czech Republic

In aggregate, the results from the direct-path curriculum-building
control help to show quantitatively the advantage of POET over
conventional curriculum-building. In effect, the ability to follow
multiple chains of environments in the same run and transfer skills
among them pushes the frontier of skills farther than a single-chain
curriculum can push, hinting at the limitations of preconceived
curricula in general.

A fundamental problem of a pre-conceived direct-path curricu-
lum (like the control algorithm above) is the potential lack of neces-
sary stepping stones. In particular, skills learned in one environment
can be useful and critical for learning in another environment. Be-
cause there is no way to predict where and when stepping stones
emerge, the need arises to conduct transfer experiments (which
POET implements) from differing environments or problems [43].

To give a holistic view of the success of transfer throughout
the entire system, we count the number of replacement attempts
during the course of a run, which means the number of times an
environment took a group of incoming transfer attempts from all
the other active environments. The total number of such replace-
ment attempts in RUN 1, RUN 2, and RUN 3 (labelled in Figure 3)
are 18,894, 19,014, and 18,798, respectively, out of which, 53.62%,
49.26%, 48.89%, respectively, are successful replacements. Note that
each replacement attempt here encompasses both the direct transfer
and proposal transfer attempts. These statistics show how perva-
sively transfer permeates (and often adds value to) the parallel paths
explored by POET.

While transfer is pervasive, that does not in itself prove it is
essential. To demonstrate the value of transfer, a control is needed:
We relaunched another three POET runs, but with all the trans-
fers disabled (which we call POET without transfer). In this variant,
POET runs as usual, but simply never tries to transfer paired so-
lutions from one environment to another. We can then calculate
the coverage of the environments that are created and solved by
POET and the control, respectively, following a similar metric as de-
fined in Lehman and Stanley [37]: We first uniformly sample 1,000
challenging, 1,000 very challenging, and 1000 extremely challenging
environments. For each of the total 3,000 sampled environments,
the distance to the nearest one of the challenging, very challenging,
or extremely challenging environments created and solved by POET
(and by the control, respectively) is calculated. Note that the better
covered the environment space is, the lower the sum of all such
nearest distances will be. The result is that the coverage of envi-
ronments created and solved by POET is significantly greater than
by POET without transfer (p < 2.2e—16 based on Mann-Whitney
U test). In an even more dramatic statistic showing the essential
role of transfer in open-ended search, in POET without transfer, no
extremely challenging environments are solved at all. Figure 7 in SI
Section A 4.1 illustrates this stark contrast.

Finally, one of the primary hypothesized benefits of POET is
its ability to produce a broad diversity of different problems with
functional solutions in a single run. All three POET runs created and
solved sufficiently diverse environments to cover all three challenge
levels. For example. the environments (depicted as red pentagons)
shown in each column of Figure 3 are created and solved in a single
run of POET. Each such column exhibits diversity in the values
and/or value ranges in roughness, gap width of gaps, and height of
stumps. Figure 8 in SI Section A.4.2 gives a more visual depiction of

149

Rui Wang, Joel Lehman, Jeff Clune*, and Kenneth O. Stanley”

the range of environments solved in a single run. The diversity of
environments also implies diverse experiences for the agents paired
with them, who in turn thereby learn diverse walking gaits. This
diversity then supplies the stepping stones that fuel the mutual
transfer mechanism of POET.

5 DISCUSSION AND FUTURE WORK

POET is an attempt to move further down the road towards open-
ended systems. While the road remains long, the rewards for ma-
chine learning of beginning to capture the character of open-ended
processes is potentially high. First, as the results show, there is the
opportunity to discover capabilities that could not be learned in any
other way, even through a carefully crafted curriculum targeted
at the desired result. In addition, a diversity of such results can
be generated in a single run, and the problems and solutions can
both increase in complexity over time. Furthermore, POET is self-
generating multiple curricula simultaneously, all while leveraging
the results of some as stepping stones to progress in others.

POET becomes more interesting the more unbounded its problem
space becomes. The present space of 2-D walking environments
is limited by the maximal ranges of the genomes describing the
environment. Much more flexible, or even unbounded environment
encodings, such as an indirect encoding like compositional pattern-
producing networks (CPPNs) [56], can potentially enable POET to
traverse a far richer problem space.

While ES optimizes solvers in this paper for various tasks under
POET, and underlies the main transfer mechanism, POET can in
principle be instantiated with other evolutionary algorithms and
in fact with any RL or optimization algorithm, including those
outside evolutionary computation—an intriguing opportunity to
merge evolutionary computation with other fields to achieve open-
endedness. Policy gradient methods [50], Q-learning [41], genetic
algorithms, other variants of ES, diversity-promoting algorithms
such as QD [9, 37, 42, 45] and NS [38], including NS-/NSRA-ES [8],
and many other such algorithms are all viable alternatives.

POET could substantially drive progress in the field of meta-
learning, wherein neural networks are exposed to many different
problems and get better over time at learning how to solve new
challenges (i.e. they learn to learn). Meta-learning requires access
to a distribution of different tasks, and that traditionally requires a
human to specify this task distribution, which is costly and may not
be the right or best distribution on which to learn to learn. Gupta
et al. [19] note that the performance of meta-learning algorithms
critically depends on the distribution of tasks they meta-train on,
and POET can offer a divergent engine to create such task diversity.
POET can also be extended to take a more explicit approach to
optimizing for generality, such as in CMOEA [24].

Finally, it is exciting to consider for the future the rich potential
for surprise in all the possible domains where POET might be
applied. For example, 3-D parkour was explored by Heess et al.
[23] in environments created by humans, but POET could invent
its own creative parkour challenges and their solutions. The soft
robots evolved by Cheney et al. [7] would also be fascinating to
combine with ever-unfolding new obstacle courses. The scope is
broad for imagination and creativity in the application of POET.



[

=

= =

REFERENCES

[1] Charles W. Anderson. 1989. Learning to Control an Inverted Pendulum Using

Neural Networks. IEEE Control Systems Magazine 9 (1989), 31-37.

Mark Bedau. 2008. The Arrow of Complexity Hypothesis (Abstract). In Pro-
ceedings of the Eleventh International Conference on Artificial Life (Alife XI), Seth
Bullock, Jason Noble, Richard Watson, and Mark Bedau (Eds.). MIT Press, Cam-
bridge, MA, 750. http://www.alifexi.org/papers/ALIFExi-abstracts-0010.pdf
Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The
Arcade Learning Environment: An evaluation platform for general agents. J.
Artif. Intell. Res.(JAIR) 47 (2013), 253-279.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In Proceedings of the 26th annual international conference
on machine learning. ACM, 41-48.

Jonathan C. Brant and Kenneth O. Stanley. 2017. Minimal Criterion Coevolution:
A New Approach to Open-Ended Search. In Proceedings of the 2017 on Genetic
and Evolutionary Computation Conference (GECCO). 67-74.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAl Gym. (2016).
arXiv:arXiv:1606.01540

N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. 2013. Unshackling evolution:
evolving soft robots with multiple materials and a powerful generative encoding.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2013). ACM Press, New York, NY.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth
Stanley, and Jeff Clune. 2018. Improving Exploration in Evolution Strategies for
Deep Reinforcement Learning via a Population of Novelty-Seeking Agents. In
Advances in Neural Information Processing Systems (NeurIPS) 31. 5032-5043.

A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. 2015. Robots that can adapt like
animals. Nature 521 (2015), 503-507. https://doi.org/10.1038/nature14422
Edwin D De Jong. 2004. The incremental pareto-coevolution archive. In Genetic
and Evolutionary Computation Conference. Springer, 525-536.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. 2009 IEEE Conference on
Computer Vision and Pattern Recognition (2009), 248-255.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune.
2019. Go-Explore: a New Approach for Hard-Exploration Problems. arXiv preprint
arXiv:1901.10995 (2019).

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. 2018.
Diversity is All You Need: Learning Skills without a Reward Function. arXiv
preprint arXiv:1802.06070 (2018).

S.G. Ficici and J.B. Pollack. 1998. Challenges in coevolutionary learning: Arms-
race dynamics, open-endedness, and mediocre stable states. Artificial life VI
(1998), 238.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. 2018. Automatic
goal generation for reinforcement learning agents. In International Conference on
Machine Learning. 1514-1523.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. 2017. Reverse Curriculum Generation for Reinforcement Learning. In
Proceedings of the 1st Annual Conference on Robot Learning. 482-495.

Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. 2017. Intrinsically
motivated goal exploration processes with automatic curriculum learning. arXiv
preprint arXiv:1708.02190 (2017).

Faustino Gomez and Risto Miikkulainen. 1997. Incremental Evolution of Complex
General Behavior. Adaptive Behavior 5 (1997), 317-342. gomez:ab97

Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine.
2018. Unsupervised Meta-Learning for Reinforcement Learning. arXiv (2018).
arXiv:1806.04640 http://arxiv.org/abs/1806.04640

David Ha. 2017. Evolving stable strategies. http://blog.otoro.net/. (2017).

David Ha. 2018. Reinforcement Learning for Improving Agent Design. arXiv
preprint arXiv:1810.03779 (2018).

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval
Tassa, Tom Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. 2017. Emergence
of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286
(2017).

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin A. Riedmiller,
and David Silver. 2017. Emergence of Locomotion Behaviours in Rich Environ-
ments. CoRR abs/1707.02286 (2017). arXiv:1707.02286 http://arxiv.org/abs/1707.
02286

[24] Joost Huizinga and Jeff Clune. 2018. Evolving Multimodal Robot Behavior via

Many Stepping Stones with the Combinatorial Multi-Objective Evolutionary
Algorithm. arXiv preprint arXiv:1807.03392 (2018).

Joost Huizinga, Jean-Baptiste Mouret, and Jeff Clune. 2016. Does Aligning Phe-
notypic and Genotypic Modularity Improve the Evolution of Neural Networks?.
In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference
(GECCO). 125-132.

POET: Open-Ended Coevolution of Environments and their Optimized Solutions

[26

)
22

‘%
S

[33

[34

[36

[37

[38

[39

S
=

[41

[42

[43

(44

'S
&

[46

[47]

(48

[49

[52

(53]

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

Edwin D De Jong and Jordan B Pollack. 2004. Ideal evaluation from coevolution.
Evolutionary computation 12, 2 (2004), 159-192.

Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Ju-
lian Togelius, and Sebastian Risi. 2018. Illuminating Generalization in Deep
Reinforcement Learning through Procedural Level Generation. arXiv preprint
arXiv:1806.10729 (2018).

Andrej Karpathy and Michiel Van De Panne. 2012. Curriculum learning for motor
skills. In Canadian Conference on Artificial Intelligence. Springer, 325-330.
Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

O. Klimov. 2016. BipedalWalkerHardcore-v2. https://gym.openai.com. (2016).
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

W. B. Langdon. 2005. Pfeiffer - A Distributed Open-ended Evolutionary System.
In AISB’05: Proceedings of the Joint Symposium on Socially Inspired Computing
(METAS 2005), Bruce Edmonds, Nigel Gilbert, Steven Gustafson, David Hales,
and Natalio Krasnogor (Eds.). 7-13. http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/wbl_metas2005.pdf

Yann LeCun and Corinna Cortes. 1998. The MNIST database of handwritten
digits. (1998).

Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O. Stanley. 2018. ES is More Than
Just a Traditional Finite-difference Approximator. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO ’18). ACM, New York, NY,
USA, 450-457. https://doi.org/10.1145/3205455.3205474

Joel Lehman and Kenneth O. Stanley. 2010. Revising the evolutionary computation
abstraction: minimal criteria novelty search. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation (GECCO °10). ACM, New
York, NY, USA, 103-110. https://doi.org/10.1145/1830483.1830503

Joel Lehman and Kenneth O. Stanley. 2011. Abandoning Objectives: Evolution
through the Search for Novelty Alone. Evolutionary Computation 19, 2 (2011),
189-223. http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00025
Joel Lehman and Kenneth O. Stanley. 2011. Evolving a diversity of virtual crea-
tures through novelty search and local competition. In GECCO ’11: Proceedings
of the 13th annual conference on Genetic and evolutionary computation. 211-218.
Joel Lehman and Kenneth O. Stanley. 2011. Novelty Search and the Problem with
Objectives. In Genetic Programming Theory and Practice IX (GPTP 2011).

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. 2017. Teacher-
Student Curriculum Learning. arXiv preprint arXiv:1707.00183 (2017).
Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous methods for deep reinforcement learning. In ICML. 1928-1937.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529-533.

Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv preprint arXiv:1504.04909 (2015).

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2016. Understanding Innovation
Engines: Automated Creativity and Improved Stochastic Optimization via Deep
Learning. Evolutionary Computation 24, 3 (2016), 545-572.

Elena Popovici, Anthony Bucci, R. Paul Wiegand, and Edwin D. De Jong. 2012.
Coevolutionary Principles. Springer Berlin Heidelberg, Berlin, Heidelberg, 987-
1033. https://doi.org/10.1007/978-3-540-92910-9_31

Justin K Pugh, Lisa B. Soros, and Kenneth O. Stanley. 2016. Quality Diversity: A
New Frontier for Evolutionary Computation. 3, 40 (2016).

Ingo Rechenberg. 1978. Evolutionsstrategien. In Simulationsmethoden in der
Medizin und Biologie. 83-114.

Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. 2017. Evolution
strategies as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864 (2017).

Nikolay Savinov, Anton Raichuk, Raphael Marinier, Damien Vincent, Marc
Pollefeys, Timothy Lillicrap, and Sylvain Gelly. 2018. EPISODIC CURIOSITY
THROUGH REACHABILITY. arXiv preprint arXiv:1810.0227 (2018).

Jirgen Schmidhuber. 2013. Powerplay: Training an increasingly general problem
solver by continually searching for the simplest still unsolvable problem. Frontiers
in psychology 4 (2013), 313.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International Conference on Machine
Learning. 1889-1897.

Frank Sehnke, Christian Osendorfer, Thomas Riickstief3, Alex Graves, Jan Peters,
and Jiirgen Schmidhuber. 2010. Parameter-exploring policy gradients. Neural
Networks 23, 4 (2010), 551-559.

Noor Shaker, Julian Togelius, and Mark J Nelson. 2016. Procedural content gener-
ation in games. Springer.

L.B. Soros, Nick Cheney, and Kenneth O Stanley. 2016. How the Strictness of
the Minimal Criterion Impacts Open-Ended Evolution. In ALIFE 15: The Fifteenth


http://www.alifexi.org/papers/ALIFExi-abstracts-0010.pdf
http://arxiv.org/abs/arXiv:1606.01540
https://doi.org/10.1038/nature14422
gomez:ab97
http://arxiv.org/abs/1806.04640
http://arxiv.org/abs/1806.04640
http://blog.otoro.net/
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
https://gym.openai.com
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_metas2005.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_metas2005.pdf
https://doi.org/10.1145/3205455.3205474
https://doi.org/10.1145/1830483.1830503
http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00025
https://doi.org/10.1007/978-3-540-92910-9_31

GECCO ’19, July 13-17, 2019, Prague, Czech Republic

[54]

[55]

[56

[57]

[58

[59]

[60]

[61]

[62]

[63]

[64

[65]

[66]

International Conference on the Synthesis and Simulation of Living Systems. 208—
215.

L.B. Soros and Kenneth O Stanley. 2014. Identifying Necessary Conditions for
Open-Ended Evolution through the Artificial Life World of Chromaria. In ALIFE
14: The Fourteenth International Conference on the Synthesis and Simulation of
Living Systems. 793-800.

Russell K Standish. 2003. Open-ended artificial evolution. International Journal
of Computational Intelligence and Applications 3, 02 (2003), 167-175.

Kenneth O. Stanley. 2007. Compositional Pattern Producing Networks: A Novel
Abstraction of Development. Genetic Programming and Evolvable Machines
Special Issue on Developmental Systems 8, 2 (2007), 131-162.

Kenneth O Stanley and Joel Lehman. 2015. Why Greatness Cannot Be Planned.
(2015).

Kenneth O. Stanley, Joel Lehman, and Lisa Soros. 2017. Open-endedness: The last
grand challenge you’ve never heard of. O’Reilly Online (2017). https://www.oreilly.
com/ideas/open-endedness-the-last-grand- challenge- youve-never-heard-of
Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1.

Tim Taylor, Mark Bedau, Alastair Channon, and David Ackley et al. 2016. Open-
Ended Evolution: Perspectives from the OEE Workshop in York. Artificial life 22,
3 (2016), 408aAS423.

Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne.
2011. Search-based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and Al in Games 3, 3 (2011), 172-186.
R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong. 2001. An Empirical
Analysis of Collaboration Methods in Cooperative Coevolutionary Algorithms. In
Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation
(GECCO’01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1235-
1242. http://dlacm.org/citation.cfm?id=2955239.2955458

Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. 2008. Natural
evolution strategies. In Evolutionary Computation, 2008. 3381-3387.

Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229-256.
Brian G. Woolley and Kenneth O. Stanley. 2011. On the deleterious effects of a
priori objectives on evolution and representation. In GECCO ’11: Proceedings of
the 13th annual conference on Genetic and evolutionary computation. ACM, Dublin,
Ireland, 957-964. https://doi.org/doi:10.1145/2001576.2001707

Xingwen Zhang, Jeff Clune, and Kenneth O. Stanley. 2017. On the Relationship
Between the OpenAl Evolution Strategy and Stochastic Gradient Descent. arXiv
preprint arXiv:1712.06564 (2017).

151

Rui Wang, Joel Lehman, Jeff Clune*, and Kenneth O. Stanley”


https://www.oreilly.com/ideas/open-endedness-the-last-grand-challenge-youve-never-heard-of
https://www.oreilly.com/ideas/open-endedness-the-last-grand-challenge-youve-never-heard-of
http://dl.acm.org/citation.cfm?id=2955239.2955458
https://doi.org/doi:10.1145/2001576.2001707

