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ABSTRACT
The determination of a small set of biomarkers to make a diagnostic
call can be formulated as a feature subset selection (FSS) problem
to find a small set of genes with high relevance for the underlying
classification task and low mutual redundancy. However, repeated
application of a heuristic, evolutionary FSS technique usually fails
to produce consistent results. Here, we introduce COMB-PSO-LS,
a novel hybrid (wrapper-filter) FSS algorithm based on Particle
Swarm Optimization (PSO) that features a local search strategy
to select the least dependent and most relevant feature subsets.
In particular, we employ a Randomized Dependence Coefficient
(RDC)-based filter technique to guide the search process of the
particle swarm, allowing the selection of highly relevant and con-
sistent features. Classifying cancer samples through patient gene
expression profiles, we found that COMB-PSO-LS provides highly
stable and non-redundant gene subsets that are relevant for the
classification process, outperforming standard PSO methods.
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• Theory of computation → Evolutionary algorithms; Bio-
inspired optimization; • Computing methodologies → Fea-
ture selection;
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1 INTRODUCTION
Expression profiles of genes are correlated in non-linear ways,
pointing to the existence of irrelevant and redundant genes for the
determination of biomarkers. The problem of finding biomarkers
that allow the classification of disease and non-disease cases can
be formulated as a feature subset selection problem (FSS). As the
dimensionality of gene expression datasets increases, a variety of
heuristic methods with relatively low computational complexity
have been adopted. In particular, evolutionary algorithms in general
and particle swarm optimization (PSO) in particular, are compu-
tational efficient methods to tackle such high dimensional search
problems, but are prone to the selection of similar and irrelevant
features in the final feature subset. Since current PSO-based ap-
proaches usually do not consider associations between features to
guide the search process, similar and correlated features have a high
probability to be selected, limiting the classifier performance. Due to
their nondeterministic nature, such heuristic search methods draw
different sets of features for the same problem in each run [1, 24, 25].
Although different criteria to assess the stability of results have
been applied [28, 31, 35, 42], simple combinations of highly frequent
features usually fail to provide better classification results [12, 60].
To tackle such problems, new filter-based multi-variate methods
have been introduced in recent years [20, 59, 61]. Largely based
on mutual information to evaluate relevance and redundancy of
selected features, such filter methods have low computational cost
but suffer from low classification accuracy. In contrast, wrapper
approaches provide superior classification accuracy, but engender
high computational cost when applied to large datasets. As hybrid
models combine the advantages of filter and wrapper methods, we
introduce a novel hybrid (wrapper-filter) PSO approach by inte-
grating a new local search filter operation, allowing us to fine-tune
the search process in an organized fashion. Our method, COMB-
PSO-LS (COMBinatorial PSO with Local Search) - an extension
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of our COMB-PSO algorithm [10] - utilizes association informa-
tion to efficiently guide the search process. Our approach allows
us to find stable subsets of pertinent features (genes) by eliminat-
ing irrelevant features with little or no predictive information and
redundant genes that are strongly correlated. Furthermore, our
reduction procedure accelerates the learning process, leads to a
simple and understandable predictor model, and avoids overfitting
[38]. We evaluated the performance of COMB-PSO-LS on three
synthetic and three well known cancer specific gene expression
datasets. Our results demonstrate that our method improves classi-
fication accuracy, reduces the size and improves the stability of the
selected features.

2 BACKGROUND AND RELATEDWORK
2.1 Feature relevance and redundancy
Given that features are defined as strongly relevant, weakly rele-
vant, and irrelevant [27, 67] for the underlying classification prob-
lem, an optimal subset must include all strongly relevant features,
may include some weakly relevant ones, but no irrelevant features.
Searching for an optimal subset based on the definitions of feature
relevance and redundancy is combinatorial in nature. Moreover,
the optimal subset can only be defined based on the knowledge of
the true data distribution. Since such data characteristics are usu-
ally unknown, estimation methods are applied to evaluate relevant
and redundant features. To increase the efficiency of FSS methods
and overcome their high computational cost, a large and grow-
ing body of literature has considered multivariate filter methods
[15, 32, 39, 40, 43, 54, 55]. More recent attention has focused on
hybrid methods [26, 57], mostly integrating the mutual information-
based filter model in the framework of PSO-based wrapper methods.
Many non-linear statistical dependence measures have been devel-
oped recently [3, 5, 16, 17, 22, 34, 44, 45, 52, 53] to assess feature
relevance and dependency. Here, we investigate the effectiveness
of randomized dependence coefficients as a measure of association
information to guide the local search.

2.2 FSS stability
Heuristic evolutionary computation (EC) algorithms tend to select
different feature subsets with equal prediction accuracy even when
applied to the same data multiple times. Furthermore, even small
data perturbations such as removal or addition of new data may fur-
ther prompt algorithms to find different subsets [13, 23, 28, 51, 64].
As a consequence, interpretability of selected subsets is substan-
tially impaired by poor stability. Stability (or robustness) indicates
the ability of an algorithm to determine stable feature subset when
new training samples are added or removed. In fact, stability of FSS
algorithms has received increasing attention [24, 28], indicating
that many well-established FSS algorithms suffer from low stability
of feature subsets in the presence of small data perturbations.

2.3 Randomized dependence coefficient
The Randomized Dependence Coefficient (RDC) introduced by
Lopez-Paz et al. [34], is an empirical estimator of the Hirschfeld-
Gebelein-Rényi (HGR) maximum correlation coefficient that mea-
sures non-linear dependencies between random variables X ∈ Rp

and Y ∈ Rq . As an example related to the FSS problem, p = 1 or 2

when X represents individual or joint feature vectors respectively,
and q = 1 when Y corresponds to a class labels represented as
scalars. RDC uses two paired sets of m samples, X ∈ Rm×p and
Y ∈ Rm×q , to approximate the HGR measure (Fig. 1). First, an em-
pirical copula transformation, where the marginal distributions of
the resulting variables become uniform, makes the RDC invariant
to any strictly monotonic functions applied to any of the dimen-
sions of the input variables. The copula transformation is followed
by non-linearly projecting the samples to random sets of functions
in Rp and Rq . The resulting transformed samples are denoted by
ΦX ∈ Rm×k and ΨY ∈ Rm×ℓ , where k and ℓ are the dimensions
of the projections for X and Y . Finally, the RDC score is defined as:

RDC(X ,Y ) = max
α ∈Rk ,β ∈Rℓ

ρ
(
αTΦX , β

TΨY

)
, (1)

where ρ is the Pearson’s correlation coefficient that can be ob-
tained by linearly combining the feature dimensions (rows) of each
transformed sample ΦX and ΨY . The rationale behind the two-
stage transformation is to ease the hyper-parameter selection of
the randomized projections. In particular, we use sine and cosine
projections, (sin(WTX + b), cos(WTX + b)), as suggested in [34].
In this expansion,W is a zero-mean multivariate Gaussian with
covariance sI , while b is uniform in [−π ,π ]. By operating on the
copula instead of the original input variables, the choice of the scale
parameter s is not influenced by the spread or the position of the
original variables. In practice, the number of random projections,
k and ℓ, still need some tuning. If the number of dimensions get
closer to the number of samplesm, the RDC may uncover spurious
correlations. In turn, a very small number of dimensions may over-
regularize the dependence measure, hindering its ability to capture
non-linear dependencies.

2.4 The PSO algorithm
Particle swarm optimization (PSO) algorithm [14], its binary variant
(BPSO) [8, 9, 29, 30, 58, 69] and its multi-objective variant MOPSO
[6, 37, 62, 66, 68] are evolutionary computation techniques, that
have been combined with different classification methods to select
informative markers from gene expression data [7, 18, 19, 36, 47, 63].
In particular, the PSO algorithm is based on the concept of moving
particles in a search space. At each iteration, a particle’s velocity is
updated by

®vi (t + 1) = ω ®vi (t) + r1c1(®pi − ®xi (t)) + r2c2(®д − ®xi (t)) (2)

while a particles location is calculated by

®xi (t + 1) = ®xi (t) + ®vi (t) (3)

where ®vi (t) and ®xi (t) are the velocity and the position of particle i
in a n-dimensional search space at the t th iteration, respectively.
Vectors ®pi and ®д are the particle’s personal best (pbest) and the
swarms best (gbest) values, respectively. Coefficients c1 and c2 are
acceleration constants, and r1 and r2 are random values. Parameter
ω is the inertia weight to control the impact of the last velocity
on the current velocity. Usually, velocity values are limited to the
range [−vmax ,vmax ], by a predefined maximum velocity, vmax .
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Figure 1: Overview of RDC computation. First, data samples from X and Y are mapped to unit hypercubes in Rp and Rq

by making marginal distributions of each of their dimensions uniform (copula transformation). The mapped samples are
subjected to non-linear maps using random sets of functions Φ and Ψ. Canonical correlation between the mapped samples
ΦX ∈ Rm×k and ΨY ∈ Rm×ℓ is computed to provide the dependence measure.

2.5 The COMB-PSO algorihm
Recently, we introduced a combinatorial variant of PSO, COMB-
PSO [10] to analyze gene expression datasets with tens of thousands
of genes and few hundreds samples. In the following, we highlight
characteristics of COMB-PSO allowing to (i) maximize the accuracy
of sample classification, (ii) minimize the underlying set size of
selected features, and (iii) maintain stability of the size of feature
subsets in the massive presence of uninformative (i.e. irrelevant) fea-
tures. However, COMB-PSO ignores the relevance and redundancy
of selected features, limiting the stability of its outcomes.

2.5.1 Improved exploration and exploitation capabilities. In a
binary search space, a particle moves by flipping its bits. Such a
definition of movement does not provide a very intuitive notion of
velocity, making the notions of speed, direction, and momentum
to the binary domain less clear. Furthermore, the non-monotonic
shape of the changing probability function has a negative effect on
the exploitation capability of the algorithm (i.e. the use of informa-
tion gathered from past iterations), and BPSO tend to show poor
scaling behavior. To retain the advantage that continuous PSO has
superior search capabilities compared to BPSO, COMB-PSO intro-
duces a new binary vector ®b to map the continuous space position
to binary digits by

bi j =

{
1, if rand() < S(xi j )

0, otherwise
, (4)

where
S(xi j ) =

1
(1 + e−xi j )

, (5)

indicating that feature j in particle i is accounted for in a feature
subset if bi j = 1.

2.5.2 Better transition from exploration to exploitation. To allow
a faster transition from exploration to exploitation, COMB-PSO
uses a sigmoid function for the inertia weight ω and acceleration
coefficients c1 and c2, extending the particles time to explore and

exploit the search space by

ω = ωmin + (ωmax − ωmin )
1

1 + ( t
aT )b

c1 = cmin + (cmax − cmin )
1

1 + ( t
aT )b

c2 = cmax + (cmin − cmax )
1

1 + ( t
aT )b

.

(6)

Such a function is shown in Fig. 2, where a and b are the transition
coefficients. a governs the transition point and b determines the
length of the exploration and exploitation phase of the particles.
Compared to a linearly decreasing function, the proposed function
secures that particles transition fast between full exploration and
exploitation modes.

2.5.3 Convergence rate. COMB-PSO introduces a dynamic pop-
ulation strategy where updated best positions (personal and global)
are not discarded, but eventually swapped with the weakest per-
forming particles in the decision space.

2.5.4 Avoiding premature convergence trap. Furthermore,
COMB-PSO introduces the turbulence coefficientsθ andγ .γ ∈ [0, 1]
indicates the fraction of particles randomly selected that reset their
velocities when gbest stagnates after θ consecutive iterations.

2.5.5 Reducing feature subset size. The choice of the boundary
values of vmin and vmax requires some care since they not only
affect the balance between exploration and exploitation, but also the
size of the generated subsets. If vmax is too large, many irrelevant
features will be selected. In turn, some critical features will be
missed in the selection process if vmin is too small. While most
methods adopt symmetric boundaries as velocity constraint (i.e.
[−vmax ,vmax ]), COMB-PSO introduces the asymmetric coefficient
λ as defined in Eq. 7.

vmax = −λvmin , λ ∈ [0, 1], (7)
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Figure 2: Transition between exploration and exploitation
phases. COMB-PSO-LS applies a sigmoid function to estab-
lish inertia weights where, ωmin=0.4, ωmax=1.2, a=0.6, b=8
and T=10 000. We define the break point τ between explo-
ration and exploitation phase as the intersection between a
linear and sigmoid function, assuring 0 < τ ≪ T .

As a consequence, an elevated value of λ increases the probability
obtaining additional features.

3 THE METHOD
Although COMB-PSO provides a global search strategy to find near
optimal feature subsets, fine-tuning the search near local optima re-
mains a weakness. Here, we introduce a novel hybrid wrapper-filter
FSS, COMB-PSO-LS, that combines our previous COMB-PSO search
approach with a local search method that is based on determining
randomized dependence coefficients (RDC) between features and
class labels.

3.1 Association approximation measure
Yu and Liu [67] distinguished between individual and combined
associations. Given a dataset ofm samples and n features, the in-
dividual association between any feature Fi ∈ Rm×n and the class
C ∈ Rm×q is defined by

ci = RDC(Fi ,C) (8)

where vector ci , i < n, represents the relevance between candidate
input features and target output. The combined association between
any pair of features Fi and Fj (i , j) and the class C is defined by

Qi j =

{
0 i = j

RDC({Fi , Fj },C) i , j,
(9)

where the square matrixQ ∈ Rn×n indicates the relevance be-
tween candidate input features and target output as a measure of
redundancy. In our approximation method, we first measure the
individual association of each feature and heuristically treat all
features as relevant but subjected to redundancy analysis. Approxi-
mately determining redundancy between two features as a function
of both their individual and combined associations, we assume that
a feature with a larger individual association value holds more

information about the class than a feature with a smaller individ-
ual association value. For two features Fi and Fj with ci ≥ c j , we
evaluate whether feature Fi can form an approximate redundant
cover for feature Fj (instead of Fj for Fi ) to maintain more infor-
mation about the class. In addition, if combining Fj with Fi does
not provide more predictive power in determining the class than
using Fi alone, Fi forms an approximate redundant cover for Fj .
Such considerations are covered by

Definition 3.1. (Approximate redundant cover) For two fea-
tures Fi and Fj , Fi forms an approximate redundant cover for Fj iff
ci ≥ c j and ci ≥ Qi, j .

and

Definition 3.2. (Predominant feature) A feature is predomi-
nant if it does not have any approximate redundant cover in the
current set.

As a consequence, we remove every feature with an approximate
redundant cover through a predominant feature through

Predominant features will not be removed at any stage. If a
feature Fj is removed based on a predominant feature Fi in an
earlier phase, it is guaranteed that it will still find an approximate
redundant cover (the same Fi ) in any later phase when another
feature is removed. Since the feature with the highest individual
association value does not have any approximate redundant cover,
it must be one of the predominant features and can be used as the
starting point to determine the redundancy between the remaining
features. Concluding, our approximation method of relevance and
redundancy analysis allows us to find all predominant features,
while other remaining features are eliminated.

3.2 The local search extension to COMB-PSO,
COMB-PSO-LS

To account for our association method in the COMB-PSO frame-
work, we consider the classification performance of the current
global best solution (gbest) when redundant features are removed
(LS_gbest). As highlighted in the flowchart of COMB-PSO-LS in
Fig. 3 gbest is replaced by LS_gbest, if LS_gbest shows better perfor-
mance than gbest, while gbest remains otherwise. As a consequence,
our local search method allows the escape from local optima and
enhances the stability of results. However, a challenge remains to
find the right point to start local search as computational costs
are significantly increased if local search is triggered too soon. In
turn, strongly relevant features risk to be discounted in the selected
subsets if local search is started too late. Fine tuning identified
solutions, we limit local searches to the exploitation phase that is
separated from exploitation phase through a sigmoid function ωS
returning the dynamic inertia weightω (see Eq. 6 and Fig. 2). Specif-
ically, we approximate the transition point between exploration
and exploitation modes as the iteration number τ when both linear
and sigmoid functions intersect (i.e. ωS (τ ) = ωL(τ ), 0 < τ ≪ T ),
and allow local search when iteration t > τ . However, local search
during the exploitation phase does not guarantee a fine tuned final
solution. In fact, given the multi-objective optimization nature of
the fitness function (for detail see subsection 3.3), local search solu-
tions (LS_gbest) may be ignored compared to more cost effective
gbest solutions during the iteration process of the PSO. Therefore,
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Figure 3: Flowchart of the COMB-PSO-LS algorithm, high-
lighting local search steps. The right box presents details of
the local search, where redundant features of the globally
best solution (gbest) are removed in the LS_gbest solution.
LS_gbest is assigned gbest if its classification performance
is enhanced.

we trigger local search after the stopping criteria of the iteration
process has been met, as depicted by the box labeled "Local search
(ii)" in the flowchart of our method (Fig. 3).

3.3 Problem Representation
Applying COMB-PSO-LS to different datasets, we formulate the
objective functions as a weighted sum problem by

min F = αEF + (1 − α)
|F |

|D |
. (10)

Specifically, F is the selected feature subset, D is the set of all
features in the whole dataset, EF is a the classification error rate,
and α is a weight factor balancing the importance of the number
of features and classification performance. As proposed in [36],
α ∈ [0.6, 0.9], we set α = 0.8.

Since COMB-PSO-LS is a wrapper approach, we utilize Random
Forest (RF), an ensemble classification algorithm, to evaluate the
classification accuracy of the selected features [11]. In particular,
we use mtry =

√
n, ntree = 5, 000, nodesize = 1, where n is the

number of features,mtry is the number of input variables tried at
each split, ntree is the number of trees in each forest and nodesize
is the minimum size of the terminal nodes.

During the search process, we randomly sample 70% as the train-
ing set and 30% as the test set and employ 10-fold cross-validation
to evaluate the classification accuracy of the selected feature subset
on the training set. Finally, the selected features are evaluated on
the test set to obtain testing classification accuracy.

4 EXPERIMENTAL RESULTS
To test the performance of COMBPSO-LS we create synthetic
datasets, establishing strongly relevant, weakly relevant and ir-
relevant features. Furthermore, we apply our algorithm to three
cancer related gene expression datasets with a large number of
genes and a limited amount of samples (Table 1) .

4.1 Experimental Datasets
We utilize the last of the three Monks datasets [33] that have 6
discrete features { f0, · · · , f5}. Class labels are 1 if (f3 = 1 and
f4 = 3) or (f4 , 4 and f1 , 3). Specifically, the Monks dataset has
no redundant features, and the most important feature subset is
{ f1, f3, f4}. The two other synthetic datasets have 4 continuous
features. In the Synthetic 1 set, features f2 and f3 are copies of the
first two features (f2 = f0, f3 = f1). The class label is set to 1 if
the average of the first two features is greater than 0.5. Therefore,
there are four optimal feature subsets in the Synthetic 1 dataset,
{ f0, f1}, { f0, f3}, { f1, f2} or { f2, f3}. In the Synthetic 2 set, the first
two features are random variables in [0, 1]. The 3rd feature is the
average of the first two, f2 =

f0+f1
2 while the 4th feature is a copy

of the first feature, f3 = f0. As a consequence, redundancy occurs
in any feature subset that contains f0 together with f3 or (f1 and
f2). The class label is determined by feature f2. In particular, the
class label is set to 1 if f2 > 0.5, suggesting that the optimal feature
subset of the Synthetic 2 dataset is { f2}. In both the Synthetic 1 and
Synthetic 2 sets, the remaining features are irrelevant with random
values in [0,1]. To test the stability and the scalability of the different
algorithms, we exponentially expand the three synthetic datasets
up to 104 features by adding random values between [0,1] [41].

Table 1: Characteristics of synthetic and gene expression
datasets

Dataset # samples # features # classes
SYNTHETIC DATASETS

Monks 432 10 000 2
Synthetic 1 200 10 000 2
Synthetic 2 200 10 000 2

GENE EXPRESSION DATASETS
Leukemia 72 12 582 3
Prostate Tumor 95 16 535 2
B-cell lymphoma 77 6 428 2

As for real gene expression data (Table 1) we use a set of 72
Leukemia patient samples [2], consisting of 28 Acute Myeloid
Leukemia (AML), 24 Acute Lymphoblastic Leukemia (ALL) and
20 Mixed-Lineage Leukemia (MLL) cases, capturing the expression
levels of 12,582 genes. The Prostate Tumor [50] dataset provides
expression levels of 16,535 genes in a total of 95 samples where 52
samples referred to tumor samples and the remainder to non-disease
controls. The Diffusive Large B-Cell Lymphoma dataset [49] cap-
tures 58 patients with Diffuse Large B-Cell Lymphomas (DLBCL)
and 14 patients with Follicular Lymphomas where each patient
sample features 6,428 genes.
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Table 2: Hyper parameters of the experimental set-up. Note
that velocity boundaries in COMB-PSO and COMB-PSO-LS
are not symmetric and are governed by Eq. 7.

Parameters BPSO COMB-PSO-LS
MIN MAX MIN MAX

ω 0.4 0.9 0.4 0.9
c1, c2 2.05 1.7 2.1
(a,b) in Eq. 6 (.6, 8)
velocity -6.0 6.0 -6.0 0.25
λ in Eq. 7 1/32
(θ ,γ ) in Subsec.2.5.4 (5, 20%)
swarm size 300 300
# iterations 3000 3000

4.2 Experimental Setup
Finding the right parameter configuration for metaheuristic al-
gorithms like PSO is a serious optimization problem, prompting
the publication of many methods to automatically tune parame-
ters to solve different problem instances [4, 21, 46, 56, 65]. Shi and
Eberhart [48] analyzed the impact of inertia weight and maximum
velocity on the performance of the PSO algorithm, providing guide-
lines for the selection of these parameters. Accounting for both
simplicity and efficiency, linearly decreasing inertia weight is the
most widely used setting, while ωmax = 0.9 and ωmin = 0.4 are
accepted parameter choices. Furthermore, the relative values of
acceleration coefficients c1 and c2 are critical, strongly impacting
the performance of the underlying algorithm. When the value of
the cognitive acceleration coefficient c1 increases, the attraction
of particles towards pbest is enhanced with the attraction towards
gbest decreasing at the same time. In turn, increasing social acceler-
ation coefficient c2 compared to cognitive acceleration coefficient
c1 increases attraction of particles towards gbest. While values of
c1 and c2 are generally kept constant, empirically best choices of c1
and c2 appear to be 2.05. In this work, and given the dynamic nature
of c1 and c2 as introduced by COMB-PSO in subsection 2.5.2, we
use a setting where c1, c2 vary between cmin = 1.7 and cmax = 2.1
and the transition coefficients are set to a = .6 and b = 8. Velocity
boundaries are other factors that impact PSO performance. When
boundaries are too large, particles move erratically and are swiftly
attracted to gbest without thoroughly exploring the search space,
increasing the risk of getting trapped in local optima. If boundaries
are too narrow, movement of particles is excessively restricted,
leading to computational overhead increases and inability of the
algorithm to converge. For that reason, COMB-PSO introduced an
asymmetric boundaries coefficient, as defined in Eq. 7, which is
set empirically to λ = 1/32. To control premature convergence by
avoiding stagnation, COMB-PSO introduced in subsection 2.5.4,
both a stagnation coefficient θ which represents the number of
iterations gbest being trapped before firing the turbulence operator
and a turbulence coefficient γ ,γ ∈ [0, 1] which is the swarm frac-
tion of the turbulence operator (i.e. the percentage of the swarm
resetting their velocities). These two coefficients are set empirically
to θ = 5 and γ = .2. While no formal rule for the selection of
the swarm size exists, rule of thumb stipulates that swarm sizes

should be chosen proportional to the dimension of the underlying
problem. Furthermore, swarm size impacts the performance of PSO
as a smaller swarm leads to particles trapped in local optima while
a larger swarm slows the performance of the algorithm. Swarm size
is set to 300 particles and the number of iterations is set to 3000.
All parameters are presented in Table 2.

4.3 Stability measures
To evaluate the stability of FSS algorithms, similarity measures
are usually required to determine the divergence of selected sub-
sets [28] as well as the convergence towards the optimal subsets.
Usually, stability and classification accuracy are independent mea-
sures, suggesting that stability may not necessarily guarantee good
classification results and vice versa. Considering both stability and
classification accuracy for the performance evaluation of COMB-
PSO-LS, we use two different stability measures. First, we apply
a similarity metric when the optimal subset is unknown (i.e. for
the gene expression datasets). Second, we consider a consistency
metric when the optimal subset is known (i.e. for the synthetic
datasets).

4.3.1 Similarity metric. Dune et al. [13] introduced a similarity-
based metric as the average of all pairwise stability measures of
solutions defined as

SMM =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

SM(Fi , Fj ). (11)

SMM ∈ [0,1], where 0 indicates an empty intersection between
all pairs of subsets Fi , Fj , while 1 points to the observation that all
subsets of the system are identical. Furthermore, SM is the under-
lying similarity metric, whileM is the number of trials. Kuncheva et
al. [31], introduced a similarity metric that captures the correlation
between features by

SM(Fi , Fj ) =
|Fi ∩ Fj | + SD(Fi , Fj )

|Fi ∪ Fj | + 1
, (12)

where SD is a statistical dependence measure between two
subsets (For examples, see [3, 5, 16, 17, 22, 34, 44, 45, 52, 53]). As
a consequence, SM ∈ [0,1], suggesting that SM = 0 when two
subsets have no intersection and no association. In turn, SM = 1
when the two subsets are equal. However, two subsets with no
intersection may still have a value greater than 0 if correlated
features exist.

4.3.2 Consistency metric. The consistent identification of opti-
mal subsets, defined as the smallest subsets that contain all strongly
relevant features, is of particular interest to high-dimensional FSS
problems. Since prior knowledge of the strongly relevant features
and the optimal subsets exists considering synthetic datasets, we
introduce a consistency metric which accounts for relevance, ir-
relevance and redundancy of selected features. In particular, we
consider F = {F1, · · · , Fr } as the set of r selected subsets and F ∗

as the set of optimal solutions that provide only relevant and non-
redundant features. To determine the overlap of F and F ∗ we define
the consistency score CM(F) ∈ [0, 1] that reflects the degree of
matching between the obtained set of solutions and known optimal
solutions by
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CM(F) =
RF

RF + R
′
F + IF

(13)

where RF , R′
F and IF are the number of solutions containing rel-

evant, redundant and irrelevant features, respectively. In particular,
both RF and R′

F are incremented if a solution has both relevant and
redundant features. While S(A) = 0when no solution has a relevant
feature, CM(F) = 1 when all solutions contain only relevant fea-
tures (i.e. Fi = F ∗,∀i ∈ [1, r ]). As a consequence, CM(F) penalizes
(i) incomplete solutions, where relevant features are absent in F,
(ii) redundant solutions where more than enough relevant features
appear in Fi and (iii) incorrect solutions, where irrelevant features
occur in Fi .

4.4 Results
Here, we investigate the performance of COMB-PSO-LS in com-
parison to the standard BPSO and COMB-PSO, by collecting 30
solutions for each dataset from 30 independent runs. In particu-
lar, we assess obtained feature sets by measuring the mean sizes
⟨FS⟩ and mean classification error ⟨%E⟩ of feature sets as well as
introduce two other measures that capture the subsets propensity
to provide strongly relevant features and their stability with the
optimal subset as well as the similarity between the subsets.

Table 3 suggests that feature subsets obtained by applying our
novel variant COMB-PSO-LS to synthetic datasets are (i) small and
(ii) allow high classification accuracy. Furthermore, feature sets
(iii) largely capture strongly relevant features and are (iv) highly
similar, strongly outperforming BPSO and COMB-PSO.

While synthetic datasets provide a large number of features and
samples, our gene expression datasets are high-dimensional as well
but have a low number of samples. Applying our algorithms to the
three different cancer gene expression datasets, we evaluate their
performance by measuring the mean size of selected gene subsets
⟨FS⟩, the corresponding mean classification error rate ⟨%E⟩ and de-
termine the similarity of obtained gene subsets ⟨SM⟩. In the absence
of ground truth (i.e. strongly relevant genes and optimal subsets),
we therefore cannot establish the stability ⟨SM⟩ of obtained gene
sets. In comparison to BPSO and COMB-PSO, COMB-PSO-LS pro-
vides the smallest gene subsets, that have a higher rate of similarity.
Such observations indicate that the application of COMB-PSO-LS
on gene expression datasets potentially allows us to find a small set
of biomarkers in the underlying disease that distinguish between
disease and control cases.

Although still low, gene subsets obtained with COMB-PSO-LS
provide higher mean error rates ⟨%ER⟩ compared to COMB-PSO.
As global search feeds the local search operator, we surmise that
swarm particles are limited in their propensity to thoroughly cover
the search space therefore missing relevant features. However, the
combination of all gene subsets that we obtain by applying COMB-
PSO-LS to disease specific gene expression data allow us to observe
a drop of the mean error rate to < 2%.

Although the rates of similarity of gene subsets obtained with
COMB-PSO-LS are higher compared to COMB-PSO and BPSO, they
remain nevertheless moderate. Such an observation is potentially a
consequence of the underlying data, as many relevant genes with
highly correlated expression exist. Although relevant features are

preserved during local search, our approach does not guarantee that
all relevant genes can be covered in a single small subset, pointing
to the presence of subsets with genes that are equivalent in their
propensity to distinguish between disease and control cases.

To determine statistical significance of BPSO and COMB-PSO-LS
results, we apply pairwise t-tests, allowing us to observe significant
differences of distributions of subset sizes and classification error
(Table 4). Although all p-values are significantly less than the con-
fidence threshold p < 0.05 t-test values on the other hand, show a
large difference in terms of subset size in favor of COMB-PSO and
a relatively small difference in terms of classification error in favor
of BPSO (negative t-test values). Nevertheless, we can conclude
that the proposed method COMB-PSO-LS makes an impressive im-
provement over BPSO in terms of selected subset size while keeping
classification error in a close range.

5 CONCLUSION
Given high-dimensional datasets with tens of thousands of fea-
tures and few hundreds samples, we introduced COMB-PSO-LS
that allowed us to find smallest and stable feature subsets, eliminat-
ing irrelevant and redundant features. In particular, we integrated
a local search strategy to the framework of the previously intro-
duced COMB-PSO algorithm based on the Randomized Dependency
Coefficient that is known for its efficiency with non linear correla-
tions. The combination of the association-based local search that
guides the search process of the particle swarm and the global
search strategy led to small, similar feature subsets that allowed
high classification accuracy and captured the most salient features,
significantly outperforming previous approaches. Applying our
approach to gene expression datasets, we found small sets of genes
that distinguished cancer from control cases while their similarity
was limited. We expect that a multi-objective optimization represen-
tation of the objective function that embeds a measure of similarity
in the evaluation of the Pareto front will allow us to increase the
similarity and classification accuracy of gene subsets.
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