
Deep Neuroevolution of Recurrent and Discrete World Models
Sebastian Risi and Kenneth O. Stanley

Uber AI
San Francisco, CA 94103

sebastian.risi@gmail.com, kstanley@uber.com

ABSTRACT
Neural architectures inspired by our own human cognitive system,
such as the recently introduced world models, have been shown to
outperform traditional deep reinforcement learning (RL) methods
in a variety of different domains. Instead of the relatively simple ar-
chitectures employed in most RL experiments, world models rely on
multiple different neural components that are responsible for visual
information processing, memory, and decision-making. However,
so far the components of these models have to be trained separately
and through a variety of specialized training methods. This paper
demonstrates the surprising finding that models with the same
precise parts can be instead efficiently trained end-to-end through
a genetic algorithm (GA), reaching a comparable performance to
the original world model by solving a challenging car racing task.
An analysis of the evolved visual and memory system indicates
that they include a similar effective representation to the system
trained through gradient descent. Additionally, in contrast to gradi-
ent descent methods that struggle with discrete variables, GAs also
work directly with such representations, opening up opportunities
for classical planning in latent space. This paper adds additional
evidence on the effectiveness of deep neuroevolution for tasks that
require the intricate orchestration of multiple components in com-
plex heterogeneous architectures.

ACM Reference Format:
Sebastian Risi and Kenneth O. Stanley. 2019. Deep Neuroevolution of Recur-
rent and Discrete World Models. In Genetic and Evolutionary Computation
Conference (GECCO ’19), July 13–17, 2019, Prague, Czech Republic. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3321707.3321817

1 INTRODUCTION
Neuroevolution, i.e. evolving neural networks through evolutionary
algorithms, has long been applied to complex control problems [7,
32, 39] and has recently been shown to be a competitive alternative
for reinforcement learning problems [34, 40]. Surprisingly, Such et
al. [40] demonstrated that even a simple genetic algorithm (GA) is
able to optimize a large-scale deep network to play various Atari
games from raw pixels.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321817

However, while the aforementioned deep networks have large
numbers of parameters, their architectures are often relatively sim-
ple feed-forward, directly mapping high-dimensional inputs to the
network’s outputs [40]. It is therefore an open question how ge-
netic algorithms would scale to problems that require more complex
architectures with multiple different and interacting components.

One such neural network-based architecture, which is inspired
by the human cognitive system, is the world model recently intro-
duced byHa and Schmidhuber [13]. This agentmodel contains three
different components: a visual module that maps high-dimensional
inputs to a lower-dimensional representative code, a memory com-
ponent that tries to predict the future based on past experience, and
a decision-making module that determines the action of the agent
based on inputs from the visual and memory module.

The world model is motivated by the insight that our brains learn
abstract representations of both spatial and temporal data, allowing
us to generalize to different situations and to predict potential future
sensory experiences. Because of its predictive abilities, the world
model approach is able to find a solution for a challenging 2-D
car racing task (defined as reaching a minimum average reward
of 900 over 100 consecutive trials), a domain that other deep RL
methods such as Q-Learning and A3C [16, 19] struggle with so far.
However, the approach requires each of its three components to be
trained separately and through specialized training methods. While
the controller part is trained through an evolution strategy, both
the visual and memory components are trained through stochastic
gradient descent based on random rollouts. Given the surprising
and competitive results of GAs on RL problems [40], the question
in this paper is whether a simple GA might also be competitive
with complex heterogeneous systems like world models, and if so,
what type of representation would evolve.

As the results in this paper on a 2-D car racing domain demon-
strate, it is in fact possible to train a complex multi-component
system end-to-end with a simple genetic algorithm. Indeed, the
GA performs comparably to the world model approach and finds a
solution to the task, outperforming all of the other traditional deep
RL methods. Surprisingly, even though the sensory component was
not directly trained to compress similar sensory states to similar
latent codes (as is the case in the training of the autoencoder in
Ha and Schmidhuber [13]), the GA discovers such a representation
by itself because it is beneficial for solving the task. Similarly, the
emergent representation of the memory system is able to predict
situations in which the agent needs to react quickly to changes in
the environment, such as when taking sharp turns.

Additionally, this paper introduces a discrete world model ap-
proach, in which the VAE is restricted to binary outputs. While
traditional machine learning techniques have focused on continu-
ous representations because backpropagating through discrete vari-
ables is challenging [3, 30, 33, 45], evolutionary-based approaches

456

https://doi.org/10.1145/3321707.3321817
https://doi.org/10.1145/3321707.3321817

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

do not struggle with discrete representations. In the future, such rep-
resentations could directly support classical planning approaches
in latent space [2].

Overall, the performance of the GA for evolving the weights of
more complex architectures suggests that it can be a competitive
alternative in many tasks that were thought too high-dimensional
for artificial evolution. In the future, it will be interesting to extend
this approach to not only evolving the network’s weights but also
the architectures of the world models themselves.

2 RELATEDWORK
A variety of different RL algorithms have recently been shown to
work well on a diverse set of problems when combined with the
representative power of deep neural networks [26, 36, 37]. While
most approaches are based on variations of Q-learning [26] or policy
gradient methods [36, 37], recently evolutionary-based methods
have emerged as a competitive alternative [34, 40].

Salimans et al. [34] showed that a type of evolution strategy
(ES) can reach competitive performance in the Atari benchmark
and at controlling robots in MuJoCo. Additionally, Such et al. [40]
demonstrated that a simple genetic algorithm is in fact able to
reach similar performance to deep RL methods such as DQN or
A3C. Earlier approaches that evolved neural networks for RL tasks
worked well in complex RL tasks with lower-dimensional input
spaces [7, 32, 39] and also showed promise in directly learning from
high-dimensional input [21].

However, when trained end-to-end these networks are often still
orders of magnitude simpler than networks employed for super-
vised learning problems [17] or depend on additional losses that
are responsible for training certain parts of the network [48].

More complex agent models often require training different net-
work components separately [13, 46]. For example, in the world
model approach [13], the authors first train a variational autoen-
coder (VAE) on 10,000 rollouts from a random policy to compress
the high-dimensional sensory data and then train a recurrent net-
work to predict the next latent code. Only after this process is a
smaller controller network trained to perform the actual task, tak-
ing information from both the VAE and recurrent network as input
to determine the action the agent should perform.

In another earlier related approach the authors first train an
autoencoder in an unsupervised way [1] or train an object recog-
nizer in a supervised way [28] and then in a separate step evolve
a controller module. The idea in the present paper is to explore
whether a GA can optimize a multi-component system end-to-end
without the need to separate training into different phases, which
is explained in the next section.

Approaches to learning dynamical models have mainly focused
on gradient descent-based methods, with early work on RNNs
in the 1990s [35]. More recent work includes PILCO [6], which
is a probabilistic model-based policy search method and Black-
DROPS [4], which employs CMA-ES for data-efficient optimization
of complex control problems. Additionally, interest has increased
in learning dynamical models directly from high-dimensional pixel
images for robotic tasks [47] and also video games [11]. Work on
evolving forward models has mainly focused on neural networks

that contain orders of magnitude fewer connections and lower-
dimensional feature vectors [27] than the models in this paper.

3 END-TO-END TRAINING OF
MULTI-COMPONENT NETWORKS

The agent model in this paper is based on the world model ap-
proach introduced by Ha and Schmidhuber [13]. The network in-
cludes a sensory component, implemented as a variational autoen-
coder (VAE) that compresses the high-dimensional sensory infor-
mation into a smaller 32-dimensional representative code (Figure 1).
This code is fed into a memory component based on a recurrent
LSTM [15], which should predict future representative codes based
on previous information. Both the output from the sensory com-
ponent and the memory component are then fed into a controller
that decides on the action the agent should take at each time step.

Following Such et al. [40], the deep neural networks are evolved
with a simple genetic algorithm, in which mutations add Gaussian
noise to the parameter vectors of the networks. Three different
mutation operators are investigated:

• In the first approach (MUT-ALL), we apply additive Gauss-
ian noise to the parameter vectors of all three modules (vi-
sion, memory, and controller) at the same time: θ ′ = θ + σϵ ,
where ϵ ∼ N (0, I) and σ was determined empirically and set
to 0.01 for the experiments in this paper.

• In the second module mutation setup (MUT-MOD), a mu-
tation has an equal probability to either mutate the visual,
memory, or controller component of the network. The hy-
pothesis is that this treatment should allow evolution to
better fine-tune each component in the system than an ap-
proach that always adds Gaussian noise to all components.

• To elucidate the advantages of evolving both the VAE and
memory component, their weights are randomly chosen in
the third setup (MUT-C) and only the controller component
is modified through evolution.

In the original world model approach the visual and memory
component were trained separately and through unsupervised
learning based on data from random rollouts. Here they are opti-
mized through a simple genetic algorithm and the components are
not evaluated individually. In other words, the VAE is not directly
optimized to reconstruct the original input data and neither is the
memory component optimized to predict the next time step; the
whole network is trained in an end-to-end fashion and has to learn
a representation by itself that allows it to solve the given task.

Another potential benefit of GAs, beyond being able to train the
whole system end-to-end, is that training discrete VAEs, in which
the latent code takes on only binary values, are seamlessly sup-
ported. While learning representations with continuous features
have been the focus in machine learning, discrete VAEs can have
benefits for domains that are composed of discrete elements (such
as language) or can naturally support classical planning approach
in latent space [2]. However, discrete VAEs have proven difficult to
train through gradient descent-based methods [3, 30] or require a
more complicated training procedure [33, 45], because backpropa-
gating through discrete variables is not directly possible. This paper
tests the idea of evolving discrete VAEs for the car racing domain.
The DISCRETE-MOD approach feeds the original output of the

457

Deep Neuroevolution of Recurrent and Discrete World Models GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Observations
64 x 64 x 3

31x31x32
14x1464

2
x

2
x

25
6

31x31x3231x31x3231x31x32

14x146414x146414x146414x1464
14x14x64 6x6x128

σ
µ

32

M
EM

O
RY

VISUAL COMPONENT (VAE Encoder)

C
O

N
TR

O
LL

ERRe
lu

co
nv

32
 x

4

Re
lu

co
nv

64
 x

4

Re
lu

co
nv

25
6

x
4

Re
lu

co
nv

12
8

x
4

Environment

ac
tio

n

action

z

h

Figure 1: Agent Model. The agent model consists of three modules. A visual component (the encoder of a variational autoencoder) produces
a latent code zt at each time step t , which is concatenated with the hidden state ht of the LSTM-based memory component that takes zt and
previous performed action at−1 as input. The combined vector (zt ,ht) is input into the controller component to determine the next action of
the agent. In this paper, the agent model is trained end-to-end with a genetic algorithm.

(a) Original (b) Scaled (64 × 64 × 3)

Figure 2: Car Racing Domain. In the car racing domain the agent
has to learn to drive across many procedurally generated tracks as
fast as possible from 64 × 64 RGB color images.

VAE encoder through a step function that maps the continuous
outputs to binary values.

4 EXPERIMENT
Following the original world model approach [13], in the experi-
ments in this paper an agent is trained to solve a challenging 2-D
car racing tasks from 64×64 RGB pixel inputs (Figure 2). In this con-
tinuous control task CarRacing-v0 [20] the agent is presented
with a new procedurally generated track every episode, receiving a
reward of -0.1 every frame and a reward of +100/N for each visited
track tile, where N is the total number of tiles in the track. The net-
work controlling the agent (Figure 1) has three outputs to control
left/right steering, acceleration and braking. Further details on the
network model can be found in Section 4.1.

Training agents in procedurally generated environments [44],
instead of only a particular one, can significantly increase their
generality in a variety of different domains and prevent overfitting
[5, 18, 49]. Because each agent is tested on a new randomly created
track each evaluation, we evaluate the top three individuals of each

generation 20 times and average the results to get a better estimate
of the true elite (which gets assigned a fitness of∞). Individuals for
the next generation are composed of the 50% highest performing in-
dividuals in the current generation plus their offspring determined
stochastically through 2-way tournament selection. No crossover
operation was employed. To reduce the computational resources
spent on non-promising individuals, an evaluation is terminated
early in the experiments reported here if an agent is not able to
reach an unvisited track tile in 20 time steps.

Following Ha and Schmidhuber [13], after training the cham-
pions found in each generation are evaluated on 100 randomly
created tracks to estimate their generalization abilities. While it is
not difficult to learn to drive slowly around a track, it is challenging
to find a solution that can drive around any given track perfectly
and as fast as possible. In fact, many traditional deep RL methods
[16, 19], which additionally also require pre-processing such as
edge detection [16] or stacking recent frames [16, 19], fail to reach
high scores on this task (also see Table 2). Interestingly, Ha and
Schmidhuber showed that a world model without the recurrent
memory model receives a significantly lower score in this domain
(decreasing from an average of 906±21 to 788±141), displayingmore
unstable driving behaviors. This result suggests the importance
of a memory model in predicting potential futures that allow the
agent to take sharp corners seamlessly. An interesting question is
whether evolution will discover such dynamics by itself without
being explicitly rewarded to doing so.

4.1 Experimental Setup and Model Details
The size of each population is 200 and evolutionary runs have a
termination criterion of 1,000 generations. An overview of the agent
model is shown in Figure 1, which employs the same architecture
as the original world model approach [13]. The sensory model
is implemented as a variational autoencoder that compresses the
high-dimensional input to a latent vector z. The VAE takes as input

458

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Table 1: Number of parameters and training procedures. The
visual component of the agent (see Figure 1) is effectively only uti-
lizing and evolving the encoder part of the VAE, which has 755,744
parameters. The decoder network is composed of four deconvolu-
tional layers and has 3,592,803 parameters.

Model #Params WM Training [13] GA Training
VAE 4,348,547 SGD - 1 epoch
MD-RNN 384,071 SGD - 20 epochs Pop size 200
Controller 867 CMA-ES - Pop 64 Rollouts 1

Rollouts 16 Solved: 1,200
Solved: 1,800 Gen.

an RGB image of size 64 × 64 × 3, which is passed through four
convolutional layers, all with stride 2. Details on the encoder are
depicted in the visual component shown in Figure 1, where layer
details are shown as: activation type (e.g. ReLU), number of output
channels × filter size. The decoder, which is in effect only used to
analyze the evolved visual representation in Section 5.1, takes as
input a tensor of size 1 × 1 × 104 and processes it through four
deconvolutional layers each with stride 2 and sizes of 128 × 5,
64 × 5, 32 × 6, and 32 × 6. The network’s weights are set using
the default PyTorch initilisation (He initialisation [14]), with the
resulting tensor being sampled from U(−bound, bound), where
bound =

√
1

fan_in .
The memory model [13] combines a recurrent LSTM network

with a mixture density Gaussian model as network outputs, known
as a MDN-RNN [9, 12]. The network has 256 hidden nodes and
models P(zt+1 |at , zt ,ht), where at is the action taken by the agent
at time t and ht is the hidden state of the recurrent network. Similar
models have previously been used for generating sequences of
sketches [12] and handwriting [10]. The controller component is a
simple linear model that directly maps zt and ht to actions: at =
Wc [ztht] + bc , whereWc and bc are weight matrix and bias vector.
Table 1 summarizes the parameter counts of the different world
model components and how they are trained here and in the world
model paper. The code for the experiments in this paper can be
found at: https://github.com/sebastianrisi/ga-world-models. It is
build upon a PyTorch reimplementation of the world model paper
by Tallec et al. [42].

5 RESULTS
Figure 3 shows the performance of each treatment for three indepen-
dent evolutionary runs. Each evolutionary run took approximately
two days to train on a 32-core CPU machine. Mutating either every
parameter in the network or only targeting specific modules does
not result in large changes although there are some notable differ-
ences. While MUT-ALL initially increases faster than MUT-MOD,
all three runs of the latter ultimately reach a higher performance
than any of the MUT-ALL runs. This result suggests that it can
initially be beneficial to change many parameters at the same time
to get a rudimentary behaviour but fine-tuning them is easier with
a mutation operator that only changes one module at a time. The
discrete VAE version DISCRETE-MOD also reaches a similar per-
formance to the other methods, confirming the hypothesis that a

Table 2: CarRacing-v0 scores of different approaches. Only the
original world model and the GA approach introduced in this paper
are able to solve the task (reaching an average score over 900).

Method Average Score
DQN [29] 343 ± 18
DQN + Dropout [8] 893 ± 41
A3C (Continious) [16] 591± 45
A3C (Discrete) [19] 652 ± 10
CEOBILLIONAIRE (Gym leaderboard) 838 ± 11
World model [13] 906 ± 21
World model with random MDN-RNN [43] 870 ± 120
GA (ours) 903 ± 72

GA can seamlessly learn a discrete representation that is useful for
the task at hand. The results also demonstrate that only mutating
the controller part of the neural architecture (MUT-C) and rely-
ing on the features produced by a randomly initialized VAE and
MDN-RNN are not enough to allow the agent to learn to drive.

Interestingly, separate evolutionary runs often follow similar
performance curves (which we also observed in other experiments).
This behaviour appears very different from the training of networks
with orders of magnitude fewer parameters traditionally studied in
neuroevolution, which often have a higher variance across runs [7,
32, 39]. Analyzing this phenomenon in more detail is an interesting
future research direction that we aim to investigate.

After 1,000 generations the MUT-MOD agents were getting very
close to solving the domain, learning to drive around the track
very effectively with few errors, with the best network reaching a
generalization score of 888 ± 66. Therefore we continued evolution
for another 200 generations with a lower mutation rate of 0.003
and evaluated each elite on 40 instead of 20 trials. This approach
led to finding a solution to the task that reached a score of 903 ±
72. This average score is comparable to the original world model
paper and higher than any traditional RL approaches, which reach
scores of around 591 to 893 on average (Table 2). A video of the
best agent driving around the track can be found at: https://youtu.
be/a-tcsnZe-yE.

5.1 Learned Visual Encoder Representation
Because the visual component in our experiments is not specifically
trained to reconstruct the given sensory input, it is interesting to
analyze what information is contained in the learned latent vector
representation. To analyze this question, the evolved VAE encoder
weights of a champion network are kept fixed while a decoder is
trained in a unsupervised way to reconstruct data collected from a
random policy. The decoder is trained for 100 iterations with the
Adam optimization algorithm, a learning rate of 0.0001, using the
mean squared distance between the reconstructed image and the
input image as loss, in addition to Kullback-Leibler (KL) loss.

Interestingly, while the initial random networks from the first
generation do not allow the reconstruction of different track im-
ages (Figure 4a), which suggests that the initial random weights fail
to capture some important information from the pixel inputs, the
latent code of the evolved representation contains enough informa-
tion for this task (Figure 4b). However, the low reconstruction error

459

https://github.com/sebastianrisi/ga-world-models
https://youtu.be/a-tcsnZe-yE
https://youtu.be/a-tcsnZe-yE

Deep Neuroevolution of Recurrent and Discrete World Models GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Figure 3: Training performance on CarRacing-v0. The
score of the best individual is shown in each generation evalu-
ated on 20 randomly created tracks. All approaches, except MUT-C,
are able to evolve agent models that can drive around the track at
high speed while making very few mistakes.

(a) RandomWeights (b) Evolved Weights

Figure 4: VAE Reconstructions.While a network with random
encoder weights does not allow the VAE to learn to reconstruct
the given images (a), the evolved weights of a champion network
encoder enabled different road images to be reconstructed (b). These
results suggest that evolution discovered how to compress useful
information in the latent code produced by the VAE’s encoder.

does not directly explain how the evolved network is utilizing this
compressed representation to drive efficiently around the track.

To analyze this question further, we employ the t-SNE dimension-
ality reduction technique [24] tomap the sequence of 32-dimensional
latent vectors collected during one car racing rollout to two dimen-
sions. t-SNE has already been proven valuable for gaining insight
into the workings of deep neural networks [26, 41].

The mapping (Figure 5) suggests that the agent learned to rep-
resent situations that require a similar action (e.g. turning sharp
left or right) with a similar latent vector. For example, situations
in which the agent needs to turn right are represented by similar
latent codes, which are clustered together, while latent codes for
situations in which the agent needs to drive straight or turn left
are part of a different cluster. By learning an abstract, compressed

representation of the higher-dimensional pixel inputs, it becomes
easier for the controller module to learn the required behaviors.

5.2 Learned Forward Model Dynamics
In addition to the visual encoder representation, it is interesting
to investigate the emergent dynamics of the evolved predictive
memory component.

Figure 6 visualizes the activation levels of the MDN-RNN while
the agent is driving around two tracks. To get a better sense of the
dynamics of the system, we are interested in how much the average
activation xt of all 256 hidden nodes at time step t differs from the
overall average across all time steps X̄ = 1

N
∑N

1 x̄t . The variance of
x̄t is thus calculated as σt = (X̄ − x̄t)

2, and normalized to the range
[0, 1] before plotting. Activation levels far from the mean should
have a higher impact on the agent’s controller component and
can indicate situations in which the agent needs to pay particular
attention to the predictions of the MDN-RNN.

The results show that the dynamics of the recurrent network
are changing more drastically when the agent is near a corner and
change less when the agent is driving on straight track segments.
This effect confirms the hypothesis that predicting future sensory
states is particularly important during situations in which the agent
needs to react quickly to changes in the environment.

6 DISCUSSION AND FUTUREWORK
This paper demonstrated that genetic algorithms can not only train
the weights of relatively simple network architectures but also com-
plicated systems with over a million weights that include different
components for sensory processing, memory, and decision mak-
ing in an end-to-end fashion. The approach outperforms standard
deep RL approaches and reaches a comparable performance to the
recently-introduced world model approach that relies on a much
more complex training regimen. Another surprising result is that
the GA found a solution with a population size of only 200, com-
pared to the much larger population sizes of 1,000 in the work by
Such et al. [40] on Atari video game playing.

The difference between the two mutation treatments MUT-MOD
andMUT-ALL also suggests a potentially useful hybrid approach, in
whichmutations sometimes affect all network layers and sometimes
only one layer at a time. Such an approach could combine the better
initial exploration of MUT-ALL with the ability of MUT-MOD to
better fine-tune different parts of the network in later generations.

While the final average generalization score is slightly lower
than the score in the original world model paper [13], the presented
system does indeed solve the task while not relying on first learning
from a large number of random rollouts; instead the system can
learn directly in interaction with the environment. The slightly
lower average score (903 compared to 906) with a higher standard
deviation (72 compared to 21) could be explained by the fact that
if random rollout data is available, training each component sep-
arately might produce slightly more robust solutions. However,
especially in more complicated tasks for which data collected dur-
ing random rollouts is insufficient (because a random rollout might
not reach all relevant parts of the environment), the end-to-end
learning approach could become more important.

460

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Figure 5: Evolved Visual Representation. t-SNE mapping of the 32-dimensional latent vectors onto two dimensions. The three action
outputs of the agent are mapped to the RGB color values of each plot point (R=steer, G=gas, B=break). The GA successfully discovered a
visual encoder that maps similar pixel inputs to similar latent codes. Similar latent codes in turn determine similar agent actions, such as
turning right (1), driving straight (2), or turning left (3).

Driving direction

0

1

Figure 6: Dynamics of Evolved Forward Model. The size and color of each marker reflects the variance in activation levels of the
MDN-RNN’s hidden state while the agent is driving around the track (brighter colors and larger marker sizes indicate higher magnitudes).
Variance levels are typically higher when the agent is near corners, while they are lower on straight road segments. These results suggest
that the evolved agent model is most reliant on the memory component in situations that benefit from predicting future sensory states.

One advantage and indeed motivation of the original world
model approach was the fact that agents can train and improve
in the environments generated by the world model itself, without
using the actual environment. Testing the evolved world model
presented in this paper for the same purpose is an important next
step. As noted by Ha and Schmidhuber [13], the discrete modes in
the mixture density model can be beneficial in environments with
random discrete events (e.g. firing of a weapon in an FPS game).
They observed that if the temperature parameter that controls the
model’s uncertainty is set to a very low value, the enemies in the
world model of their FPS environment never fire their weapons; the
MDN-RNN is not able to reach a mode in the mixture of Gaussian

models in which this event happens. In this context, we hypothesise
that the ability of the GA to evolve discrete VAE representations
(which are fed into the MDN-RNN) could make it even easier for
the model to switch between different modes than the current
continuous VAE version.

Another exciting prospect is not only to evolve the weights
of such large-scale deep networks but also the neural architec-
tures themselves. While evolutionary algorithms have allowed the
architectures of relatively simple networks to be evolved for re-
inforcement learning problems, so far larger-scale architectures
have mostly been evolved in combination with supervised learn-
ing [25] and not extended to very complex RL problems. Other

461

Deep Neuroevolution of Recurrent and Discrete World Models GECCO ’19, July 13–17, 2019, Prague, Czech Republic

promising extensions to the simple GA used in this paper could
be additional crossover operators, indirect encodings such as Hy-
perNEAT [31, 38], safe mutations [22], or more exploratory search
methods such as novelty search [23].

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers and David Ha
for their insightful comments that very much improved the presen-
tation of this paper. We would also like to thank all of the members
of Uber AI for helpful discussions.

REFERENCES
[1] Samuel Alvernaz and Julian Togelius. 2017. Autoencoder-augmented neuroevo-

lution for visual doom playing. In Computational Intelligence and Games (CIG),
2017 IEEE Conference on. IEEE, 1–8.

[2] Masataro Asai and Alex Fukunaga. 2018. Classical planning in deep latent space:
Bridging the subsymbolic-symbolic boundary. In Thirty-Second AAAI Conference
on Artificial Intelligence.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

[4] Konstantinos Chatzilygeroudis, Roberto Rama, Rituraj Kaushik, Dorian Goepp,
Vassilis Vassiliades, and Jean-Baptiste Mouret. 2017. Black-box data-efficient
policy search for robotics. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 51–58.

[5] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman.
2018. Quantifying generalization in reinforcement learning. arXiv preprint
arXiv:1812.02341 (2018).

[6] Marc Deisenroth and Carl E Rasmussen. 2011. PILCO: A model-based and
data-efficient approach to policy search. In Proceedings of the 28th International
Conference on machine learning (ICML-11). 465–472.

[7] Dario Floreano, Peter Dürr, and Claudio Mattiussi. 2008. Neuroevolution: from
architectures to learning. Evolutionary Intelligence 1, 1 (2008), 47–62.

[8] P. Gerber, J. Guan, E. Nunez, K. Phamdo, T. Monsoor, and N. Malaya. 2018.
Solving OpenAI’s Car Racing Environment with Deep Reinforcement Learning
and Dropout. https://github.com/AMD-RIPS/RL-2018/blob/master/documents/
nips/nips_2018.pdf

[9] Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850 (2013).

[10] Alex Graves. 2013. Hallucination with recurrent neural networks. https://www.
youtube.com/watch?v=-yX1SYeDHbg&t=49m33s

[11] Matthew Guzdial, Boyang Li, and Mark O Riedl. 2017. Game Engine Learning
from Video.. In IJCAI. 3707–3713.

[12] David Ha and Douglas Eck. 2017. A neural representation of sketch drawings.
arXiv preprint arXiv:1704.03477 (2017).

[13] David Ha and Jürgen Schmidhuber. 2018. Recurrent world models facilitate policy
evolution. In Advances in Neural Information Processing Systems. 2455–2467.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision. 1026–1034.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Min J. Jang, S. and C. Lee. 2017. Car racing with A3C. https://www.scribd.com/
document/358019044/

[17] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. 2019. Deep
learning for video game playing. To appear in: IEEE Transactions on Games (2019).

[18] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian
Togelius, and Sebastian Risi. 2018. Illuminating Generalization in Deep Reinforce-
ment Learning through Procedural Level Generation. NeurIPS 2018 Workshop on
Deep Reinforcement Learning (2018).

[19] M. Khan and O. Elibol. 2018. Car racing using reinforcement learning. https:
//web.stanford.edu/class/cs221/2017/restricted/p-final/elibol/final.pdf.

[20] Oleg Klimov. 2016. Carracing-v0. https://gym.openai.com/envs/CarRacing-v0/
[21] Jan Koutník, Jürgen Schmidhuber, and Faustino Gomez. 2014. Evolving deep

unsupervised convolutional networks for vision-based reinforcement learning.
In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Compu-
tation. ACM, 541–548.

[22] Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O Stanley. 2017. Safe Mutations
for Deep and Recurrent Neural Networks through Output Gradients. arXiv
preprint arXiv:1712.06563 (2017).

[23] Joel Lehman and Kenneth O Stanley. 2008. Exploiting open-endedness to solve
problems through the search for novelty.. In ALIFE. 329–336.

[24] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[25] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,
Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,
et al. 2019. Evolving deep neural networks. In Artificial Intelligence in the Age of
Neural Networks and Brain Computing. Elsevier, 293–312.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[27] Mohammad Sadegh Norouzzadeh and Jeff Clune. 2016. Neuromodulation im-
proves the evolution of forward models. In Proceedings of the Genetic and Evolu-
tionary Computation Conference 2016. ACM, 157–164.

[28] Andreas Precht Poulsen, Mark Thorhauge, Mikkel Hvilshj Funch, and Sebastian
Risi. 2017. DLNE: A hybridization of deep learning and neuroevolution for visual
control. In Computational Intelligence and Games (CIG), 2017 IEEE Conference on.
IEEE, 256–263.

[29] Luc. Prieur. 2017. Deep-Q learning for Box2d racecar RL problem. https://goo.
gl/VpDqSw

[30] Tapani Raiko, Mathias Berglund, Guillaume Alain, and Laurent Dinh. 2014. Tech-
niques for learning binary stochastic feedforward neural networks. arXiv preprint
arXiv:1406.2989 (2014).

[31] Sebastian Risi and Kenneth O Stanley. 2012. An enhanced hypercube-based en-
coding for evolving the placement, density, and connectivity of neurons. Artificial
life 18, 4 (2012), 331–363.

[32] Sebastian Risi and Julian Togelius. 2017. Neuroevolution in games: State of the
art and open challenges. IEEE Transactions on Computational Intelligence and AI
in Games 9, 1 (2017), 25–41.

[33] Jason Tyler Rolfe. 2016. Discrete variational autoencoders. arXiv preprint
arXiv:1609.02200 (2016).

[34] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864 (2017).

[35] Jürgen Schmidhuber. 1990. An on-line algorithm for dynamic reinforcement
learning and planning in reactive environments. In 1990 IJCNN international joint
conference on neural networks. IEEE, 253–258.

[36] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International Conference on Machine
Learning. 1889–1897.

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[38] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. 2009. A hypercube-
based encoding for evolving large-scale neural networks. Artificial life 15, 2
(2009), 185–212.

[39] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[40] Felipe Petroski Such, VashishtMadhavan, Edoardo Conti, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. 2017. Deep neuroevolution: genetic algorithms are a
competitive alternative for training deep neural networks for reinforcement
learning. arXiv preprint arXiv:1712.06567 (2017).

[41] Felipe Petroski Such, Vashisht Madhavan, Rosanne Liu, Rui Wang, Pablo Samuel
Castro, Yulun Li, Ludwig Schubert, Marc Bellemare, Jeff Clune, and Joel Lehman.
2018. An atari model zoo for analyzing, visualizing, and comparing deep rein-
forcement learning agents. arXiv preprint arXiv:1812.07069 (2018).

[42] Corentin Tallec, Léonard Blier, and Diviyan Kalainathan. 2018. Reimplementation
of World-Models (Ha and Schmidhuber 2018) in pytorch. https://github.com/
ctallec/world-models

[43] Corentin Tallec, Léonard Blier, and Diviyan Kalainathan. 2018. Reproducing
"World Models" Is training the recurrent network really needed ? https://ctallec.
github.io/world-models/

[44] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne.
2011. Search-based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in Games 3, 3 (2011), 172–186.

[45] Aaron van den Oord, Oriol Vinyals, et al. 2017. Neural discrete representation
learning. In Advances in Neural Information Processing Systems. 6306–6315.

[46] Niklas Wahlström, Thomas B Schön, and Marc Peter Deisenroth. 2015. From
pixels to torques: Policy learning with deep dynamical models. arXiv preprint
arXiv:1502.02251 (2015).

[47] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller.
2015. Embed to control: A locally linear latent dynamics model for control from
raw images. In Advances in neural information processing systems. 2746–2754.

[48] Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Ag-
nieszka Grabska-Barwinska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam San-
toro, et al. 2018. Unsupervised Predictive Memory in a Goal-Directed Agent.
arXiv preprint arXiv:1803.10760 (2018).

[49] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. 2018. A study
on overfitting in deep reinforcement learning. arXiv preprint arXiv:1804.06893
(2018).

462

https://github.com/AMD-RIPS/RL-2018/blob/master/documents/nips/nips_2018.pdf
https://github.com/AMD-RIPS/RL-2018/blob/master/documents/nips/nips_2018.pdf
https://www.youtube.com/watch?v=-yX1SYeDHbg&t=49m33s
https://www.youtube.com/watch?v=-yX1SYeDHbg&t=49m33s
https://www.scribd.com/document/358019044/
https://www.scribd.com/document/358019044/
https://web.stanford.edu/class/cs221/2017/ restricted/p-final/elibol/final.pdf.
https://web.stanford.edu/class/cs221/2017/ restricted/p-final/elibol/final.pdf.
https://gym.openai.com/envs/CarRacing-v0/
https://goo.gl/VpDqSw
https://goo.gl/VpDqSw
https://github.com/ctallec/world-models
https://github.com/ctallec/world-models
https://ctallec.github.io/world-models/
https://ctallec.github.io/world-models/

	Abstract
	1 Introduction
	2 Related Work
	3 End-to-end Training of Multi-Component Networks
	4 Experiment
	4.1 Experimental Setup and Model Details

	5 Results
	5.1 Learned Visual Encoder Representation
	5.2 Learned Forward Model Dynamics

	6 Discussion and Future Work
	References

