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ABSTRACT
Recent work has looked at the evolvability of biological networks
by representing them as graphs or functions, and studying the con-
ditions under which certain structures are feasibly reachable. One
key factor in enabling evolvability appears to be some form of prior
constraint or inductive bias on the evolutionary landscape, which
typically represents selectivity for low-complexity structures. Here
we examine two different approaches for incorporating this kind
of inductive bias in genetic algorithms, and propose a simulation
framework allowing us to compare them and to relate the notion
of a function class to that of a function’s algorithmic complexity.
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1 INTRODUCTION
A key question in thinking about biological evolution algorithmi-
cally is that of computational complexity: what sorts of evolutionary
targets are actually evolvable given feasible time and resources?
Valiant [3] sought to use learning theory to characterise the evolv-
ability of targets from certain Boolean function classes (representing
combinatorial regulation of gene expression). Restricting the search
space to a chosen class (such as conjunctions) here served as a form
of inductive bias, in the learning-theoretic sense. Hernández-Orozco
et al. [2], on the other hand, deployed the notion of algorithmic
(Kolmogorov) complexity to favour the evolution of ‘simple’ net-
work structures (represented as matrices). In different settings, both
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studies showed that biasing evolutionary search towards simplicity
of some kind can speed up convergence to relevant targets. Here
we propose a common simulation framework to examine how these
two forms of inductive bias might relate to each other in terms of
their facilitation of evolution, and whether they might be unified.

2 BACKGROUND
Valiant [3] suggests that Darwinian evolution can be formulated
as a learning problem, where learning is only guided by aggregate
fitness. Individuals/populations are modelled as many-argument
Boolean functions, where the input variables may represent gene
expression levels or environmental factors, and the output the re-
sponse of a particular downstream gene. Within a genetic algorithm
setup, restricting the search space to a particular function class al-
lows him to obtain results on which function classes are evolvable
in polynomial (in the number of input variables) time and resources.
Simpler classes like conjunctions are shown to be more evolvable
than less simple classes like parity functions.

Chaitin [1] introduced a model based on algorithmic informa-
tion theory (AIT) where evolution is seen as a random walk in the
space of all valid programs. The framework proposed by Hernández-
Orozco et al. [2] explores this setting experimentally. They investi-
gate how altering the probability distribution over mutations affects
the rate of convergence of evolution, showing that when mutations
with low algorithmic complexity are favoured, convergence to tar-
get matrices with some algorithmic structure can be significantly
faster, relative to uniform mutations. This algorithmic structure is
described using BDM (Block Decomposition Method) values, which
are an approximation to the Kolmogorov complexity. Matrices with
low BDM values are said to be more structured.

3 METHODOLOGY
We examine how the Valiant [3] notion of inductive bias via choice
of function class might translate to the simulation framework
of Hernández-Orozco et al. [2]. The distribution favouring low-
complexity mutations in the AIT setting, called the universal distri-
bution, could be seen as a ‘soft’ constraint on the mutation space, in
contrast to the ‘hard’ constraint of explicitly restricting mutations
to a chosen function class. We propose a framework which repre-
sents Boolean functions as matrices, to study their evolution in the
AIT setting; and in addition to the soft constraint, also restricts the
mutation space in a hard way by using the algorithmic structure.

Boolean functions are represented via minterms, i.e., for a func-
tion of𝑛 variables it maps to a 2𝑛-bit string or 2𝑛×1matrix. The hard
constraint is implemented via a BDM-value threshold where the
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Figure 1: An example iteration with hard BDM threshold.

mutation space is 𝑀 (𝑟 ) = {𝑥 : 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑟, 𝑥) ≤ 1 & 𝐵𝐷𝑀 (𝑥) ≤
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} (Figure 1). In the ‘soft’ case, the mutations are biased
towards structures with low BDM; in the ’hard’ case, every muta-
tion lies below a BDM threshold. The latter restricts the space to
a subset of all Boolean functions which are meant to be simple in
terms of algorithmic structure, and we explore how such subsets
might relate to particular function classes like conjunctions.

4 RESULTS
We first examine how BDM values are distributed within Boolean
function classes (Figure 2). Conjunctions are spread over a much
smaller range than parity functions, and both are clearly separated
from randomly sampled Boolean functions. This validates our key
idea: a hard threshold on the BDM value can approximate the
selection of mutations from a chosen function class, and intuitively
‘simpler’ classes appear to have lower BDM values.

Figure 2: BDM value distribution by function type.

We then experiment with evolving target functions ranging
over all conjunctions and parity functions. We do 50 runs for each

target and average over all runs. The baseline ‘no threshold’ case
uniformly allows all 1-bit shift mutations. The soft constraint setting
converges fastest (Table 1) and our hard threshold case is faster
than the baseline. As expected, mutations as per the full universal
distribution are the strongest form of inductive bias, and lead to
selected mutations with the lowest BDM values (Figure 3), while the
hard threshold also sees some lowering compared to the baseline.

BDM Thr. None 126.26 bits 145 bits 174.96 bits 185 bits Full BDM distr.
Targets: 6-variable conjunctions

Gens. 9.37 ± 5.12 8.74 ± 4.82 8.87 ± 4.92 9.01 ± 5.05 9.03 ± 5.04 5.04 ± 3.08
Exts. 0 ± 0.0 1.84 ± 5.18 0.81 ± 4.29 0 ± 0.0 0 ± 0.0 0 ± 0.0

Targets: 6-variable odd parity functions
Gens. 32.76 ± 7.45 29.67 ± 9.37 31.49 ± 8.13 32.04 ± 7.11 31.96 ± 7.3 17.15 ± 9.78
Exts. 0 ± 0.0 41.8 ± 5.89 34.54 ± 10.67 0.02 ± 0.13 0 ± 0.0 0 ± 0.0

Table 1: Generations to converge and no. of extinctions for
different inductive biases. Pink/blue: BDM thresholded at
max. value for conjunctions and parity fns. respectively.

Figure 3: Generation-wise BDM values by bias setting.

5 DISCUSSION AND CONCLUSIONS
We show that bounding algorithmic complexity when evolving
Boolean functions approximates the restriction of the search space
to ‘simple’ function classes: a starting point for relating the ‘hard’
[3] and ‘soft’ [2] forms of inductive bias previously examined. Such
a bound is a weaker form of bias than the full universal distribution,
and leads to a smaller but still notable speed-up in the evolution
of functions with algorithmic structure. Biologically, a restriction
on realisable functional mechanisms (such as conjunction) may be
a more plausible constraint on the search space than algorithmic
complexity values of functions being directly encoded in the system.
But the facilitation of evolution in such restricted search spaces
might in turn be seen as the result of an implicit favouring of low-
complexity mutations. These observations motivate further study of
the relations between learning-theoretic and information-theoretic
perspectives on the computational complexity of evolution.
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