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ABSTRACT
Locating odour sources is a hard task that has been addressed with
a large variety of AI methods to produce search strategies with
different levels of efficiency and robustness. However, it is still
not clear how to evaluate those strategies. Simply evaluating the
robot’s ability to reach the goal may produce deceptive fitness
values, favouring poor strategies that do not generalise. Conversely,
including prior knowledge may bias the learning process. This work
studies the impact of evaluation functions with various degrees of
prior knowledge, in evolving search strategies. The baseline is set
by performing multiple evaluations of each strategy with a function
that only evaluates the task efficiency. A function was found that
is able to produce strategies with equivalent performance to those
of the baseline, whilst performing a single evaluation.
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1 INTRODUCTION
The natural phenomena associated with gas dispersion, make lo-
cating odour sources in real environments a hard task which is
often not successfully solved by hand-designed strategies. Over
the years, Artificial Intelligence (AI) and Evolutionary Robotics
(ER) methods have been proposed to enable robots to learn and
adapt search strategies to dynamic environments. However, most
methods guide their learning process through fitness functions
which are not easily designed for Odour Source Localisation (OSL).
The stochastic nature of airflow and chemical dispersion lead to
high degrees of uncertainty in the evaluation [2], being common
for an individual to receive different fitness values over multiple
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evaluations. While an individual could be evaluated through the
duration of the evaluation, such approach enables poor strategies
to attain good fitness by chance. A common approach in ER is to
evaluate each candidate solution multiple times to reduce the effects
of uncertainty [2]. Unfortunately, the time associated with fitness
evaluations render such approaches less desirable.

The present work focuses on accurately measuring the quality
of an OSL strategy from a single evaluation. Ideally, the fitness
function should evaluate how well a given strategy searches for the
source, rather than evaluating how well it finds the source.

2 FITNESS FUNCTIONS FOR OSL
Most OSL works differ in the evaluation functions, but three aspects
are usually present: (1) time spent; (2) distance travelled; (3) final dis-
tance to the source. Some works [1] reward the time spent sensing
odour or the mean odour concentration sensed, which introduces a
piece of prior knowledge: the concept that the agent should stay
in the plume to track it. The knowledge that the wind carries the
odour away from its source could also be introduced, rewarding
upwind movements when sensing odour (𝑢). Conversely, when the
robot loses the plume, it either: (1) moved too much crosswind;
(2) moved past the chemical source without finding it; or (3) the
meandering of the plume moved it away from the robot. Drawing
inspiration from biological strategies, the robot should be rewarded
for moving crosswind or downwind to re-encounter the plume (𝑙 ).
The resulting fitness function is defined as:
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being 𝑑 and 𝐷 respectively the final and maximum distances to the
source, 𝑡 the time spent, 𝑇 the maximum evaluation time, 𝑡𝑝 the
time spent sensing odour, 𝛼 , 𝛽 , 𝛾 , 𝜁 and 𝜌 weight coefficients and 𝑢
and 𝑙 computed as follows:

𝑢 =

𝑁∑
𝑖=1

(
𝑑𝑖 · cos(𝑢𝑤𝑖 )
𝑣 · Δ𝑡 + 1

)
, 𝑙 =

𝐿∑
𝑖=1

(
𝑑𝑖 · (cos(𝑐𝑤𝑖 ) + cos(𝑑𝑤𝑖 ))

2𝑣 · Δ𝑡 + 1

)
(2)

being 𝑁 and 𝐿 respectively the amount of steps sensing and not
sensing odour, 𝑣 the robot’s linear speed, Δ𝑡 the duration of the
control step and 𝑑 , 𝑢𝑤𝑖 , 𝑐𝑤𝑖 , 𝑑𝑤𝑖 the distance travelled and the
perceived upwind, crosswind and downwind directions in step 𝑖 .

3 EXPERIMENTAL SETUP
3.1 Geometric Syntactic Genetic Programming
In this work, Geometric Syntactic Genetic Programming (GSynGP)
[5] is used to evolve the robotic search strategies in the form of
decision trees. The terminal and function sets are adapted from [5].
A population of 100 individuals is evolved for 100 generations. The
trees are created with a maximum depth of 5. On each generation,
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Table 1: Weights and objectives of the evaluation methods

Function 𝛼 𝛽 𝛾 𝜁 𝜌

𝐹1 1.0 1.0 0.0 0.0 0.0
𝐹2 1.0 1.0 1.0 0.0 0.0
𝐹3 1.0 1.0 0.0 1.0 1.0
𝐹4 1.0 1.0 1.0 1.0 1.0
𝐿𝑃𝑃1 𝑑/𝐷 𝑡/𝑇 1 − 𝑡𝑝/𝑇 1 −𝑢 1 − 𝑙

𝐿𝑃𝑃2 𝑡/𝑇 1 −𝑢 1 − 𝑙 1 − 𝑡𝑝/𝑇 𝑑/𝐷
𝐿𝑃𝑃3 1 − 𝑡𝑝/𝑇 𝑡/𝑇 𝑑/𝐷 1 − 𝑙 1 −𝑢

𝐿𝑃𝑃4 1 − 𝑙 1 −𝑢 1 − 𝑡𝑝/𝑇 𝑡/𝑇 𝑑/𝐷

10 random and 10 elitist immigrants are injected into the population.
The parents are selected through binary tournaments, crossover is
applied with 0.7 rate and with a number of iterations ranging from
1 to half of distance between the parents. Mutation is applied with
0.3 rate. The survivors selection is generational with an elite of 3.

3.2 Evaluation Environment
A simulation environment is devised based on simulator developed
for ER and OSL [4]. It consists of a 40x40m arena with no obstacles
and a single odour source. The environment is characterised by
three variables: the wind speed (𝑊𝑠 , set to 1 m/s), the std. dev. of the
Gaussian noise of the wind vectors (𝑊𝑣 , set to 0.1 rad) and the fila-
ment emission rate (𝐹𝑟 , set to 1 Hz). The initial position of the robot
(x,y) is randomly selected from 𝑁 (36, 1.5)𝑚 in the odd-numbered
evaluations. In the even-numbered evaluations, its y coordinate
is sampled from 𝑁 (4, 1.5)𝑚. The position of the odour source is
sampled uniformly, with 𝑥 ∈ [10, 12]𝑚 and 𝑦 ∈ [19.2.21.2]𝑚. A
simulation is successful if the robot reaches a position less than 2m
from the source or fails if the 1500s time limit is reached.

3.3 Evaluation Functions
The devised evaluation functions are presented on Table 1. Due to
the difficulty in assigning proper weights to the components of the
evaluation function, Lexicographic Parsimony Pressure [3] (𝐿𝑃𝑃 )
is used to create four additional variants, differing in the order of
the objectives. For completeness, a Pareto-based method (𝑃 ) is also
used to evolve the search strategies. The baseline for comparison
(𝐹𝑏 ) is set by evaluation each individual three times with 𝐹1.

4 EXPERIMENTAL RESULTS
30 independent runs of GSynGP are performed for each function,
being the resulting search strategies re-evaluated in the 30 instances
of the simulation environment. The functions are compared through
the Success Rate (𝑆𝑟 ), the ratio of time spent in successful exper-
iments (𝑇𝑠 ), the ratio of final distance to the odour source in the
unsuccessful evaluations (𝐷𝑢 ), and the trajectory diversity (𝑇𝑑 ),
which is an indication of the bias of the evolutionary process. The
higher the bias, the lower the trajectory diversity should be. The
Wilcoxon test is applied to compare each function to 𝐹𝑏 at a 95%
confidence interval (the significance value is adjusted to 0.0056 with
the Bonferroni correction). Table 2, shows that evaluating each in-
dividual multiple times (𝐹𝑏 ) effectively reduces the uncertainty of
the fitness value, raising 𝑆𝑟 and lowering 𝐷𝑢 . The Wilcoxon test
showed that, 𝐹𝑏 produces strategies significantly more robust than
𝐹1 (p=0.004), 𝐹3 (p=0.002), 𝐿𝑃𝑃1 (p=0.003) and 𝐿𝑃𝑃4 (p=0). 𝐹2 is

the only function with higher 𝑆𝑟 than 𝐹𝑏 (even though it is not
Table 2: Performance of the evolved strategies

Final strategies Best strategy
Function 𝑆𝑟 𝑇𝑠 𝐷𝑢 𝑇𝑑 # 𝑆𝑟 𝑇𝑠 𝐷𝑢

𝐹𝑏 52.7% 32.4% 48.3% 88.1% 2 90% 30.6% 40.5%
𝐹1 32.3% 24.3% 55.6% 90.1% 1 70% 59.8% 42.6%
𝐹2 55.3% 37.5% 47.0% 87.0% 1 100% 34.7% n/a
𝐹3 30.8% 33.8% 52.4% 88.1% 1 93% 21.7% 39.0%
𝐹4 41.8% 32.4% 51.1% 88.5% 2 97% 28.2% 29.8%
𝐿𝑃𝑃1 33.1% 26.3% 53.8% 95.7% 1 87% 25.2% 24.2%
𝐿𝑃𝑃2 34.7% 22.0% 54.0% 96% 1 70% 22.0% 38.0%
𝐿𝑃𝑃3 33.9% 46.5% 44.1% 95.4% 1 87% 37.5% 60.4%
𝐿𝑃𝑃4 24.2% 65.3% 52.0% 93.3% 2 77% 80.7% 39.6%
𝑃 44.8% 29.9% 53.4% 84.8% 1 97% 36.6% 46.9%

significantly different (p=0.504)) and to produce a strategy with
100% 𝑆𝑟 . The only strategies significantly faster (lower 𝑇𝑠 ) than
those of 𝐹𝑏 were produced by 𝐿𝑃𝑃2 (p=0). Conversely, the strate-
gies produced by 𝐿𝑃𝑃3 are significantly slower than those of 𝐹𝑏
(p=0). For 𝐷𝑢 , only two significant differences were found: 𝐹1 and
𝐿𝑃𝑃2 are worse than 𝐹𝑏 (p=0.002, 0.004). Finally, only 𝑃 produced
significantly less diverse trajectories than 𝐹𝑏 (p=0). 𝐹1 along with
all LPP approaches produced significantly more diverse trajectories
than 𝐹𝑏 (all p-values=0).

5 CONCLUSIONS
This paper designed and compared different evaluation functions
for OSL strategies. The baseline was set by performing three evalu-
ations of each individual with a function that measures the final
distance to the source and the time spent to reach it. The results
showed that the simplest function with prior knowledge (𝐹2) pro-
duces search strategies that are equivalent to those of 𝐹𝑏 under
all performance metrics, whilst making a single evaluation and
consequently cutting down the computational time to one third.
Moreover, 𝐹2 produced a strategy more robust than the best of 𝐹𝑏
(100% vs 90% success rate) and with equivalent speed.

In the future, methods to compute the weight coefficients should
be studied and other concepts of prior knowledge should be ex-
plored and included into the evaluation functions.
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