
1

Search Based Software Engineering:
challenges, opportunities and recent applications

Ali Ouni
ETS Montreal, University of Quebec

ali.ouni@etsmtl.ca

The Genetic and Evolutionary Computation Conference
(GECCO 2021)

July 10-14, 2021

Mohamed Wiem Mkaouer
Rochester Institute of Technology

mwmvse@rit.edu

GECCO '21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8351-6/21/07…$15.00
https://doi.org/10.1145/3449726.3461425

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

Acknowledgments

• Many thanks to
• Prof. Mark Harman (Founder of Search-Based Software

Engineering)
• Prof. Marouane Kessentini
• My students and collaborators
for the inspiration to prepare part of this tutorial

• References:
• Mark Harman, Search Based Software Engineering: Automating

Software Engineering, FSE2011, Technical Briefings.

2

❖ Ali Ouni is an Associate Professor in the Department
of Software Engineering and IT at ETS Montreal,
University of Quebec, where he leads the Software
Technology and Intelligence (STI) Research Lab, since
2017. He received his Ph.D. degree in computer
science from University of Montreal in 2015. Before
joining ETS Montreal, he has been an assistant
professor at Osaka University, Japan, and UAE
University.

❖ Mohamed Wiem Mkaouer is currently an Assistant
Professor in the Software Engineering Department, in
the B. Thomas Golisano College of Computing and
Information Sciences at the Rochester Institute of
Technology. He received his PhD in 2016 from the
University of Michigan-Dearborn.

Instructors

3

Agenda

• Philosophical Basis: Science and Engineering

• What is SBSE?

• Recent applications
• SBSE for Performance regression [SSBSE’19]
• SBSE for Web service design [TSC’17 + ASE’19]
• SBSE for Modern Code Review [ICSME’16 + GECCO’20]

• A hands-on activity with SBSE
• MOEA Framework
• Software migration

• Challenges and future work with SBSE

4

1032

2

Scientists’ and Engineers’ Viewpoints

Scientist:

• What is true

• Correctness

• Model the world to understand

Engineer:

• What is possible

• Within tolerance

• Model the world to manipulate it

Question:
How things are theoretically done?

Question:
How things are practically done?

5

Scientists’ and Engineers’ Viewpoints

Scientist:

• What is true about computation

• Proof correctness

• Make it perfect

Engineer:

• What is possible with software

• Test for imperfection

• Find where to improve

6

Agenda

• Philosophical Basis: Science and Engineering

• What is SBSE?

• Recent applications
• SBSE for Performance regression [SSBSE’19]
• SBSE for Web service design [TSC’17 + ASE’19]
• SBSE for Modern Code Review [ICSME‘16 + GECCO’20]

• A hands-on activity with SBSE
• MOEA Framework

• Challenges and future work with SBSE
7

Engineering Words

Toleranc
e With acceptable bounds

Improve performance
Optimise

Reduce cost
Optimize

Within constraints

8

1033

3

Engineering Words

Toleranc
e With acceptable bounds

Improve performance
Optimise

Reduce cost
Optimize

Within constraints

so good they named it twice! SBSE
Optimise
Optimize

9

What is SBSE ?

• SBSE uses intelligent search techniques to explore
large search spaces, guided by a fitness function
that captures properties of the desirable solutions
we seek.

Tabu
Search

Genetic Programming

Simulated Annealing

Ant Colonies

Hill Climbing
Particle Swarm Optimization

Harmony Search

The term “Search-Based Software Engineering” (SBSE) coined in 2001 by Mark Harman.

10

Artificial Intelligence

ROBOTICS

Machine Learning

Evolutionary

GA

GP IBEA

SA

NSGA

What are search algorithms?

11

What is SBSE ?

Search-Based
Optimization

Software
Engineering

S
B
S
E

Software Engineering
• Automated test generation
• Code refactoring
• Software proj. management
• Requirements engineering
• Fault localization
• Program repair
• . . .

Search-based techniques
• Genetic algorithm
• Ant colony optimization
• Simulated annealing
• Particle swarm optimization
• NSGA-II
• NSGA-III
• . . . SBSE

• Search-based Testing
• Search-based refactoring
• Search-based software management
• Search-based requirements engineering
• Search-based Fault Location
• Search-based program repair
• . . .

12

1034

4

SBSE in a nutshell …

Solution representationSolution representation

Fitness

Function

Fitness

Function

Change
operator
Change
operator

Software Engineering
Problem

encoding

Function defined to
evaluate solutions

Search Problem

Software Engineering

Search Based
Software Engineering

Optimization
Techniques

13

But …

why is SBSE growing very fast?

Publication growth up to 2012

• TOP conferences in SE
• ICSE and FSE : whole sessions to SBSE

• TOP conferences in Evolutionary
computation

• GECCO: have track dedicated to SBSE

• Dedicated international conferences:
(SSBSE, SBST) and many other workshops

• 1600 authors
• nearly 300 institutions
• more than 40 countries

14

But …

why is SBSE growing very fast?

Physical Engineering Virtual Engineering

Cost: 30,000 $ Cost: 0 $

15

Spot the Difference

Traditional Engineering Artifact

Optimization objectives

Fitness computed
on a representation

+ Maximize compression

- Minimize fuel consumption

Traditional Engineering Artifact Fitness computed
on a representation

+ Maximize cohesion

- Minimize coupling

Optimization objectives

16

1035

5

Software is eating the world!

17 18

Software Engineers …

let’s listen to software engineers ...

... what sort of things do they say?

19

Software Engineers Say…

All have been addressed in the SBSE literature!

We need all requirements that balance software
development cost and customer satisfaction

We need to reduce risk while
maintaining completion time

We need increased cohesion
and decreased coupling

We need fewer tests
that find more nasty bugs

We need to optimize
all metrics M1,..., Mn

Requirements

Management
Design

Testin
g

Maintenance

20

1036

6

The Advantages of SBSE

Scalable

Robust

Generic

Realistic

SBSE

Unification 21

Our Recent Work on SBSE

Automated refactoring recommendation
ASE19, TOSEM16, ASE13, IST16, JSME16, …

Refactoring Web services
ASE19, TSC17, ICWS16, ICSOC16 …

Refactoring prioritization
SQJ14, JSS15, …

Code reviewers assignment
GECCO20, ICSME16

Refactoring prediction
ICSOC16, …

Code smells detection
ICWS20, MobileSoft17, TSE15, ASE13, …

Refactoring detection
EMSE16, …

Software remodularization
ICSOC19, TOSEM14, FSE15

Regression Testing for Refactoring
ASE16, …

Software library reuse
ASOC19, IST17, …

Software Integration
GECCO20, …

Social debt in software projects
ICGSE20, …

22

Agenda

• Philosophical Basis: Science and Engineering

• What is SBSE?

• Recent applications
• SBSE for Performance regression [SSBSE’19]
• SBSE for Web service design [TSC’17 + ASE’19]
• SBSE for Modern Code Review [ICSME‘16 + GECCO’20]

• A hands-on activity with SBSE
• MOEA Framework

• Challenges and future work with SBSE
23

Software Maintenance

• Systems, like people, get old!
• They increase in complexity and degrade in effectiveness

• Software changes frequently
• Add new requirements

• Adapt to environment changes

• Correct bugs, …

• Challenges
• These changes may degrade their design and QoS

• Maintain a high level of quality during the life cycle of a software
system

24

1037

7

Performance Regression Testing
▪ Performance regression testing monitors software

execution time to avoid degradation during evolution.

* This example is from Git repository

.

.

.

Performance Regression Testing

Performance Regression Detection
▪ Problem: How to find code change introducing performance

regression?
▪ Ideal solution: Test performance of each code change.

Performance Regression Detection
▪ Problem: How to find code change introducing performance

regression?
▪ Ideal solution: Test performance of each code change.

* This example is from Git repository

999
commit

446
commit

368
commit

369
commit

331
commit

5 benchmarks ~2 hours ~30 Days for testing

1038

8

Performance Regression Testing Challenges
▪ Performance testing is by nature

time and resource consuming.

▪ Growth of committed code.

▪ Reduction of testing period.

▪ Bring out the problem of finding
which change made the
regression.

Software
Avg. Revision

per Day

Regular
Performance

Testing

MySQL 6 every release

Chrome 140
Every 4
revisions

Linux 140 Every week

Table: Estimated commit and performance testing frequency
[Huange et al. 2014]

Goal!

▪ Apply performance testing only on code change most likely
to introduce a performance regression.

How?

Commits Timeline

▪ By profiling code changes using data collected from the new code
change and compare it with previous code changes data.

Profiling a Code Change?

1039

9

Profiling a Code Change?

Detection Strategy
✔
✖

Automated detection of performance
regression

International Symposium on Search Based Software Engineering (SSBSE), 2019 34

Code
change to be

tested

Test it or
not!

History of
previous
commits

List of static
and dynamic

metrics

Search-based performance

regression detection

(NSGA-II)

Automated detection of performance
regression

Benchmarks
(test cases)

Alshoaibi, Deema, Kevin Hannigan, Hiten Gupta, and Mohamed Wiem Mkaouer. "Price: Detection of performance
regression introducing code changes using static and dynamic metrics." In International Symposium on Search Based
Software Engineering, pp. 75-88. Springer, Cham, 2019.

35

Metrics
Description Data Source

Number of deleted functions Static

Number of new functions Static

Number of deleted Functions reached by the benchmark Static + Dynamic

The percent overhead of the top most called function that was
changed

Static + Dynamic

The percent overhead of the top most called function that was
changed by more than 10% of its static instruction length.

Static + Dynamic

The highest percent static function length change Static

The highest percent static function length change that is called
by the benchmark

Static + Dynamic

1040

10

Search-Based Software Engineering Problem Formulation

Solution Representation
Encoding

Solution Evaluation
Fitness Function

Solution Variation
Change Operators

O
pt

im
iz

at
io

n
T

ec
hn

iq
ue

Solution Representation

Solution Evaluation
▪ Generated rules are evaluated

by two objectives:

▪ Hit rate:
number of correctly detected
commits to total number of commits
encountering performance
regression.

▪ Dismiss rate:
number of commits classified not to
be introducing regression to the total
actual number of stable commits.

Parent A Parent B

Offspring A Offspring B

Solution Variation: Simulated Binary Crossover

1041

11

Solution Variation: Polynomial Mutation NSGA-II

Parent
Population

Offspring
Population

F1

F2

F3

F4

Population
in next
generation

non-dominated fronts

Experimental Setup
▪ Used Dataset:

▪ Tuned Parameters:

Software Commits Benchmarks
Metrics

Static Dynamic

Git 713 5 2 5

Population size Iterations
Simulated binary

crossover
probability

Polynomial
Mutation

probability

50 10000 0.8 0.5

Experimental Setup
▪ Research questions:

• RQ1: To what extent does NSGA-II provide better regression
detection compared with other techniques?
▪ Compare NSGA-II with a deterministic approach and KNN.

• RQ2: Does generated rules continue performing well with the
evolution of the software?
▪ Test performance of rule generated by earlier code changes on latest ones.

1042

12

To what extent does NSGA-II provide better regression detection compared
with other techniques?

RQ1

25%

-5%

13% 21%
-1%

-4%

9%

-2% -10%

-4%
-1%

10%
10%

7%
16%

25%

11%

22%

14% 12%

To what extent does NSGA-II provide better regression detection compared
with other techniques?

RQ1 Results

11%
-1%

5% 10% 6%
6%

16%
9%

8%
10%

Does generated rules continue performing well with the evolution of the
software?

RQ2 Results

Training
Testing

Agenda

• Philosophical Basis: Science and Engineering

• What is SBSE?

• Recent applications
• SBSE for Performance regression [SSBSE’19]
• SBSE for Web service design [TSC’17 + ASE’19]
• SBSE for Modern Code Review [ICSME‘16 + GECCO’20]

• A hands-on activity with SBSE
• MOEA Framework

• Challenges and future work with SBSE
48

1043

13

• SOA: Service Oriented Architecture is
– a way of designing system
– an approach to system development
– a design paradigm

• SOA is not an architecture, is not a system

• SOA can be implemented utilizing different technologies
– OSGi, SCA, REST, Web services

• Service-based system = a set of ready-made, composable
and reusable services

What is SOA?

49

• Example: Travel system

Client

Travel Service

+ bookTrip()

Payment serviceFlight Service
+ checkDates()
+ reserveFlight()
+ cancelFlight()

Rent Car Service
+ checkAvailability()
+ reserveCar()
+ cancelCar()

HotelService
+ checkHotel()
+ reserveHotel()
+ cancelHotel()

XML technologies
{SOAP, WSDL, UDDI,...}

Service provider

Internet

Client

Client

Service-based system

50

• If designed well, Web services reuse can lead to
• Cost-efficiency
• interoperability
• Agility
• Adaptability
• Leverage of legacy investments

The hard part is the “if designed well”.

If designed well

51

Web service design antipatterns

Flight Reservation
Service

+ bookFlight()
+ reserveFlight()

Flight Change Service

+ changeFlight()
+ searchFlight()

Flight Cancellation
Service

+ cancelFlight()
+ cancelPayment()

Fine-grained Service

Few operations
Low cohesion
High coupling
High development complexity
Reduced usability

TravelService
Endpoint

+ bookFlight()
+ reserveFlight()
+ cancelFlight()
+ reserveCar()
+ cancelCar()
+ reserveHotel()
+ checkDates()
+ modifyBooking()
+ acceptPayment()
+ addPaymentDetails()
+ validateCredit()
+ printInvoice()
+ sendInvoice()
…

God-object Service

Client 2

Client 1

Client 3

Client 4

Client n

Several operations
Low cohesion
High response time
Low availability
Not easily reusable

52

1044

14

• 87 operation in 1 single
interface

• 4,261 lines of WSDL
document

• 812 pages of API
documentation

Amazon Elastic Compute Cloud (EC2) Web service

.

.

.

Client 2

Client 1

Client 3

Client 4

Client n

« interface »
AmazonEC2PortType

CreateImage()
RegisterImage()
DeregisterImage()
DescribeImages()
RunInstances()
TerminateInstances()
DescribeInstances()
MonitorInstances
UnmonitorInstances
DescribeReservedInstances
GetPasswordData()
CreateSecurityGroup()
DeleteSecurityGroup()
DescribeSecurityGroups
AuthorizeSecurityGroupIngress()
RevokeSecurityGroupIngress()
AllocateAddress()
ReleaseAddress()
DescribeAddresses()
AssociateAddress()
DisassociateAddress()
CreateVolume()
DeleteVolume()
DescribeVolumes()
AttachVolume()
DetachVolume()
CreateSnapshot()
DeleteSnapshot()
ModifySnapshotAttribute()
ResetSnapshotAttribute()
. . .

Web service container

Image
management.xml

Security
management.xml

Volume
management.xml

Instances
management.xml

Snapshot
management.xml

Refactor!

53

State-of-the-art

• Manual approaches/guidelines
• Service antipatterns definition (Dudney et al., 2003, Král et al, 2009, Rotem-

Gal-Oz et al., 2012)

• Symptoms-based approaches
• Detection rules (Moha et al., 2012, Palma et al., 2014)

• Translate antipattern symptoms into detection rules
• Combination metrics/threshold value

54

Antipatterns detection challenges

• Difficult to define/express detection rules
• Large list of antipattern types to categorize
• Large exhaustive list of quality metrics
• Large number of possible threshold values
• Huge space to explore: An expert to manually write and validate

detection rules
• No consensual definitions of antipatterns

Idea: Infer detection rules from antipattern examples
using combinatorial optimization

55

Web service anti-patterns detection

IEEE Transactions on Services Computing (TSC), 2017.
56

1045

15

Approach: search-based Web service
antipatterns detection

57

Metric suite

23 Service interface metrics
(WSDL)

17 Service code metrics
(Code skeleton)

1 Service dynamic metric

RT Response Time Operation

58

Genetic Algorithm/Programming

Population of
solutions

Evaluation

Selection

Crossover
Mutation

Optimal or
“good” solution

found ?

Detection rules

Yes

No

START

END

❑ Key elements
▪ Representing of candidate

solution

▪ Definition of fitness function

▪ Definition of genetic operators

▪ Generate initial population

59

GP adaptation

NST
NOPT

COH
NOD

[1..200]

[1..150]

Quality metrics

NCT

Base of examples
antipattern

instance

IF (NOD(s)≥21 AND COH(s)≤0.32 AND NOPT(s)≥7.8) OR (NOD(s)≥24 AND COH(s)≤0.2 AND NPT(s)≥3 AND NST(s)≥41 OR NCT(s)≥32)
THEN GodObjectService(s)

Genetic Programming (GP)

Fitness function

Solution representation

OR

ORAND

AND

COH<0.5 NPT>3

NST>41 NCT>32

AND

ORAND

AND

NPT<5COP<0.8NPT>3

ORAND

60

1046

16

GP adaptation

Change operators

Generation of
Population

Crossover
Mutation

Evaluation

Selection

Best Solutions

Population

OR

ORAND

AND

COH<0.5 NPT>3

NST>41 NCT>32

AND

ORAND

AND

NPT<5COP<0.8NPT>3

ORAND

AND

OROR

AND

NOPT>8 AMTM<1

COP>0.4 NCT>32

AND

AND NOM>22

S1 S2

New Population

61

Evaluation : research questions

• RQ1. How does our P-EA approach compare to GP, GA and
random search (RS)?

• RQ2. To what extent can the proposed approach efficiently
detect Web service antipatterns?

• RQ3. What types of Web service antipatterns does it detect
correctly?

• RQ4. How does P-EA perform compared to existing Web
service antipattern detection approaches?

62

Evaluation

• Studied Web services
• Benchmark of 425 Web services

• Dataset: https://github.com/ouniali/WSantipatterns

63

Evaluation

• Eight common types of antipatterns
• God object Web service (GOWS)

• Fine grained Web service (FGWS)
• Chatty Web service (CWS)

• Data Web service (DWS)

• Ambiguous Web service (AWS)

• Redundant PortTypes (RPT)
• CRUDy Interface (CI)

• Maybe It is Not RPC (MNR)

• 10-fold cross validation
• Detect antpatterns in one category using the 9 other categories

64

1047

17

Evaluation metrics

• Detection precision and recall rates

• State of the art comparison
• SODA-W (Palma et al. 2014)
• Ouni et al. 2015

65

RQ1: Comparison of P-EA with GP, GA, and
RS

Detection Precision
66

RQ1: Comparison of P-EA with GP, GA, and
RS

Detection Recall
67

RQ2: 89% precision and 93% recall

68

1048

18

RQ3: sensitivity towards antipattern types

Detection Recall

Detection Precision

69

RQ4: P-EA outperforms SOAD-W and Ouni et
al. 2015

Detection Recall

Detection Precision

70

Well… here are my detected antipatterns!
and then … ?

Refactor them!

71

How to fix these smells?

Automated Software Engineering Journal 2019

72

1049

19

• 87 operations in one
single interface

• 4,261 lines of WSDL
document

• 812 pages of API
documentation

.

.

.

Client 2

Client 1

Client 3

Client 4

Client n

« interface »
AmazonEC2PortType

CreateImage()
RegisterImage()
DeregisterImage()
DescribeImages()
RunInstances()
TerminateInstances()
DescribeInstances()
MonitorInstances
UnmonitorInstances
DescribeReservedInstances
GetPasswordData()
CreateSecurityGroup()
DeleteSecurityGroup()
DescribeSecurityGroups
AuthorizeSecurityGroupIngress()
RevokeSecurityGroupIngress()
AllocateAddress()
ReleaseAddress()
DescribeAddresses()
AssociateAddress()
DisassociateAddress()
CreateVolume()
DeleteVolume()
DescribeVolumes()
AttachVolume()
DetachVolume()
CreateSnapshot()
DeleteSnapshot()
ModifySnapshotAttribute()
ResetSnapshotAttribute()
. . .

Web service container

Image
management.xml

Security
management.xml

Volume
management.xml

Instances
management.xml

Snapshot
management.xml

Re-design!

Amazon EC2

73

Service interface design

• Amazon: 81% of services provides only one interface

• Yahoo: 100% of services provides only one interface

Amazon services Yahoo
services

74

WSIRem : multi-objective search to
improve service interfaces modularity

WSDL analysis
WSDL
parser

Service interface
(WSDL)

WSIRem
Multi-objective Service Interface

Remodularization
(NSGA-II)

New interface
modularization

Structural
analysis

Semantic
analysis

75

WSIRem : multi-objective search to
improve service interfaces modularity

• Search algorithm : NSGA-II

• Solution representation

• Objective functions
1. Maximize cohesion
2. Minimize coupling
3. Minimize the interfaces modifications

1 2 3 1 3 2 2

1 2 3 4 5 6 7op_

si_

1 2 3 1 3 2 2

1 2 3 4 5 6 7

2 1 3 3 1 2 1

1 2 3 4 5 6 7

1 2 3 3 1 2 1

1 2 3 4 5 6 7

2 1 3 1 3 2 2

1 2 3 4 5 6 7

Crossover

k=3

Parent 1

Parent 2

Child 1

Child 2

Point cut

1 2 3 1 3 2 2

1 2 3 4 5 6 7

Parent 1 2 3 1 3 3 2

1 2 3 4 5 6 7Mutation

m=6

Crossover

Mutation

76

1050

20

Operations Cohesion

• Sequential cohesion

• Communicational cohesion

• Semantic cohesion

Operation to operation dependency

Sequential
Similarity

operation-by-operation
similarity matrix

m1 m2 mn

m1
m2
.
.
.
mn

Communicational
Similarity

Semantic
Similarity

w S

CS

SemS

w

w

seq

Operation 1Operation 1

Operation 2Operation 2

input

input

output

output

Operation 1Operation 1

Operation 2Operation 2

input

input

output

output

Operation 1Operation 1

Operation 2Operation 2input output

outputinput

77

• Research questions

• RQ1. What is the impact of the suggested remodularizations
by our approach on service interface design quality?

• RQ2. Do the suggested remodularizations provide a better
partitioning of abstractions from a developer’s point of view?

Evaluation

78

• 22 Web services

• https://github.com/ouniali/AmazonYahooBenchmark

Evaluation

79

• Quantitative measures
• Cohesion
• Coupling
• Modularity

• Qualitative measures
• Precision
• Recall

• Baseline approaches
• SIM (Ouni et al. 2016) : graph-based partitioning

• Greedy algorithm (Athanasopoulos et al. 2015)

Evaluation Method

80

1051

21

•

Quantitative evaluation results

81

Qualititative evaluation results

82

Qualititative evaluation results

83

The EC2 example

.

.

.

Client 2

Client 1

Client 3

Client 4

Client n

« interface »
AmazonEC2PortType

CreateImage()
RegisterImage()
DeregisterImage()
DescribeImages()
RunInstances()
TerminateInstances()
DescribeInstances()
MonitorInstances
UnmonitorInstances
DescribeReservedInstances
GetPasswordData()
CreateSecurityGroup()
DeleteSecurityGroup()
DescribeSecurityGroups
AuthorizeSecurityGroupIngress()
RevokeSecurityGroupIngress()
AllocateAddress()
ReleaseAddress()
DescribeAddresses()
AssociateAddress()
DisassociateAddress()
CreateVolume()
DeleteVolume()
DescribeVolumes()
AttachVolume()
DetachVolume()
CreateSnapshot()
DeleteSnapshot()
ModifySnapshotAttribute()
ResetSnapshotAttribute()
. . .

Web service container

Image
management.xml

Security
management.xml

Volume
management.xml

Instances
management.xml

Snapshot
management.xml

84

1052

22

Well… here are my refacroring changes!
and then …

Who should review/approve them?

85

Agenda

• Philosophical Basis: Science and Engineering

• What is SBSE?

• Recent applications
• SBSE for Performance regression [SSBSE’19]
• SBSE for Web service design [TSC’17 + ASE’19]
• SBSE for Modern Code Review [ICSME‘16 + GECCO’20]

• A hands-on activity with SBSE
• MOEA Framework

• Challenges and future work with SBSE
86

Code review is a key part of the software
development process

Programmer

Code reviewer

What does
that code do?

87

The “modern”, lightweight, tool-supported
code review

developer

Code change

gerrit
code review

reworked code

Accepted code

Code repository

reviewers 88

1053

23

changed files

Code change description
reviewers

developer

89

Code reviewers assignment problem

“Who should review my code?”

• Identifying appropriate reviewers is a hard task
• A code change involve multiple files
• A file is edited by multiple developers and reviewed my multiple

reviewers

• Reviewer assignment problem [Patanamon et al., 2015]

• delays acceptance : 12 days
• sometimes patches are completely forgotten

90

State of the art

91

Problem Statement

• Single/independent reviewers
• A change might require many reviewers

• Focus only on reviewer expertise
• Expertise change over time (increase or decrease)

• No consideration of the socio-technical aspect
• “Peer” code review
• human process = personal + social aspects

Heuristic search to optimize
both expertise and social aspects

THAT LINE OF CODE
GIVES ME GAS

92

1054

24

Approach overview: RevRec

Reviews history

Search-based Reviewers
Recommendation

(Genetic Algorithm)
Recommended

Reviewers

Review
Request

developer

Reviewer
expertise

Reviewer
collaboratio

n

93

Reviewer Expertise (RE) model

• For each modified file we consider
• Comments frequency

• Comments recency

94

Reviewer Collaboration (RC) model

• Social network: each reviewer may have a review
collaboration with

• developer
• other reviewers

• Graph representation
• sub-graph connectivity
• weights count on the edges

(comments count) Kirill

Serg

Victor

Murano

Stan

32

26

59

45

41

59

126
18

46

95

Genetic algorithm (GA)

Population of
solutions

Evaluation

Selection

Crossover
Mutation

Optimal or
“good” solution

found ?

Recommended
reviewers

Yes

No

START

END

• Key elements
• Solution representation
• Change operators
• Fitness function
• Selection
• Creation of the initial

population

96

1055

25

GA adaptation

0 1 0 1 1 0 1 0 0 1

Dmitry Kirill Andrey Murano Serg Giulio Victor Henar Alexey Jenkins

• Solution representation

97

GA adaptation

0 1 0 1 1 0 1 0 0 1

Dmitry Kirill Andrey Murano Serg Giulio Victor Henar Alexey Jenkins

0 0 1 0 0 1 0

0 1 0 0 1 0 0

Parent 1

Parent 2

Crossover

k=3

Child 1

Child 2

Point cut

0 0 1 0 0 1 0Parent

0 0 1 0 0 1 0

0 1 0 0 1 0 0

• Solution representation

• Crossover operator

• Mutation operator

0 0 1 0 1 1 0

Mutation

m=6 98

Fitness function

Maximize

Reviewer Expertise
RE

Reviewer Collaboration
RC

Kirill

Serg

Victor

Murano

Stan

32

26

59

45

41

59

126
18

46

99

Evaluation : 3 research questions

• RQ1. How accurate is RevRec in recommending peer
reviewers for code changes?

• RQ2. What are the effects of each of the reviewers
expertise and collaboration on the accuracy of RevRec?

• RQ3. How does GA compared to random search (RS) and
other popular search algorithms, SA and PSO?

100

1056

26

Studied systems

System Period studied #Reviews #Reviewers #Files

Android 2008-10 ~ 2010-01 5,126 94 26,840

OpenStack 2011-04 ~ 2012-05 6,586 82 16,953

Qt 2011-05 ~ 2012-05 23,810 202 78,401

Dataset: http://kin-y.github.io/miningReviewRepo/
101

Analysis method

• Accuracy
• Precision@k
• Recall@k

• Ranking performance
• Mean Reciprocal Rank (MRR)

• Compare with 3 existing approaches
• RevFinder [[Patanamon et al., 2015]
• cHRec [Zanjani et al., 2015]
• ReviewBot [Balachandran et al. 2013]

Top-5
recommended

reviewers

Recommended
reviewer

#1

#2

#3

#4

#5

102

RQ1. Accuracy results

RevRec correctly recommends peer
code reviewers with an average of
55% of precision and 70% of recall

103

RQ2. Expertise vs. Collaboration

The social aspect plays an important role
in modern code review

104

1057

27

Recall

RQ3. Performance of Genetic Algorithm

Precision

Population-based search algorithms are more
suitable than local search for the reviewers

recommendation problem

105

RevRec : Pros and Cons

• Empirical evaluation on 3 open-source projects
• Promising accuracy results: 55% of precision and 70% of recall
• Social aspect plays an important role in modern code review
• Golbal search achieves better performance than local search

• Limitations
• Reviewers workload is not considered
• 80% of reviews are assigned to 20% of reviewers!

106

Solution : Optimize Expertise and
Workload

GECCO 2020 107

Multi-objective Code Reviewers
Recommendation

• Search algorithm
• NSGA-II

• Objective function
• Maximize reviewers expertise
• Minimize reviewers workload

• Solution representation
• Vector based representation

108

1058

28

Evaluation

• Two long-lived systems
• Android
• Qt

109

Agenda

• Philosophical Basis: Science and Engineering

• What is SBSE?

• Recent applications
• SBSE for Performance regression [SSBSE’19]
• SBSE for Web service design [TSC’17 + ASE’19]
• SBSE for Modern Code Review [ICSME‘16 + GECCO’20]

• A hands-on activity with SBSE
• MOEA Framework

• Challenges and future work with SBSE
110

SBSE with MOEA Framework

• MOEA Framework
• http://moeaframework.org/
• https://github.com/MOEAFramework/MOEAFramework

• Case study
• Software Migration : components selection for mobile app migration

Web application

Migration

Mobile application

Demo version (free)

Full version (payed)

111

SBSE with MOEA Framework

• Desktop application
• A number of functionalities
• Not possible to implement all functionalities

in the mobile version

• Each functionality has
• A cost
• A business value

• Cost and business value depend on the target mobile app
(Demo/Full)

• Each mobile app version (Demo/Full) has
• An allocated budget 112

1059

29

https://github.com/ouniali/MOEAFramework
113

Agenda

• Philosophical Basis: Science and Engineering

• What is SBSE?

• Recent applications
• SBSE for Performance regression [SSBSE’19]
• SBSE for Web service design [TSC’17 + ASE’19]
• SBSE for Modern Code Review [ICSME‘16 + GECCO’20]

• A hands-on activity with SBSE
• MOEA Framework

• Challenges and future work with SBSE
114

What challenges do
we have with SBSE?

115

Challenges in the adoption of SBSE

• The selection of the solution representation and the right
fitness function

• Changing the optimization algorithm may not necessarily
change the output to better

• It is the coverage criteria and the finest function that lead to
better results

• Parameters tuning

is challenging!

1060

30

SBSE challenges with industry

• The non-deterministic output due to the randomness

• Expensive computation

• Modeling the system or the problem space?

• This is crazy!

Probably we need to change our way of
communication with industry

Challenges and Open Research Directions

• Why do we currently need to design special algorithms
for each software engineering problem instance?
– This is unrealistic: Science is about generality. Several software engineering

activities have a lot of common patterns and similarities

• Why do we currently address silos of software
engineering activity?
– This is unrealistic: engineering decision making needs to take account of

requirements, designs, test cases and implementation details
simultaneously.

Reproducibility of SBSE solutions

• Reproducibility
– Indeterministic nature is a barrier
– Hyperparamters tuning
– Clear mathematical function of the objective functions
– Descriptions of the settings
– Datasets used (sometimes data confidentiality is a concern

with several companies)
– Training: how the dataset is split training-testing
– Code : readme, specification of dependencies, etc.

• Take a paper : and write a reproductivity report
– In a course project could be interesting for students

• Replication

• Automation level
– How best do we draw the dividing line between adaptive

automation for small changes and human intervention to
invoke more fundamental adaption and to provide oversight
and decision making?

• Surrogate metrics
– Any approach that seeks dynamic adaptivity must necessarily

compute many fitness evaluations between adaptations
surrogate fitness computation will need to be fast.

• Dynamic Adaptativity

Challenges and Open Research Directions

1061

31

Software Engineering for Optimization
Software Systems

• To implement optimization algorithms, we need software

engineering techniques

• Like any software, optimization algorithms need to evolve
• Bug fixes

• Code smells and refactoring

• Code review

• Project management

• Continuous integration/deployment

• Continuous optimization/training

• Context change – in Behaviour and in Data
121

• SBSE: write a fitness function to guide automated search

• SBSE formulation
1. Identify the right encoding (representation) of the solution
2. Identify the desirable properties of a good solution you would like to

have
3. Formulate them in a measurable way
4. Use them as a way for searching the space of possible solutions

• SBSE is applied to solve problems in all software lifecycle
• Requirements engineering
• Software project management
• Design
• Maintenance
• Software testing

• Provides scalable, realistic, robust and generic solutions

Road map

Take a SE problem and “SBSE” it !
122

Search-Based RefactoringSearch-based Software Engineering

124

1062

32

Thank You!

Questions?

1063

