How to evolve a neuron

W. Garrett Michener
College of Charleston
Charleston, South Carolina
MitchenerG@cofc.edu

ABSTRACT

A natural neuron can function as a nonlinear down-sampler, or in
the extreme, as a coincidence detector. I will describe artificial life
experiments in which agents capable of general computation evolve
an artificial reaction network capable of performing coincidence
detection. They also develop spike-timing-dependent plasticity,
thought to be an important mechanism for learning.

CCS CONCEPTS

« Applied computing — Systems biology; Population genet-
ics.

KEYWORDS
artificial life, evolution, neuroscience, systems biology

ACM Reference Format:

W. Garrett Michener. 2021. How to evolve a neuron. In 2021 Genetic and
Evolutionary Computation Conference Companion (GECCO ’21 Companion),
July 10-14, 2021, Lille, France. ACM, New York, NY, USA, 2 pages. https:
//doi.org/lO.l145/3449726.3459547

1 INTRODUCTION

Neurons are living cells that perform computations on the millisec-
ond time scale using discrete electrical pulses called spikes or action
potentials. A neuron can serve as a non-linear low-pass filter or
coincidence detector. Such a neuron spikes once only when several
pulses of excitatory neurotransmitter arrive in a very short time.

Furthermore, a neuron can exhibit spike-timing dependent plastic-
ity [2, 4]. If it repeatedly spikes just after receiving excitatory input,
the synapse temporarily becomes more receptive to excitation. This
is thought to be a key step in learning.

In an attempt to understand something about how such a bio-
chemical computational unit could evolve, let us consider an arti-
ficial life (a-life) simulation, and focus on the challenge of how to
specify a fitness function that leads agents to evolve neuron-like
behavior. Specifically, they must perform coincidence detection and
exhibit something akin to spike-timing dependent plasticity.

The desired results can be achieved by presenting an agent with
a long, fixed list of inputs, each of which is a time series of spikes
arriving at various times. Points are awarded for firing shortly after
a coincidence in the input. Points must also be awarded for not firing
when the input contains widely separated spikes. Points are also

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’21 Companion, July 10-14, 2021, Lille, France

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8351-6/21/07.

https://doi.org/10.1145/3449726.3459547

105

Agent should
not spike

Agent should
spike once

L

In: Loodo 11

Qut: 1

Figure 1: Example input spike train and desired output.

awarded for firing when the input contains two spikes separated
by an intermediate duration only when preceded by several spike-
inducing coincidences. Under these conditions, agents evolve into
computational units that mimic the coincidence-detection ability
and plasticity of living neurons.

2 SIMULATION FRAMEWORK IN BRIEF

The experiment takes place in an a-life simulation, similar to that
described in [3]. The simulation is designed to mimic certain aspects
of living organisms so that it may serve as a tool for understanding
how species discover and refine computational mechanisms.

Each agent consists of a single cell whose mutable state is an
array of activation levels A[]. The entry A[k] represents how many
units of abstract biochemical k are present in the cell. Initially, A is
all 0s. Elements 3 and 41 are designated for input and output.

Each agent has a bit-string genome, which specifies an artificial
regulatory network (ARN) similar to the gene regulatory network
(GRN) of a living cell. Blocks of bits serve as genes and are decoded
into tuples of integers (psw. 6, pup, Pdn) €ach of which is interpreted
as an instruction:

If A[psw] = 0 then
add 1 to A[pup]
and subtract 1 from A[pg,]-

This instruction format is an abstraction of the construction and
action of a protein. The switch pattern psy is analogous to a pro-
moter in DNA. The threshold 6 controls how much of k must be
present to trigger transcription. The integers pyp and pg;, represent
the action of the protein produced from this gene, as it creates one
unit of pyp and destroys one unit of pgy.

An agent’s program is the set of all instructions from all chro-
mosomes. Program execution proceeds in discrete time steps. At
the beginning of a time step, external input to the cell is handled
by adding 8 to A[3]. Then all instructions in the program are eval-
uated simultaneously, in analogy with proteins in solution. Finally,
if A[41] > 2, the cell produces an output spike, and 2 is subtracted
from A[41] to represent expended energy. Otherwise, the agent
produces no output for this time step.

The selection-mutation process advances in discrete generations
as follows. Each agent has a numerical fitness rating. Living agents
are sorted by rating, and the highest-scoring 400 remain alive. An-
other 600 are generated by choosing pairs of parents, and forming


https://doi.org/10.1145/3449726.3459547
https://doi.org/10.1145/3449726.3459547
https://doi.org/10.1145/3449726.3459547

GECCO 21 Companion, July 10-14, 2021, Lille, France

W. Garrett Michener

Figure 2: Example perfect solution

a child agent. Each parent is selected by a tournament: Two candi-
dates are picked uniformly at random from the population, and with
probability 0.6 the higher-scoring one is chosen. Once two parents
are selected, the child is generated by a process modeled on diploid
organisms. For each parent, each pair of bit-string chromosomes
is aligned, and a single point crossover is performed to produce a
single chromosome, resulting in a haploid gamete. Mutations are
performed at random, including bit flips, gene deletions, and gene
duplications. The chromosomes from each gamete are combined to
construct the child’s genome.

3 THE RATING FUNCTION IN BRIEF

An agent’s fitness rating is the sum of points scored from a list
of tasklets. Each tasklet specifies a spike train in the form of a
finite sequence of bits (bo, b1, ..., by) with b; = 1 meaning that an
excitatory input spike arrives at time step j. An example of an input
spike train and desired output is shown in fig. 1. The first two input
spikes are widely separated and should not trigger an output spike,
but the following two spikes in consecutive time steps should.

The scoring system is designed to encourage the population
not to remain stuck at a local maximum where no output spikes
are generated. Assuming an output spike indicates recognition of
danger, the scoring system prefers excess spikes (false positives) to
never spiking at all. For a biological analogy, Mauthner neurons in
fish produce a single spike that triggers an escape reflex [1]. Thus,
many points are given for spiking during a short interval after two
input spikes arrive in quick succession, and some are given for not
spiking when the input spikes are widely separated. A few points
are lost for excess spikes.

Starting with a few short tasklets as in fig. 1, a set of longer
tasklets is produced by concatenating copies of those foundational
tasklets. These penalize mechanisms that can handle one or two
pairs of input spikes, but do not properly reset themselves, and give
incorrect results when presented with long spike trains. Instead,
mechanisms that can react correctly to any number of stimuli are
favored. The training set so formed is large enough that agents are
unable to memorize it.

A second set of tasklets adds the complication of spike-timing
dependent plasticity. There are strengthening tasklets, in which
many pairs of input spikes separated by short intervals arrive in
a relatively short period of time, followed by a final pair of spikes
separated by just a few too many time steps to trigger a spike if
they occurred in isolation. The correct response here is to produce
an output spike after that last pair, analogous to a strengthened
synapse. Conversely, there are weakening tasklets, in which a very
long interval with only a few, very widely separated input spikes is

106

followed by a final pair of spikes separated by an intermediate time
interval. The correct response is not to produce an output spike
after that last pair, analogous to a weakened synapse.

4 RESULTS & DISCUSSION

For each of two variants of the scoring system, 100 samples were
run for 20, 000 generations. Each generation takes about 15 seconds,
so some of these samples took several days to complete. The two
sets included 9 and 13 samples in which a perfectly scoring solution
was discovered and swept through the population. Other samples
were nearly perfect, but had trouble with the weakening task, or
produced excess output spikes.

An example of a perfect solution is shown in fig. 2. The nodes
labeled 3, 10, and 41 inside the box represent A[3], A[10], and A[41].
It is pre-specified that input spikes cause 8 to be added A[3], and that
when A[41] > 2, an output spike is generated and A[41] is reduced
by 2. These features are represented by arrows from the in node and
to the out node. Each genetically specified instruction A[psw] >
0 = A[pup|+=1, A[pgn]—=1 is represented by two arrows, a solid
one from pgy to pyp and a dotted one from psy to pgy, each labeled
> 6. A label with xn indicates n copies of that arrow. Only relevant
arrows are shown. The many inhibitory (dotted) arrows from 3 to
itself allow output spikes only when two closely spaced input spikes
arrive, followed by a reset of A[3]. After many input spikes arrive
in a short time, A[3] temporarily holds a greater value, so output
spikes are produced more readily. The instructions involving A[10]
pass activity from A[3] to A[41] but with a one time step delay,
preventing output spikes in the same time step in which the second
input spike of a pair arrives. The input synapse is generally in a
weakened state, and only becomes strengthened after high levels of
input, analogous to how NMDA receptors work [2]. This suggests
that the rating function is biologically reasonable.

REFERENCES

[1] Henri Korn and Donald S. Faber. 2005. The Mauthner Cell Half a Century Later:
A Neurobiological Model for Decision-Making? Neuron 47, 1 (July 2005), 13-28.
https://doi.org/10.1016/j.neuron.2005.05.019

[2] Fei Li and Joe Z. Tsien. 2009. Memory and the NMDA Receptors. The New
England journal of medicine 361, 3 (July 2009), 302-303. https://doi.org/10.1056/
NEJMcibr0902052

[3] W. Garrett Mitchener. 2014. Evolution of Communication Protocols Using an
Artificial Regulatory Network. Artificial Life 20, 4 (Aug. 2014), 491-530. https:
//doi.org/10.1162/ARTL_a_00146

[4] J. David Sweatt. 2003. Mechanisms of Memory. Academic Press, San Diego, Calif.


https://doi.org/10.1016/j.neuron.2005.05.019
https://doi.org/10.1056/NEJMcibr0902052
https://doi.org/10.1056/NEJMcibr0902052
https://doi.org/10.1162/ARTL_a_00146
https://doi.org/10.1162/ARTL_a_00146

	Abstract
	1 Introduction
	2 Simulation framework in brief
	3 The rating function in brief
	4 Results & Discussion
	References

