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Survey Articles

Summaries of the state-of-the-art techniques and a good starting
point for your research can be found in the following surveys
(extensive reference list is at the end)

Empirical works
Karafotias, Hoogendoorn, Eiben, 2015 [KHE15]
(detailed survey of empirical works)

Aleti, Moser, 2016 [AM16]
(systematic literature survey with additional pointers)

Eiben, Hinterding, Michalewicz, 1999 [EHM99]
(classic seminal paper, introduced a widely accepted classification scheme)

Lobo, Lima, Michalewicz, 2007 [LLM07]
(book on parameter selection, includes chapters on tuning and control)

Theoretical works
Doerr, Doerr, 2020 [DD20]
(surveys theoretical works which prove performance bounds with

mathematical rigor; introduces the revised classification scheme)
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Outline of the Tutorial

Part 1: Introduction
What are the goals of parameter control?

Part 2: Motivation
What are the basics?

Part 3: Taxonomy of Parameter Control Mechanisms
Which parameter control techniques exist?

Part 4: Real-world optimization
What are the characteristics of the real world problems?

Part 5: Applications of Parameter Control
Where is parameter control used in practice?

Part 6: Wrap Up
What’s next?
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Introduction
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Parameters in iterative / evolutionary optimization

A “typical” evolutionary algorithm, a (µ+λ) GA with crossover

→ There are several parameters that need to be decided:
population size, crossover rate, mutation rate, selective
pressure, etc.
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The importance of control parameter values

The very early days of EC:

“EAs are robust problem solvers” and need no tuning of
parameters

It was soon realized that this is not true

i.e., the “no free lunch” theorem [104]

→ It is widely acknowledged today that the control parameter
values have a decisive influence on the performance of an EA.
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The importance of control parameter values

How to find good parameter values?

Finding optimal parameter values is far from being trivial

Small changes in one parameter can cause huge performance
gaps

The optimal parameter values for one problem, might be
much different for similarly-looking problems

Optimal parameter values can change during the optimization
process
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Goals of Parameter Control

To identify good parameter values “on the fly”

When prior training or tuning is not possible
→ Integrate the tuning procedure into the
optimization process

To track good parameter values when they
change during the optimization process

They are not only constant factors
Significant performance gains are possible
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Controlling Multiple Parameters

Most EAs have several parameters

There is no reason to not control more than one or even all of
them

Some works on controlling more than one parameter exist, [55]

The problem how to best control several parameters at the
time is widely open
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Motivation
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The LeadingOnes Problem

Classic benchmark problem often studied in the theory of
evolutionary computation [85]

One of the simplest examples of a non-separable function
to test the performance of evolutionary algorithm

Function

LO:{0, 1}n → R, x 7→ LO(x) = max{i ∈ [n] | ∀j ≤ i : xi = 1}

LO = 2 (two initial ones)
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The (1+1) EA example

> Initialization:

Choose x ∈ 0, 1n uniformly at random

> Optimization: in iteration t = 1, 2, . . . do
1 Mutation:

create y from x by standard bit mutation
(flip each bit with probability p, independently of other bits)

2 Selection:

if f (y) ≥ f (x)
→ replace x by y

Critical parameter

The mutation rate p

→ often recommended as p = 1/n
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Theoretical Optimization Times

The expected optimization time of the (1+1) EA on
LeadingOnes [12]

1
2p2 ( 1

(1−p)n−1 − 1 + p)
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Fixed-Target Running Times

Expected fixed-target running times for dimension n=1000
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Mutation Rates Optimality

Expected fixed-target running times for dimension n=1000

popt = 1
LO(x)+1 [12, 92]

kopt = | 1
LO(x)+1 | [37, 35]
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Gain of Dynamic Mutation Rates

Measured results from [12]
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(1+1) EA with Adaptive Mutation Rates

> Initialization:

Choose x ∈ 0, 1n uniformly at random

> Optimization: in iteration t = 1, 2, . . . do
1 Mutation:

create y from x by standard bit mutation
(flip each bit with probability p, independently of other bits)

2 Selection + Update:

if f (y) ≥ f (x)
→ replace x by y
→ replace p by Ap

if f (y) < f (x)
→ replace p by bp

Based on a variant from [37]
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Tested mutation rates

Results for LeadingOnes n=500, based on [37]
Update strengths: A = 2, b = 1/2
Plot compares average number of bits flipped (red) vs. optimal
number (black)
Logarithmic scale with zoom into LO(x) ≤ 250
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Fitness Landscape of Tuning Problem

The performance gain is not very sensitive with respect to the
choice of the hyper-parameters A and b [37]

Heatmap on average optimization time for combinations of A
and b for the adaptive (1+1)EA on n = 500 LeadingOnes

A = 2, b = 1/2 gives an average runtime of ≈104,000 function
evaluations
the static (1+1) EA>0 needs ≈135,000 function evaluations
RLS needs ≈125,000 function evaluations
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The 1/5-Success Rule

One of the most famous success-based parameter adaptation
rule

Rechenberg observed that for the sphere function and a
corridor landscape the optimal success rate of the (1+1) ES is
around 1/5 [82]

Approach:
If (observed success rate > 1/5) → increase mutation rate
Informal interpretation: we seem to be in an easy part of the
optimization problem → increasing mutation rates might result
in larger progress per step
If (observed success rate < 1/5) → decrease mutation rate
Informal interpretation: we could be approaching an optimum
and should focus our search → decrease mutation rate for a
more conservative search

> Similar rules have been proposed by [89] and [29]

> The same idea can also be used to control other parameters,
such as the population size, crossover probabilities, etc.
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1/5 Success Rule in Discrete Optimization

The 1/e success rule yields optimal mutation rates for the
(1+1) EA on LeadingOnes [31]

Average Fixed-Target Running Times for the (1+1) EA with
static, 1/5 success rule and 1/e success rule mutation rates
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Taxonomy
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Main Questions in Parameter Control

1 Which parameter is adapted? (and what is affected:
individual / population)

Population size
Mutation rate, Crossover probability
Selection pressure
Fitness function (e.g., penalty terms for constraints)
. . .

2 What is the basis/evidence for the update?
Time elapsed: number of evaluations, generation count, CPU
time
Progress (e.g., in terms of absolute or relative fitness gain)
Diversity measures
. . .

3 How do we update the parameter(s):
Multiplicative updates
Learning-inspired parameter selection
Endogenous/self-adaptive parameter selection
Hyper-heuristics
. . .
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Initial Classification Scheme

The most popular classification scheme is the one of Eiben,
Hinterding and Michalewicz [39]

parameter setting

parameter tuning

- fixed parameter choices
- offline optimization

parameter control

deterministic

no feedback from
optimization process

adaptive

update rules depend on
optimization process

self-adaptive

parameters encoded
in the genome

- dynamic parameter choices
- online optimization
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Parameter Tuning

Typical tuning approach

Run some initial tests and observe how the
performance depends on the chosen parameter
values
Choose the parameter values that seem the most
promising

→ Requires a (large) budget for the training
Recent survey on automatic parameter tuning
methods for metaheuristics [50]

parameter setting

parameter tuning parameter control

deterministic adaptive self-adaptive

Several parameter tuning tools are available

irace [68], SPOT [8], GGA [3], ParamILS [52], SMAC [51],
HyperBand [62], BOHB [40], . . .
Advantage: automated identification of reasonable parameter
values → supports human and reduces bias
Disadvantage: recommended parameter values are static!
Note: even when focusing on dynamic parameter choices,
parameter tuning can be very essential to select good
hyper-parameters [9]
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Deterministic Parameter Control

Optimal parameters often follow a similar pattern

E.g. first allow for exploration, then for exploitation
Time-dependent parameter settings can be used

time = number of generations, fitness evaluations,
wall-clock time, etc.

Examples:

Cooling schedule of the selective pressure
(“temperature”) in Simulated Annealing
Start with some (large) mutation rate p(0),
decrease p after every 10,000 fitness evaluations
After each 1,000 iterations, draw a random
mutation probability

More suitable terms would be “time-dependent” or
“scheduled” update scheme

Note: finding the optimal deterministic update rules
requires tuning

parameter setting

parameter tuning parameter control

deterministic adaptive self-adaptive
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Adaptive Parameter Control

Global estimate for parameter quality, not
individual-based

Feedback from the optimization process
Change the parameters according to some
pre-described rule

Relevant feedback includes

Function values of the search points in the
population
Diversity of the search points
Absolute or relative progress obtained within the
last τ iterations

Examples

1/5-success rule
CMA-ES update of covariance, step size, population
size
. . .

parameter setting

parameter tuning parameter control

deterministic adaptive self-adaptive
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Self-Adaptive Parameter Control

Use an EA to determine parameter values

Many different ways to do this

Create a new population of parameter values,
choose from this parameter values, possibly apply
variation to them, and employ them in EA, select
based on progress made
Append to the solution candidates a string which
encodes the parameter value, first mutate the
parameter value part, then use this parameter to
change the search point, selection as usual

Improve parameter selection and fitness at the same
time

Some theoretical works on a self-adaptive choice of
the mutation strength, [24] and [34]

parameter setting

parameter tuning parameter control

deterministic adaptive self-adaptive
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Revised Classification Scheme

Revised classification from Doerr and Doerr [30] to better fit
current research directions and allow more consistent use of terms

parameter setting

parameter tuning

- fixed parameter choices
- offline optimization

parameter control

state-
dependent

time-
dependent

fitness-
dependent

rank-
dependent

diversity-
dependent

. . .

success-
based

learning-
inspired

self-
adaptive

hyper-
heuristics

- dynamic parameter choices
- online optimization
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State-Dependent Parameter Selection

Selection mechanisms do not depend on
the history of the optimization process,
but on the current state

E.g., a snapshot of the current
population is maped to parameter
values

parameter setting

parameter tuningparameter control

state-
dependent

time-
dependent

fitness-
dependent

rank-
dependent

diversity-
dependent

. . .

success-
based

learning-
inspired

self-
adaptive

hyper-
heuristics

Most commonly used indicators

Time elapsed (# fitness evaluations, iteration counter, CPU
time, . . . ) → corresponds to “deterministic” parameter setting
in the classification of [39]
Function values (absolute values, diversity, ranks, etc.)
Genotypic properties (e.g., diversity of the population)
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Fitness-Dependent Parameter Selection

Requires a good understanding of how
the parameters should depend on the
function values

Empirically

[5], [6], [41] for OneMax

Theoretically

[20], [32], [7] for OneMax and [35],
[36], [66] for LeadingOnes

parameter setting

parameter tuningparameter control

state-
dependent

time-
dependent

fitness-
dependent

rank-
dependent

diversity-
dependent

. . .

success-
based

learning-
inspired

self-
adaptive

hyper-
heuristics
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Rank-Dependent Parameter Selection

Bad search points should undergo large
variation (→ large mutation rates)

Good individuals should be modified only
moderately (→ small mutation rates)

parameter setting

parameter tuningparameter control

state-
dependent

time-
dependent

fitness-
dependent

rank-
dependent

diversity-
dependent

. . .

success-
based

learning-
inspired

self-
adaptive

hyper-
heuristics

Example, from [23]

Rank search points in the current population
Each search point is assigned a mutation rate that depends on
its rank:

rank 1: mutation rate pmin // best individual of population
. . . (linear interpolation)

rank s: mutation rate pmax // worst individual of population
The rank-based GA first selects an individual from the
population and then modifies it with the mutation rate given
by this ranking
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Success-Based Parameter Selection

After each (or after every τ) iteration(s)
adjust the current parameter value
depending on whether or not the last (τ)
iteration(s) have been successful

parameter setting

parameter tuningparameter control

state-
dependent

time-
dependent

fitness-
dependent

rank-
dependent

diversity-
dependent

. . .

success-
based

learning-
inspired

self-
adaptive

hyper-
heuristics

Examples

Finding a strictly better search point
this is probably the most common measure
Finding a search point that is integrated into population
used by the adaptive (1+1) EA>0

Finding a fitness-increase of at least x%
Finding point(s) that increase the diversity of the population
. . .

Success-based parameter selection is classified as “adaptive
parameter control” in the taxonomy of [39]
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Learning-Inspired Parameter Control

To have a set of possible parameter
values according to some rule

Test one (or some) of these values based
on the feedback from the optimization
process

Update the likelihood to employ the
tested value

parameter setting

parameter tuningparameter control

state-
dependent

time-
dependent

fitness-
dependent

rank-
dependent

diversity-
dependent

. . .

success-
based

learning-
inspired

self-
adaptive

hyper-
heuristics

Example through multi-armed bandits (MAB)

κ experts in each round
You have to chose one of them and you follow their advice
You update your confidence in each expert depending on the
quality of their forecast

Key questions:

How to UPDATE the confidences?
How to SELECT based on the confidences (greedy, random in
proportion to confidence, etc.)
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Hyper-Heuristics

Hyper-heuristics covers much more than
controlling parameters

→ the main idea is to control the
whole algorithm, in the sense of
dynamically choosing which heuristic is
best at a given state

Surveys: [19], [93]

Recent theoretical works: [66], [33], [67]

parameter setting

parameter tuningparameter control

state-
dependent

time-
dependent

fitness-
dependent

rank-
dependent

diversity-
dependent

. . .

success-
based

learning-
inspired

self-
adaptive

hyper-
heuristics
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Real-world optimization
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Real-world optimization

Real-world optimization problems occur in many applications

Engineering design,
Scientific modelling,
Image processing,
Production,
Transportation,
Bioinformatics,
Finances, etc.

Real-world systems are, in general, large and very complex.
They need to process a large amount of data, to perform
complex optimization and make decisions fast [56].
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Real-world optimization

Real-world problems in general

Contain non-linear objective functions of mixed design
variables (i.e. continuous and discrete)
Contain linear as well as non-linear constraints
Might have several local optima

For a wide range of real-world optimization problems, a
near-optimal or a better-than-known solution is considered a
satisfactory result of an optimization problem.
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Real-world optimization

There are several characteristics that increase the complexity
of the optimum solution search and for which parameter
control could be advantageous

Number and type of variables: a large number of decision

variables, including mixed-integer problems, where different types of

variables are optimised

Dynamic problems: problems that are changing over time

Problems under uncertainty: the variables of the problem have

some uncertainty

Number of objectives: problems that require optimizing more than

one objective function simultaneously and need to be solved by a

multi/many-objective approach

Nested problems: multi/bi-level optimization, where one

optimization problem has another optimization problem as a constraint

Some problems have combination of these characteristics
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Real-world optimization

Properly defined control parameters play a crucial role in
effectively handling the mentioned characteristics and solving
such problems.

For example: with increasing dimensionality of the problem its
landscape complexity grows and the search space increases
exponentially.

But

An optimization algorithm must still be able to explore the entire
search space efficiently
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Large scale global optimization
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Large scale global optimization

LSGO [75] - the problem dimension D (the number of
variables to be optimised) has an order of magnitude of up to
several thousand (for real values) or even billions (for integer
or binary values)

An active research field due to the growing number of
large-scale optimization problems in engineering,
manufacturing and economy applications (such as
bio-computing, data or web mining, scheduling, vehicle
routing, etc.) [21], [64]

Advances in machine learning and the wide use of deep
artificial neural networks result in optimization problems with
over a billion variables [49]
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Large scale global optimization

A major challenge of large-scale optimization

Most engineering problems have an exponential increase in the
number of required decision variables [76], [98]

The challenges motivated the design of many kinds of
efficient, effective, and robust kinds of metaheuristic
algorithms to solve LSGO problems with high-quality solutions
and high convergence performance as well as with low
computational cost [72]
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Large scale global optimization

To achieve acceptable results even for the same problem,
different parameter settings along with different reproduction
schemes at different stages of optimization process are needed

Several techniques (e.g., [110], [26]) have been designed to
adjust control parameters in an adaptive or self-adaptive
manner (instead of a trial-and-error procedure)
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Large scale global optimization

Some examples of LSGO

Data analytic and learning problems [116]
Shape design optimization for aircraft wings and turbine blades
[106]
Satellite layout design [95]
Parameter calibration of water distribution system [103]
Seismic waveform inversion [100]
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Dynamic optimization
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Dynamic optimization

Real-world optimization problems are usually subject to
changing conditions over time

The effects of these changes could influence several aspects of
the problem, such as the objective function, the problem
instance, its constraints, etc.

The optimal solution of the problem might change over time.

Dynamic optimization

Changing problems, when solved by an adaptive optimization
algorithm on-the-fly, are called dynamic optimization problems
(DOPs) [74]
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Dynamic optimization

The algorithm is expected to be able to track the current
optimal solution as well as the changing optimal solution over
time

The optimization procedure has to be able to detect these
changes and react quick enough

This also requires dynamic change of the ratio for exploration
and exploitation parts of the search
Both adaptive [101] and self-adaptive [17] parameter control
can be used
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Dynamic optimization

Based on a comprehensive survey [13], four different strategies
can be used to help evolutionary/population-based algorithms
to adapt in dynamical environments:

Increasing diversity of the population after a change is
detected, (e.g., by increasing mutation rate every N generations)

Maintaining diversity throughout the run, to avoid
convergence of the population on one point
Memory based approaches, taking into consideration older
solutions and sometimes making predictions based on historical
data
Multi-population approaches, where many small populations
track their own peaks as the environment changes
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Dynamic optimization

Some examples of dynamic optimization

Production scheduling [109]
Energy demand optimization [44]
Transportation [108], [65]
Financial optimization [48]
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Optimization under uncertainty
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Optimization under uncertainty

The presence of (a range of) uncertainties has to be taken
into account for solving many real-world applications with
evolutionary algorithms

[54] categorize the uncertainties that influence EA
performance into four types

When there is some noise in the fitness function
When there are changes of design and environmental
parameters after the optimization
When fitness function is an approximation
When the optimum changes over time (as in dynamic

optimization).
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Optimization under uncertainty

Methodologies for addressing noisy fitness function

Explicit averaging by calculating the average of the fitness
values over a number of randomly sampled disturbances [47],
[71]
Implicit averaging sample size as an inverse function of the
population size [42]
Fitness inheritance where the offspring inherits also the mean
and standard deviation of the objective value [18]
Selection modification [94]

These methods assume that the search space follows a
homogeneous noise distribution, such as a uniform or a
normal distribution [97]
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Optimization under uncertainty

Some examples of optimization under uncertainty

Financial optimization [48]
Transportation in unknown environments [111]
Space applications [99], [10]
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Multi-objective optimization
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Multi-objective optimization

Multi-objective (and also many-objective) optimization
approaches are used for optimization problems where several
criteria need to be optimised, but they are equally treated and
not merged (e.g., by weights) into one single objective

The output of multi-objective optimization is a set of
solutions that approximates the Pareto front

There is no unique measure that would indicate how good a
current approximation of the Pareto front is

In multi-objective cases

Adaptive parameter control is a bit more complicated to design
and additional considerations are needed to design phenotype
feedback collection part
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Multi-objective optimization

Possible assessment of the optimization process stage

Monitor the proportion of non-dominated solutions in the
population [105]
Convergence detection [73]

The most common indicators that are also used as input to
parameter control are the crowding distance and the
contributing hyper-volume [53], [11]
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Multi-objective optimization

Other metrics can also be applied

ε-dominance
Generational distance
Delta indicator
Two set coverage, and so on [83].

Compared to adaptive control, self-adaptive control is easier
to design and implement because less modifications are
needed to upgrade an existing multi-objective optimization
algorithm [102] [22].
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Multi-objective optimization

Some examples of multi-objective optimization

Engineering design [46]
Transportation [88], [61]
Production [45], [4]
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Multilevel optimization
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Multilevel optimization

In many real-world processes there is a hierarchy of
decision-makers and decisions are taken at different levels [70]

The constraint domain associated with a multilevel problem is
implicitly determined by a series of optimization problems
which must be solved in a predetermined sequence

The simplest form of a multilevel problem has two levels (i.e.,
bi-level optimization problem)

The optimization of such problem aims to achieve the
optimum solution of the upper level, while the optimum of the
lower optimization level is also taken into account
Since the lower level landscape changes for every upper level
vector, parameter control seems to be useful approach
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Multilevel optimization

An interesting application of bilevel optimization is connected
to parameter tuning of EAs as bilevel optimization problem

[91] propose the parameter tuning problem as an inherently
bilevel programming problem involving algorithmic
performance as the objective(s)
[1] created a bilevel framework for parallel tuning of
optimization control parameters, and compared it to irace
proving that it can be competitive
Bilevel control parameter tuning can be used to design a
parameter control mechanism [2]
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Examples
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Image processing: Feature selection

LS

Feature selection for reducing the dimensionality in
classification of hyperspectral images [27]

Self-adaptive differential evolution SADE is used

SADE is used in combination with Fuzzy kNN classifier

Compared to GA-based and ACO-based approaches [87]

Significant improvement for overall classification accuracy and
Kappa coefficient
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Image processing: Animated Tree Reconstruction

LS

UN

Feature extraction to reconstruct three dimensional procedural
models of trees; to lower problem dimensionality needed for
encoding local parameters [112]

The reconstruction is iteratively optimized using DE, which
samples procedural tree model parameters to obtain a
parameterized procedural model for instantiating a
geometrical model

jDE is used

DE with self-adaptive control parameter settings [14]

Examples of reconstructed model animation are shown, such
as simulation of its growth, sway in the wind, or adding leaves
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Intravascular Ultrasound Image Analysis: Medicine

DY

UN

To optimize for the parameters of feature detectors in the
multi agent image analysis system to detect lumen, vessel,
shadows, sidebranches, and calcified plaques in IVUS images
[63]

MIES (mixed integer evolution strategies) algorithm is used

implements self-adaptation of the width of the mutation distribution
(step size) [63]

step size control is used for real, integer, and categorical variables

The results show that MIES solutions performed better than
or equal to the default expert solution
MIES drawn contours are more smooth than contours
detected with the default parameter settings
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Production: Scheduling
DY

Optimal operations scheduling in the production of different
components considering various constraints [81]

PLES algorithm is used

PLES is based on general GA with modified implementation of
functions that allow varying population size, mutation and crossover
[79]

Compared to standard non-adapting GA and GA with customized
local search [58]

Faster convergence of PLES and comparable results to GA for
various problem instances
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Transport: Scheduling

DY

Solving a constrained transportation scheduling problem, for
transporting goods in emergency situations [57]

PLES algorithm is used

PLES is based on general GA with modified implementation of
functions that allow varying population size, mutation and crossover
[79]

Compared to non-adaptive Ant-stigmergy algorithm [60]

The satisfying performance in finding solutions and escaping
from local optima, for different transportation modes
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Power systems: Scheduling

LS

DY

Addressing total fuel costs and emissions minimization by
appropriate hydro and thermal generation schedules [44]

NPdynεjDE and PSADEs algorithms are used

NPdynεjDE is based on jDE self-adaptation [15], population size
reduction [16], and ε level adjustment [113]

Surrogate parallel self-adaptive DE (PSADEs) is based on
self-adaptation [43], with pre-computed surrogate model

The satisfied 24-h system demand is obtained by using a new
DE architecture
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Optical network wavelength allocation

LS

DY

Determining the route and wavelength to be used by each of
the individual traffic requirements of multi-wavelength
all-optical transport networks [90]

GA algorithm is used

every few generations probabilities were recalculated, according to
the success of the predecessors of the improved solution

The results compare different sizes of adaptation
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Water pipeline system: Parameter calibration

LSParameter calibration strengthens the model accuracy of the
water distribution system. Many factors influence the
reliability of WDS simulation [103]

ensemble optimization evolutionary algorithm (EOEA) is used

Combining global shrinking stage (to shrink the searching scope to
the promising area) [16] and local exploration [107] stage with
self-adaptive group sizing

Different problems were constructed/tested: 100D, 200D, 300D and
454D

Results show good scalability of EOEA on this real-world
application
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Seismic waveform inversion: Configuration

LS

UN

Waveform inversion for whole Earth geophysics and
exploration geophysics, to develop an accurate Earth model
and for understanding of subsurface structures [100]

cooperative coevolutionary DE (CCDE) algorithm is used

All subcomponents are cooperatively evolved to solve
high-dimensional optimization problems through decomposition

The next generations are selected according to the global fitness
values

The parameter adaptation scheme of jDE [14] is used

The CCDE results are very effective and have significant
advantages over some other methods. CCDE is not sensitive
to the size of the parameters
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Underwater glider: Path planning

DY

UN

Optimization of a short-term sea trajectory, with opportunistic
sampling of dynamic mesoscale ocean structures (eddies),
which offer short-term opportunities for underwater glider
path optimization [114] [111]

jDE is used

Slightly modified jDE [14], combining DE and underwater glider
path planning (UGPP)

Gliders operational capabilities benefit from improved path
planning, especially when dealing with opportunistic
short-term missions focused on dynamic structures
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Underwater glider: Path planning 2

DY

UN

Optimization of a sea trajectory for underwater glider path
optimization [115]

Success-History Based Adaptive Differential Evolution Algorithm
(SHADE) including Linear population size reduction (L-SHADE) is
used

L− SHADE5 was used including different population sizes and
population sizing strategies

Increased opportunity for mission scenario re-tests or in very
hard scenarios
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Electrical motor: Geometry selection

UNOptimization of geometrical parameters of the electrical motor
rotor and stator geometry [78]

PLES algorithm is used

PLES is based on general GA with modified implementation of
functions that allow varying population size, mutation and crossover
[79]

Compared to generational evolutionary algorithm (GEA) [96] and
multilevel ant stigmergy algorithm (MASA) [59]

The results show fast convergence of the PLES but is not
always able to find global optimum
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Target shape design: optimization

LS

MO

To tackle the target shape design optimization problems
(TSDOPs) with B-spline as the geometry representation [106]

CMA-ES-CC algorithm is used

CMA-ES with Cooperative Coevolution was implemented

Compared with CMA-ES, iES [77], RCGA [28]

The performance of CMA-ES-CC was stable, and the results
of CMA-ES-CC were significantly better than with other EAs
for TSDOPs
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Structure topology optimization

MOTopology optimization was performed with two different
compliances (structure in different load cases are used as two
different objective functions to be minimized) were considered
as conflicting objective functions [86]

Adaptive weight multi-objective algorithm is used

Conflicting objective functions are converted to a single objective
function by applying weights, and these weights are adaptively
updated to find evenly distributed solutions on the Pareto front.

The results confirm that optimized solutions, obtained by
using the proposed method, are evenly distributed on the
Pareto front
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Robotic hand: configuration

DYDesign of a three-finger end effector of the robot [69]

Differential Evolution with Combined Variants (DECV-S)

Dynamic control mechanism was added for the F parameter of DE

Compared against the fine-tuned original version of the algorithm
(DECV) and against the fine-tuned version of a DE-based approach

DECV-S was able to provide similar results to those of the
fine-tuned compared approaches, but with a considerable
lower number of fitness function evaluations
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Robotic hand: configuration 2

DY

MO

The speed regulation of four-bar mechanisms in industrial
processes [84]

multiobjective metaheuristic optimizers

Comparison of NSGA-II, multiobjective evolutionary algorithm based
on decomposition and DE (MOEA/D-DE), S-metric selection
evolutionary multiobjective algorithm (SMS-EMOA), nondominated
sorting genetic algorithm III (NSGA-III), and HV-MODE

The proposed adaptive controller tuning strategy shows to be
effective for speed control of the FBM
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Pendulum: Reinforcement learning

DYConsiders modeling of inverted pendulum and
double-pendulum swing-up [25]

CMA-ES algorithm is used

CMA-ES uses reproducing kernel Hilbert space (RKHS)

Compared to standard CMA-ES and adaptive CMA-ES direct policy
search CMA-ES-A

The results show that CMA-ES-RKHS is able to avoid local
optima and clearly outperformes other methods

Gregor Papa Tutorial: Applications of Dynamic Parameter Control in EC

Urban mass rapid transit: Transport

DY

MO

Multi-objective simulation-based headway optimization for
complex urban mass rapid transit systems in Vienna [88]

CMA-ES algorithm is used

multi-objective version of CMA-ES (MO-CMA-ES) is compared to
single objective version (SO-CMA-ES) and NSGA-II

The results show similar performance of all tested algorithms
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Aerobic fermentation process: Production

DY

MO

The optimization of the oxygen mass transfer coefficient in
stirred bioreactors, where the oxygen transfer in the
fermentation broths has a significant influence on the growth
of cultivated microorganism [38]

SADE-NN-1 algorithm is used

An improved, simple, and flexible self-adaptive variant of DE, in
combination (hybridized) with neural networks

The improvements (hybridization) of the algorithm resulted in
higher efficiency of the whole methodology
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Summary
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Summary

The distribution of presented cases according to problem
characteristics

large-scale dynamic uncertain multi-objective

7 6 12 5

The distribution of topologies (as presented earlier) used in
presented cases:

some state-dependent

mostly success-based

a few learning-inspired
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Summary 2

The need for dynamic parameter control.

High

Traffic
Logistics / Transportation
Energy demand

Moderate

Production
Finances
Data analytics

Low

Parameter calibration
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Wrap Up

You should be (now) convinced that

Dynamic parameter choices can help to significantly improve
the performance of your EA
Already quite simple mechanisms can be surprisingly efficient
Research and work on parameter control can be fun ,
Non-static control parameter values should be the new
standard in the field ,

A lot needs to be done to make this change happen

Do not get frightened by the fact that (quite) some work has
already been done.
There is still much room for creativity and we are just starting
to understand how good mechanisms look like!

→ If you get to work on parameter control, we would be very
much interested in your results, positive and negative!

gregor.papa@ijs.si
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The differential ant-stigmergy algorithm.
Information Sciences, 192(1):82–97, 2012.
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