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EXTENDED ABSTRACT
There has been a significant amount of research on computational
modeling of language evolution to understand the origins and evo-
lution of communication [3, 11, 14, 15]. However, there has been
relatively little computational modeling of environmental factors
influencing the evolution of linguistic diversity and thus the emer-
gence and merging of dialects [1]. Using evolutionary agent-based
simulation [3], this study investigates environmental factors influ-
encing the emergence of linguistic diversity in an evolving agent-
based language simulation. We used iterative agent-based naming-
game [15] simulations to evaluate the impact resources, population,
and environment size have on evolving language diversity [10]. A
specific aim was to investigate thresholds (tipping-points) in factors
that cause significant changes to linguistic diversity in populations.

Methods and Experiments
Experiments initialized a 𝑄x𝑄 bounded grid with a random distri-
bution of agent-resource combinations. With uniform randomness,
each agent was assigned an arbitrary language-term for five re-
source types in the environment. Each term was randomly selected
to be between 3-9 ASCII characters in length. Resource value was
determined by a Gaussian random value generator with 𝜎 = 2 and
𝜇 = 4, where a resource’s value corresponds to fitness received
upon an agent consuming 𝑡ℎ𝑎𝑡 resource. Experiments used a grid
world instantiated with varying numbers of agents, resources and
resource types. All agents moved randomly about the grid for their
lifetime (1000 simulation iterations) during which a variable number
of naming-games were played. Each agent movement was: North,
South, East, or West onto an adjacent unoccupied cell.

A naming game was played when an agent moved to a grid-cell
adjacent to a resource, and at least one other agent was concurrently
adjacent to the resource. All agents then bid a percentage of their
fitness (energy) with the highest bidder consuming the resource
thus having the payout added to its fitness. All other agents involved
in the naming game then had their terms for the resource-type
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being bid over set to that of the winner’s term. Thus, the highest
bid was deducted from winning agent and paid out equally to all
non-winning agents. Bid value was determined by an Artificial
Neural Network (ANN) controller evolved via NEAT 1 [13].

Each ANN controller had 9 inputs with the first 7 taking in all
surrounding agents terms for 𝑡ℎ𝑎𝑡 resource, the 8th receiving the
payout of the resource being bid over, and the 9th taking an agent’s
current fitness. ANN output was a decimal value between 0 and 1
indicating the proportion of an agent’s fitness to bid. The fitness
function was thus to maximize resources consumed (fitness gained)
via bidding specific amounts in naming-games. A population of 500
ANNs was evolved over 100 generations. Each ANN was initialised
with 9 input and 1 output node where, at generation 0, all weighted
connections were set to 1. NEAT evolved hidden layer connectivity
keeping ANN input-output layers fixed. Each generation, all ANNs
were evaluated in 50 environments (agent-resource configurations)
with average fitness computed over all environments and runs.

Levenshtein Similarity was used to measure linguistic distance be-
tween agents with Hierarchical Complete-Linkage clustering to clas-
sify groups of linguistically similar languages. We used Greenberg’s
Linguistic Diversity (LD) index [6], and Monolingual Non-weighted
Method for quantifying linguistic diversity. In our experiments, LD
is the probability that two agents selected from the population at
random will not share a language. As such, 0 indicates all agents
speak same language (all terms for resources are identical), and 1
indicates no agents share a language (all terms are distinct).

Results and Discussion
Ordinary Least Squares Regression [9] indicated a statistically pos-
itive relationship between average LD and agent population size.
Unit increases (50) in population size saw significant increases
(t-test [4], p<0.01) in average LD (figure 1, left). Similarly, envi-
ronment area (grid-cells) was a statistically significant predictor of
average LD, where unit increases (1000) led to significant (p<0.01)
decreases in average LD (figure 1, center). Also, unit increases in
resources (500) significantly (p<0.01) decreased LD (figure 1, right).

Regression analysis indicates an increasing agent population
results in increased LD, while increasing environment size and
resources results in decreasing LD. This is enabled by naming-
games occurring when multiple agents are adjacent to any resource.
More resources means potentially more naming-games (language
terms shared) between agents which increases with population size.
However, LD only increases to a point, since as environment size
(figure 1, center) and resources (figure 1, right) increase, then an
increased number of naming-gameswill likely result in convergence
on specific language terms, thus decreasing LD in the population.
Hence, larger environments reduce the chance of multiple agents

1Experiment parameters and code online: https://tinyurl.com/gecco21-evolang
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Figure 1: Left: Average Linguistic Diversity (LD), averaged over all environments and resource amounts. Center: LD per envi-
ronment (averaged for all resources and populations). Right: LD per resources (averaged for all environment and populations).

being adjacent to resources and thus interacting (fewer naming-
games), which results in a decreasing LD in the population (figure
1, center). Whereas, small environments restrict agent movement
(agents and resources cannot occupy the same grid-cell), resulting in
fewer naming-games, also resulting in a lower LD in the population.

Notably, LD increases between environment sizes of 2500 to 5625
(p<0.01) (figure 1, center), and significantly decreases thereafter
(p<0.01), indicating an environment size threshold where many
naming-games facilitate a high LD in the population. A similar
phenomenon was observed for resources (figure 1, right), where LD
increases between 500 and 1000 resources insignificantly (p>0.05)
and thereafter decreases significantly (p<0.01).

For small environments, agent movement is restricted by physi-
cal barriers of other agents and resources, thus reducing the number
naming-games and limiting LD increase. Though as environment
size increases, agent movement increases and more agents concur-
rently move adjacent to resources thus increasing naming games
and LD in the population. Further increased environment size re-
sults in greater spread between resources and agents, decreasing the
chance that agents concurrently move adjacent to resources, thus
decreasing the number of naming-games and LD in the population.
As in natural language evolution [2, 7, 12], small environments are
analogous to those with many physical barriers, thus inhibiting
language sharing but encouraging increased linguistic diversity
due to multiple (geographically isolated) dialects in the environ-
ment. However, such LD only increases to a point (as a function of
population size), given that the number of language (agent) inter-
actions is limited by population size and made less likely by larger
environments, thus driving down LD in the population [1].

This is supported by figure 1 (left), indicating that as population
size increases, LD in the population increases and then gradually
plateaus. Thus, for small population sizes, LD is low due to few
naming-games (LD is close to that initialised for the starting popula-
tion). As population size increases, more naming games are played,
thus increasing LD by virtue of agent numbers and diversity of
terms. Though such LD increases become negligible for larger pop-
ulations (>250) (p>0.05), since increased naming-games become
equated with increased language sharing and thus loss of LD due
to convergence on a fixed number of language terms.

In the case of resources, we observe a significant decrease in LD,
but for environments containing > 1000 resources. Thus, as with
the trend observed for increasing environment size, as resources
increase, then LD increases due to increased resource availability
enabling more naming games. Though for large resource amounts
(>1000) and even greater numbers of naming games, LD once again
decreases due to convergence on a fixed number of language terms.

Current research is investigating environment, evolutionary and
agent-interaction factors that determine such threshold (tipping-
points) observed in these simulations as well as natural language
populations [8], where LD increases to a point, and then decreases
(for example, changing environment conditions enabling dialects
to merge into linguistically less diverse languages [2, 5, 7]).
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