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Evolutionary Computation

Research area within computer science that draws inspiration
from the process of natural evolution.

Evolutionary computation (EC): population based
metaheuristic optimization methods that use biology inspired
mechanisms like selection, crossover or survival of the fittest.

Genetic Algorithm (GA), Tree based Genetic Programming
(GP), Cartesian Genetic Programming (CGP), Evolution
Strategy (ES), NSGA-II, etc.

[60, 77, 113, 11, 40]
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Machine Learning

Machine Learning (ML) is a subfield of computer science that
evolved from the study of pattern recognition and
computational learning theory in artificial intelligence.

Deep learning (DL) is a special type of machine learning.

Deep learning is designed to overcome problems that
traditional machine learning cannot.

Such problems are working with high-dimensional data, how
to achieve generalization.

In cryptology applications, mostly supervised learning is used.

Supervised learning represents learning algorithms that learn
to associate some input with some output, given a training set
of examples of inputs and outputs.

[13, 114, 50]
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Cryptology

Cryptology (from Greek words kryptos, which means hidden
and logos, which means word) is the scientific study of
cryptography and cryptanalysis.

Cryptography is a science (and art) of secret writing to hide
the meaning of a message.

Cryptanalysis is a science of analyzing ciphers in order to find
weaknesses in them.
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What is Cryptography?

Historically: cryptography has been the art of hiding the meaning
of messages to protect their confidentiality.

Origins dating back to ancient Egypt (˜2000 BCE).

Combination of the Greek words kryptòs (hidden) and graphı̀a
(writing).
Mainly relied on unsound methods till the 20th century, e.g.:

Monoalphabetic and polyalphabetic substitutions (Caesar’s
cipher, Vigenère’s cipher, ...)
Transpositions (The Scytale, ...)

Collectively, these methods are also known as classical
cryptography.

We will not be investigating AI for classical cryptography!
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Modern Cryptography

Modern cryptography is a science that studies the methods to
allow secure communication in presence of adversaries.

Started in the mid 20th century, with the seminal work by
Shannon.

Reliance on precise mathematical definitions and rigorous
proofs to guarantee certain security levels.
Used also for other goals other than message confidentiality:

Message integrity
Authentication
Non-repudiation

Nowadays, modern cryptography is at the core of many
protocols for secure digital communication (e.g., SSL/TLS, ...).
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The Basic Scenario

Alice wants to send a message to Bob over a communication
channel, so that only Bob can read it (confidentiality).

We call the message plaintext (PT ), and assume that it is a
string over an alphabet Σ, that is

PT ∈ Σ∗ =
∞⋃

i=0

Σi , Σi is the set of strings of length i

Alice Channel

Eve

Bob
PT PT

Eve, the adversary, can read everything transmitted over the
channel.
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The Basic Scenario – Introducing Cryptosystems

To prevent Eve from reading PT , Alice and Bob adopt the following
protocol:

1 Alice uses an Encryption function, Enc, which depends on an
encryption key KE , and transforms PT into a ciphertext CT :

CT = EncKE (PT)

2 Alice sends CT over the channel, and Eve observes CT .
3 Bob uses a Decryption function, Dec, that depends on a

decryption key KD , to transform CT back into PT :

PT = DecKD (CT)
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Cryptosystem – Block scheme

Alice Enc

KE

Channel

Eve

Dec

KD

Bob
PT CT CT PT

0.5
PT : plaintext
Enc: encryption function
KE : encryption key

0.5
CT : ciphertext
Dec: decryption function
KD : decryption key
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Cryptosystem – Basic properties

Unique decodability: given KE and KD , for all plaintext PT it
must be the case that DecKD (EncKE (PT)) = PT .

For all PT , it must be easy for Alice to compute the ciphertext
CT = EncKE (PT) by knowing KE and Enc.

For all CT , it must be easy for Bob to recover the plaintext
PT = DecKD (CT) by knowing KD and Dec.

Given CT , it must be extremely difficult for Eve to recover PT
without knowing the decryption key KD .

It is always assumed that the encryption and decryption
functions are known to Eve (Kerchoff’s principle).
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Classification of Cryptosystems

Cryptosystems

Symmetric key
Cryptosystems

Stream ciphers Block ciphers

Public key
Cryptosystems
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Symmetric and Public Key Cryptosystems

Symmetric key cryptosystems:

The key used for encryption and decryption is the same.

Alice and Bob must agree on this key before the
communication takes place.
Can be further classified in:

Stream ciphers: Encryption and decryption process single
symbols of the plaintext and the ciphertext.
Block ciphers: Encryption and decryption work over blocks of
fixed length of symbols.

Public key (or asymmetric key) cryptosystems:

The keys used for encryption and decryption differ.

Alice uses Bob’s public key KE to encrypt, while Bob uses his
own private key KD to decrypt.

[72, 75, 106, 181]
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Cryptanalysis

A study of methods for obtaining the meaning of encrypted
information, without access to the secret information that is
typically required to do so.

Commonly, it involves knowing how the system works and
finding a secret key.

The major categories of cryptanalysis are ciphertext only,
known plaintext, chosen plaintext, and chosen ciphertext.

Common examples are linear and differential cryptanalysis.
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Implementation Attacks

Implementation attacks do not aim at the weaknesses of the
algorithm itself but at the actual implementations on
cryptographic devices.

Power, sound, light, electromagnetic radiation.

Implementation attacks are among the most powerful known
attacks against cryptographic devices.

Common types of implementation attacks are side-channel
attacks and fault injection attacks.

Side-channel attacks are passive and non-invasive
attacks [96].

Fault injection attacks are active attacks since they enforce
the target to work outside the nominal operating range.
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Evolutionary Computation and Machine Learning in
Cryptology

We will notice that such artificial intelligence (AI) techniques
are used more often in attacks than in constructions.

More precisely, they are used more often in attacks by the
crypto community.
There are two main reasons for this:

1 It is easier to validate that the attack works. Indeed, we require
only a successful attack as proof. For constructions, it is
difficult to capture all the notions of security when using data
or fitness functions.

2 Attacks are made after the constructions are done. So, there is
the effect of timeliness. For constructions, one needs to use AI
while designing the system, which is often not possible. Later,
even if AI produces improved constructions, it is hard to
change the already made design.

[137, 24, 135, 136].
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Evolutionary Computation and Machine Learning in
Cryptology

For machine learning, a common tool is scikit-learn.

For deep learning, Keras.

For EC, different approaches use different tools.

ECF is a C++ framework intended for application of any type
of evolutionary computation: http://gp.zemris.fer.hr/

Details about projects concerning evolutionary computation
and cryptology: http://evocrypt.zemris.fer.hr/
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Evolutionary Computation and Machine Learning in
Cryptology

How to solve hard problems in cryptology?

Problems need to be hard (to be worthwhile), but not too
difficult (to be impossible to solve).

Plenitude of problems and possible methods to solve them.
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Boolean Functions

The easiest problem to start.

A natural mapping between the truth table representation of
Boolean functions and representation of solutions in EC.

Boolean functions are important cryptographic primitive and
often used in stream ciphers as the source of nonlinearity.

Boolean functions are commonly used in combiner or filter
generators.
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Boolean Functions

Combiner generator.

LFSR 1 x1

LFSR 2 x2
...

...

f(x1, x2, · · · , xn)

LFSR n xn

next bit
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Boolean Functions

Filter generator.

x1

a0 a1

+

x2 · · ·

an−2

+· · ·

xn−1

an−1

+

xn

· · ·

f(x1, x2, · · · , xn)

next bit
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Boolean Functions

Filter and combiner generators, as depicted in previous slides
are not commonly used in crypto anymore.

Evolving Boolean functions is more interesting from the
perspective of a difficult optimization problem, and not
designing cryptographic primitive that will be used in ciphers.

Figure: Boolean function representation with truth table (two variables).
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Boolean Functions

Three main directions in the evolution of Boolean functions:
1 Evolution of Boolean functions fulfilling a number of

cryptographic properties (that can be used in combiner or filter
generators). Additionally, with some special properties that are
useful for masking countermeasures against side-channel
attacks.

2 Evolution of bent Boolean functions. Bent Boolean functions
are maximally nonlinear but not balanced, and as such, not
directly usable in crypto. Still, this represents an interesting
benchmark problem.

3 Evolution of algebraic constructions that are used to design
Boolean functions.
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Boolean Functions

Depending on the setting, we are interested in a number of
properties (balancedness, nonlinearity, algebraic degree,
correlation immunity, algebraic immunity), where some of
those properties are conflicting.

Search space size is 22n
.

Representing solutions in the truth table form requires a string
of bits of length 2n.

For smaller sizes, bitstring, integer, and floating-point also
give good results.

Currently, the best results, in general, are achieved with
GP/CGP.

Such results are comparable with those from algebraic
constructions.
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Boolean Functions

The problem is scaling as algebraic constructions work for
many dimensions, while EC has problems when considering
Boolean functions with more than, e.g., 16 variables.

Interesting research directions: i) finding Boolean functions
with specific properties that were not found with algebraic
constructions, ii) extending EC to work with larger Boolean
functions, and iii) evolving constructions of Boolean functions.

General information about Boolean functions in
cryptography [19, 31, 20].

[112, 108, 154, 140, 109, 2, 110, 111, 27, 28, 25, 64, 159,
156, 143, 163, 98, 97, 101, 148, 100, 99, 134, 167, 142, 152,
155, 15, 102, 70].
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Boolean Functions

Bitstring representation

<Individual size="1">

<FitnessMax value="116.727"/>

<BitString size="256">11110000001011100110101111010001110110000010110

011100000001010001110101011010101001010001001110110000100001111001100

100001011000001010101111111111111101110110000111101011101111000101010

001011110000001101001010010001111101001111011101000111010010010001001

00</BitString>

</Individual>

correlation immunity: 0; nonlinearity: 116; algebraic degree: 6

Boolean function of eight variables represented with a binary
array of size 256 (ECF).

Optimization of nonlinearity while maintaining balancedness.
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Boolean Functions

Floating point representation

<Individual size="1">

<FitnessMax value="114.938"/>

<FloatingPoint size="32"> 0.26875 0.669872 0.762153 0.246787

0.443393 0.498733 0.664411 0.00021305 0.278248 0.622918

0.889779 0.321942 0.982994 0.554419 0.0779042 0.663329

0.125795 0.595173 0.540512 0.132081 0.112745 0.59266

0.847716 0.888488 0.592867 0.655954 0.770198 0.198452

0.348636 0.620424 0.767249 0.673829</FloatingPoint>

</Individual>

Truth table:

0100010010101011110000110011111101110001011111111010101000000000010001111

0011111111000110101001011111011100011010001001110101001001000001001100010

0010100010000100011100100101111101100111100011100101111010011111000101001

1001001011001100111101100010010101100

correlation immunity: 0; nonlinearity: 114; algebraic degree: 7

Boolean function of eight variables represented with a floating
point array (ECF).

In this example, each floating point value maps to eight bits in
the truth table (either binary or Gray encoding, concatenated
or distributed bits).

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology
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Boolean Functions

GP representation

<Individual size="1">

<FitnessMax value="120"/>

<Tree size="29">XOR XOR OR XNOR v0 XOR v5 v3 AND NOT v0 NOT v3

NOT XOR OR v1 v6 OR v7 v3 XOR AND2 v5 v6 IF v4 v2 v1 </Tree>

</Individual>

infix: ((((v0 XNOR (v5 XOR v3)) OR (˜(v0) AND ˜(v3))) XOR ˜(((v1 OR v6)

XOR (v7 OR v3)))) XOR ((v5 AND2 v6) XOR IF(v4, v2, v1)))

Truth table:

0101010111111111011010011100001111111111010101011100001101101001100110010

0110011101001010000111111001100011001101111000001011010101010101111111110

0101101100001100000000010101010011110001101001011001100011001101011010000

0111100110011011001100000111101011010

correlation immunity: 0; nonlinearity: 120; algebraic degree: 2

Boolean function of eight variables represented with a GP tree
(ECF).

Optimizing for maximally nonlinear functions (bent functions).
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S-boxes

Natural extension from the Boolean function case.
S-boxes (Substitution Boxes) are also called vectorial Boolean
functions.
Often used in block ciphers as a source of nonlinearity.
However, this problem is much more difficult!
S-box of dimension n ×m has m output Boolean functions, but
for several cryptographic properties we need to check all
linear combinations of those functions (there are 2n − 1 linear
combinations to consider).

Figure: S-box with two inputs x and outputs y.
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S-boxes

For an S-box of size n ×m, the search space size equals 2m2n
.

Commonly (with EC), we explore cases where n = m, which
means that for n = m = 8, the search space size equals
22 048.

Common sizes to evolve with EC are from 3 × 3 to 8 × 8.

Common solution representations are the same as for
Boolean functions, plus permutation (which enforces
bijectivity).

Note, if using the tree representation, one actually evolves n
trees.

For smaller sizes, (up to 4 × 4) all solution representations
work well.
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S-boxes

Similar to the Boolean function case, there are three main
approaches to construct S-boxes: i) algebraic constructions, i)
random search, and iii) heuristics.
EC is commonly used to:

1 Find bijective S-boxes with high nonlinearity (and low
differential uniformity). Note that for such S-boxes, we know
several algebraic constructions.

2 To find S-boxes with additional properties. These commonly go
into the direction of resilience against side-channel attacks.

3 To find more efficient implementations of S-boxes (efficient in
terms of area, power).

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology
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S-boxes

Figure: When considering S-box implementation properties, it is
important to be able to communicate between the EC system and the
system that checks the implementation perspective.
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S-boxes

The best results are obtained with tree representation and the
cellular automata approach.

CA representation was the first to obtain bijective S-boxes
with optimal cryptographic properties for sizes up to 7 × 7 (not
including 6 × 6 as there, no EC technique found the bijective
S-box with the best possible differential uniformity).

Already for size 8 × 8, EC results are far from those obtained
with algebraic constructions (except if the initial population is
seeded with good S-boxes).
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S-boxes

Table: Best known values for bijective S-boxes. For 8 × 8, we give the
best known results while for smaller sizes, we give the optimal values.
For bijective S-boxes (and in F2), both nonlinearity and differential
uniformity (δ) can be even values only. The worst possible values are 0
for nonlinearity (i.e., the S-box is linear), and 2n for differential uniformity.

Property 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8
nonlinearity 2 4 12 24 56 112
δ 2 4 2 2 2 4
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S-boxes

S-boxes are becoming less popular due to the rise of
permutation-based cryptography, but they are still widely used.

Naturally, most EC solutions are obtained much after the
cipher design, so it is impractical to change the whole cipher
simply to accommodate a new S-box.

Interesting challenges for EC are i) obtain S-box of size 8 × 8
with the same properties as with algebraic constructions, and
ii) evolve algebraic constructions of S-boxes (either primary or
secondary).

General information about S-boxes [19].
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S-boxes

Tool that evaluates cryptographic properties of Boolean
functions and S-boxes [141].

Discussion on benchmarking EC with cryptographic
problems [157].

[26, 39, 43, 66, 67, 107, 147, 130, 162, 164, 165, 104, 161,
160, 103, 16, 188, 6, 168, 170, 146, 132, 21, 133, 89, 46, 69,
153, 35].
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S-boxes

<Individual size="1">

<FitnessMax value="84.0938"/>

<Tree size="13">XOR v1 IF v3 IF v0 v5 v3 XOR NOR v5 v0 v2 </Tree>

</Individual>

infix: (v1 XOR IF(v3, IF(v0, v5, v3), ((v5 NOR v0) XOR v2)))

Sbox:

1001011010011001100101101001100100111100110011000011110011001100

1000011101111000110100101101001010000111011110001101001011010010

1100000000111111001111111100000011110011000011001111001100001100

1111010100000101000010101111101001011111101011111010000001010000

1011101101110111010001000111011101000100100010001011101110001000

1001101010011010011010100110101001100101011001010110101001101010

Permutation:

63 12 24 57 48 11 51 26 33 18 22 55 39 28 52 29 3 50 36 7 44 21 47 4 15 62 56 27

41 16 58 17 6 6037 13 9 59 14 46 25 35 42 2 31 45 8 40 30 38 61 23 49 1 54 20 19

43 32 10 53 5 34 0

S-box CA representation (cellular automata rule for a single
column repeated six times).

End result is a bijective S-box with six inputs and outputs
(ECF).
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Pseudorandom Number Generators

In the same way one builds Boolean functions and S-boxes as
cryptographic primitives, it is possible to extend the approach
and build pseudorandom number generators (PRNGs).

In cryptography, random number generators (RNGs) play an
important role.

Most of the time, we need true random number generators
(TRNGs), but still, there are applications for pseudorandom
number generators.

TRNG is a device for which the output values depend on
some unpredictable source that produces entropy.

PRNGs represent mechanisms that produce random numbers
by performing a deterministic algorithm on a randomly
selected seed.
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Pseudorandom Number Generators

Commonly, we want to find extremely fast and small PRNGs
that pass all NIST tests [5].

We can use GP and CGP to evolve PRNGs.

CGP has the advantage that it can have multiple outputs,
which means it can output more bits.

Fitness function needs to be simple yet powerful.

We can use the approximate entropy test from the NIST
statistical test suite as a fitness function.

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology
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Pseudorandom Number Generators

Figure: Example of a PRNG evolved with CGP.
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Pseudorandom Number Generators

The same technique can be used to produce PRNGs
on-the-fly.
Then, we can use evolvable hardware [182] that constantly
updates the PRNG part.

Figure: Example of a system that uses CGP and evolves PRNGs
on-the-fly.
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Pseudorandom Number Generators

Common challenges are to find fast, reliable, and small
PRNGs with EC.

Usually, the problem is to have an efficient fitness function.

[84, 128, 76, 54, 172, 200, 171, 169]
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Ciphers

Instead of evolving only parts of ciphers as we discussed up to
now, we can consider whether AI could build the whole cipher.

There are commonalities with the previous topic as one can
consider PRNG as the whole system and not only a part of it.

The first effort in this direction uses adversarial neural
networks.

There are three networks representing Alice, Bob, and Eve
and they compete to find a cipher that is usable and
secure [1].

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology
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Ciphers

It is also possible to evolve ciphers with evolutionary
algorithms [158].

One can use competitive coevolutionary algorithms to train a
cipher (Alice) and attacker (Eve).

Still, these works can be regarded as proofs of concept only.

There are multiple possible research directions: i) making the
ciphers more efficient and secure as now, they work with very
small inputs and are trivial to break, ii) making the attacker
strategies smarter, iii) explore different levels of information
provided to Alice and Eve – do they design all from scratch, or
do they have background info? iv) extending to other
concepts and not only block ciphers (and in block ciphers,
consider whether evolving the round function or the whole
cipher), and v) AI “reinventing” of crypto techniques that are
well-known and commonly used.
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Ciphers

Figure: Coevolutionary system for the evolution of ciphers.

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology

Attacks on Ciphers

Up to now, EC has been successfully applied to break
classical cryptography, see, e.g., [120] or simplified
ciphers [38].

Additionally, EC was also used as a helper tool in SAT-based
attacks [123].

To the best of our knowledge, these results are still far from
being able to say that EC was used to conduct cryptanalysis
of a modern cipher.

On the other hand, neural networks proved to be a more
suitable option here.

A common direction is to use neural networks to exploit the
properties of ciphers.
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Attacks on Ciphers

For example, train neural networks to distinguish the output of
a cipher with a given input difference from random data.

These approaches represent very interesting research
direction as with neural networks, one can reach/surpass
state-of-the-art cryptanalysis results.

[49, 85, 83, 33, 32, 23, 3, 10, 187, 74, 63, 65, 9].

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology
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Quantum Protocols

Instead of operating on primitive or cipher level, EC can be
used to evolve protocols also.

As an example, it is possible to use EC to evolve novel
quantum key distribution (QKD) protocols designed to counter
attacks against the system in order to optimize the speed of
secure communication.

In essence, the goal is to evolve protocols as quantum
circuits [185].

Then, it is possible to define whether EC must work on the
specific, user-defined template of a protocol or without explicit
rules on how to access quantum communication channel.
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Quantum Protocols

Figure: QKD protocol depicted as two circuits GA and GB . First, run
circuit GA , and then, the wire is measured, yielding a classical bit. Then,
Eve is allowed to attack the transit line. Finally, GB circuit is run, acting on
the transit wire, and additional wires private to party B. Then, B ’s wire is
measured.
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Quantum Protocols

This research direction looks very interesting as the current
results are very good and there are not many other
approaches to solve this.

[78, 79, 80].
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Quantum Protocols

<Individual size="5">

<FitnessMax value="0.152422"/>

<IntGenotype size="5"> 2 0 3 0 0</IntGenotype>

<IntGenotype size="5"> 2 0 2 1 3</IntGenotype>

<BitString size="5">01011</BitString>

<IntGenotype size="5"> 2 2 2 0 1</IntGenotype>

<FloatingPoint size="15"> 0.471412 0.248858 0.560975 0.554435

0.397848 0.448713 0.328381 0.582966 0.310332 0.273257

0.623984 0.782299 0.0205793 0.799614 0.0182854</FloatingPoint>

</Individual>

Gates A:

type 2 target 2 mode 0 control: 2

type 0 target 0 mode 1 control: 2

type 3 target 2 mode 0 control: 2

Gates B:

type 0 target 3 mode 1 control: 2

type 0 target 2 mode 1 control: 3

QKD circuit representation (ECF).

Optimization of a one-way QKD protocol, five gates total.

The fitness function reflects the maximum obtainable key-rate.
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Physically Unclonable Functions

Physically Unclonable Functions (PUFs) are embedded or
standalone devices used as a means to generate either a
source of randomness or to obtain an instance-specific
uniqueness for secure identification.

This is achieved by relying on inherent uncontrollable
manufacturing process variations, which results in each chip
having a unique response.

No two PUFs will give the same response when supplied with
the same challenge.

There exists no ideal PUF.

Ideal PUF is unpredictable and without noise.

Practical realizations depend on noise, aging, environmental
variables, and process variations.
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Physically Unclonable Functions

Two types of PUFs: strong and weak.

The difference with respect to the number of
challenge-response pairs (CRPs) an attacker is allowed to
obtain.

The number of unique challenges c scales polynomially with
the circuit area of a weak PUF.

The number of unique challenges c scales exponentially with
the circuit area of a strong PUF.
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Physically Unclonable Functions

Weak PUF has a limited number (typically, one or few) of
responses to challenges.

Strong PUFs have a large number of responses (with respect
to different challenges).

Strong PUFs have a virtually unlimited number of challenges
c, but their CRPs are highly correlated.

Given enough (often small amount) of CRPs, it is possible to
build a predictive model of a strong PUF (in a way, we build a
mathematical clone since it is not feasible to make analog
physical clone).

There exists no validated design of a strong PUF that is fully
resilient against modeling attacks.
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Physically Unclonable Functions

Figure: An example of a strong PUF - Arbiter PUF with n stages.
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Physically Unclonable Functions

Several techniques are commonly used to break strong PUFs.

From ML domain, logistic regression, and from EC, evolution
strategy.

This domain is very interesting as AI provided results that
were not possible to obtain with any other technique.

What is more, even simple AI techniques can easily break
strong PUFs.

This also means there is not much development in the domain
as attacks are easy to do, so no clear benefit of using more
complex techniques, e.g., deep learning.

[8, 198, 178, 177, 176, 7, 191, 34, 190, 186, 199, 44, 207].
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Hardware Trojans

Hardware Trojans (HTHs) are malicious hardware
components that intend to leak secret information or cause
malfunctioning at run-time in the chip in which they are
integrated.

Over the last decade, HTHs have gained increasing attention.

There are no HTHs in ICs reported in real-world applications
yet, there are many examples of academic research results,
both on injecting and detecting/preventing HTHs.

HTHs can be inserted by untrusted foundries and actors at
different stages in the design and development of FPGAs and
ASICs (Application-Specific Integrated Circuits).
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Hardware Trojans

Conventional HTHs typically modify the functionality of target
circuits at the register transfer level, net-list level, layout level,
or dopant level to obtain secret information directly, to induce
a fault for differential fault analysis, or to disable/degrade an
embedded (pseudo) random number generator.

HTH consists of two parts: a trigger and a payload.

The trigger usually corresponds to a rare data input
(sequence), while the payload is the activity that causes the
data leakage or the malfunctioning when the HTH is triggered.

HTHs are usually inserted in special places in the design that
have low testability or high slack time.

Testability is measured through two parameters: controllability
and observability.
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Hardware Trojans

Compared to research concerned with the design of
Hardware Trojans, considerably more results exist related to
different Hardware Trojan detection mechanisms and
countermeasures.

Most research focuses on detecting Hardware Trojans
inserted during manufacturing.

In many cases, a golden model is used that is supposed to be
Trojan free to serve as a reference.

One important question is how to get to a Trojan-free golden
model.
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Hardware Trojans

Common research directions include EC for detection and
prevention of HTH, ML for detection, but also EC to insert
HTH.

[53, 68, 81, 71, 179, 45, 82, 91].
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Side-channel Analysis

SCAs represent one of the most powerful categories of
attacks on crypto devices.

Profiled attacks have a prominent place as the most powerful
among side-channel attacks.

Some machine learning techniques can also serve as profiled
attacks.

There is a natural mapping between the profiled attacks and
supervised learning.

Recently, deep learning started to gain attention in the SCA
community.
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Side-channel Analysis

Figure: A depiction of profiled SCA.
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Side-channel Analysis

ML in SCA is an active domain for almost 20 years.

Even the first profiled attacks - template attack and stochastic
attacks are well-known techniques, quadratic discriminant
analysis, and linear regression, respectively.

Machine learning techniques were successfully applied in the
attack phase, but also for pre-processing and feature
engineering.

Deep learning thrives from advantages that it does not require
feature selection and that it can break implementations
protected with countermeasures.

Interesting additional ML applications are noise removal and
data augmentation.
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Side-channel Analysis

This is a very active research domain with new papers
appearing all the time.
This makes this domain attractive for new researchers but
also difficult due to large competition.
There are some extra problems like lack of publicly available
datasets, inconsistency between ML metrics and SCA
metrics.
Common techniques are random forest, support vector
machines, multilayer perceptron, convolutional neural
networks.
While the common attack target is AES (block cipher),
recently, more people are interested in attacking public-key
cryptosystems also.
While ML is mostly used in this domain, there are attempts to
use evolutionary algorithms to find better leakage models
(e.g., to use information from multiple S-boxes).
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Side-channel Analysis

A framework for deep learning-based SCA [126].

[149, 57, 151, 56, 17, 93, 47, 173, 166, 73, 4, 61, 55, 150, 88,
58, 62, 138, 197, 131, 208, 124, 59, 125, 204, 210, 209, 202,
105, 127, 175, 196, 192, 203, 90, 12, 189].

EC applications [211, 194].
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Fault Injection

A fault injection (FI) attack is successful if, after exposing the
device to a specially crafted external interference, it shows an
unexpected behavior exploitable by the attacker.

Insertion of signals has to be precisely tuned for the fault
injection to succeed.

Finding the correct parameters for a successful FI can be
considered as a search problem where one aims to find,
within a minimum time, the parameter configurations which
result in a successful fault injection.

The source of fault can be, e.g., voltage glitching, laser,
electromagnetic radiation.

Depending on the source of the fault, the search space of
possible parameters changes significantly.

In general, the search space is too big to conduct an
exhaustive search.
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Fault Injection

Commonly, one defines several possible classes for
classifying a single measurement:

1 NORMAL: smart card behaves as expected, and the glitch is
ignored

2 RESET: smart card resets as a result of the glitch
3 MUTE: smart card stops all communication as a result of the

glitch
4 CHANGING: the response is changing when repeating

measurements.
5 SUCCESS: smart card response is a specific, predetermined

value that does not happen under normal operation

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology
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Fault Injection

Figure: A depiction of search space for voltage glitching and two
parameters.
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Fault Injection

Research domain with not many results from AI.

Commonly used techniques are random search and grid
search, so EC makes a strong alternative.

The main issue is very expensive equipment to run fault
injection campaigns.

Mostly, EC is used, but recently, also deep learning found its
place.

Deep learning can be used to predict what a target would
respond to a specific parameter combination.
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Fault Injection

Interesting research directions include i) working with more
relevant parameters, ii) attacking targets with
countermeasures, and iii) making the search algorithm more
powerful, especially by considering the differences between
faults and exploitable faults (those that would result in target
break).

[22, 129, 139, 205, 95, 94, 180].
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Addition Chains

Up to now, we considered EC and ML applications that
directly contributed to the security of ciphers or, on the other
hand, were used to break ciphers.

Still, it is possible to use AI techniques as a helper tool to
improve the systems, either from an attack or defense
perspective.

In a way, one could consider the evolution of S-boxes with
good implementation properties to also belong to the setting
that helps improve the system, but not necessarily its security.

Another example of a problem like that is the finding of short
addition chains.

Addition chain: a sequence of positive integers where each
value is a sum of two values appearing previously in the chain.

Addition chains are used in public-key cryptosystems (e.g., for
modular exponentiation).

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology
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Addition Chains

Example: form an addition chain to target value of 60.

Binary method: write 60 in binary: 111100; replace “1” with
“DA” and “0” with “D”; cross out the first “DA” on the left;
“DADADADD”, calculate:

1→ 2→ 3→ 6→ 7→ 14→ 15→ 30→ 60

Addition chain (7 operations):

A1; A2 = A1 ∗A1; A4 = A2 ∗A2; A6 = A4 ∗A2; A12 = A6 ∗A6;

A24 = A12 ∗ A12; A30 = A24 ∗ A6; A60 = A30 ∗ A30
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Addition Chains

The problem of finding the shortest addition chain for a given
exponent is relevant in cryptography.

The problem is believed to be NP-hard.

There is no single algorithm that can be used for any
exponent.

The best solutions so far are obtained by pen and paper
method (!).

Huge numbers, so exhaustive search is impossible.

Heuristics should be able to help.

The values in the ascending addition chain have the property
that they are the sum of two values appearing previously in
the chain.
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Addition Chains

Common solution representations are binary encoding where
value 1 means that the entry number is in the chain, and 0
means the opposite, and integer encoding where every value
represents an element of the chain.

Extra care needs to be taken with crossover and mutation
operators: as one changes elements, it is required to ensure
that the chain remains valid!
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Addition Chains

Interesting research directions are i) improve the speed of the
algorithm, ii) look for optimal chains for even larger numbers,
iii) support special structures of numbers, and iv) explore
different types of addition chains.

[115, 116, 118, 30, 29, 122, 87, 145, 144, 117, 119, 36, 37].
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Addition chains

Custom addition chain genotype

<Individual size="1">

<FitnessMin value="37"/>

<Chain size="38">1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

17039360 17040384 17040385 34080769 68161538 68177922 136355844 204533766

340889610 374970379 375494667 375494699 375494703 </Chain>

</Individual>

construction:

0/0 1/1 2/2 3/3 4/4 5/5 6/6 7/7 8/8 9/9 10/10 11/11 12/12 13/13 14/14 15/15 16/16

17/17 18/18 19/19 20/20 21/21 22/22 23/23 18/24 10/25 0/26 26/27 28/28 14/29 30/30

30/31 31/32 28/33 19/34 5/35 2/36

Chain optimization with target exponent value 375 494 703
(ECF).

The construction steps are reproduced below the chain.
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Cybersecurity

Cybersecurity is the security of computer systems and
networks from information disclosure.

While often it is considered to include only the defensive side
(i.e., protection), we also consider the attack perspective.

Cryptography is just one aspect of cybersecurity.

In general, going from cryptography to cybersecurity
increases the number of AI applications.

We can also talk about AI for cybersecurity and the security of
AI.
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Intrusion Detection

Intrusion detection: the process of monitoring the events
occurring in a computer system or network and analyzing
them for intrusions.

Intrusions: attempts to bypass the security mechanisms of a
computer or network

Detection can be signature based and anomaly detection
based.
Anomaly detection: recognizes normal network traffic and
categorizes different traffic as an anomaly
Common approaches: supervised/unsupervised classification
(machine learning).
Problems with anomaly detection: 1) the data is usually too
expensive to be labeled manually, 2) data is imbalanced
(much more normal than anomaly traffic), and 3) the
existence of unknown attacks.
Assumption: only one class of data (normal network traffic) is
available for training!
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Intrusion Detection

GP can be used in classification (e.g., decision tree,
regression tree).
Use regression GP as one-class classifier.
Procedure: learn the model on normal traffic data, test on
unseen data containing anomalies (intrusions).
Learn a model (GP function) that forces the tree output
(function value) to a certain output range.

e.g., [1, 2], [4, 5] or [8, 9]; same range for all normal traffic
instances

Penalize ’trivial’ models - reward/force the use of most
features.
Test the model on unseen data containing intrusions (heavily
imbalanced!).
Interpretation: outputs falling outside the defined range are
classified as anomalies.
GP results: comparable to one-class SVM.
References: [18, 52, 14, 183, 206, 121, 41, 184, 42]
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Fuzzing

Fuzzing (fuzz testing): automated software testing technique.

Generating inputs and feeding them to the program being
tested in the hope of evoking erroneous behavior or
increasing code coverage.
Mutation-based fuzzing: uses a dataset of test cases (a
corpus):

selects a test case,
modifies it by applying mutation operators,
feeds it to the tested program.

Example mutation operators: bit flip, random byte value, set
byte to interesting value, insert byte, delete byte, ...

Optimization of fuzzing: finding an appropriate sequence of
mutation operators (mutation scheduling).
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Fuzzing

The fuzzing loop contains a deterministic stage (uses a
predefined order of mutations) and randomized stage
(random choice of mutations).

The optimization is applied to the randomized stage, with the
goal of finding the effective. probability distribution of mutation
operators
An example of online learning: optimization is performed
concurrently with the process being optimized:

the mutation scheduler uses the current, solution (probability
distribution) to select mutation operators,
the reported feedback is used to optimize the distribution,
the updated probability distribution is applied in the next
iteration.

Optimization is made under uncertainty: the fitness of a
solution may only be estimated.
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Fuzzing

Examples including evolutionary optimization in
mutation-based fuzzing:
MOPT fuzzer: uses a variant of PSO to learn globally optimal
mutation probability distribution

heavily dependent on choice of parameters and the tested
program
may exhibit slow convergence due to multiple solutions in the
population

An approach with single-solution metaheuristic (e.g. (µ + λ)
ES) could increase effectiveness:

focuses on increasing the speed of convergence,
more robust over different target programs.

EC-based mutation schedulers outperform standardized
fuzzing platforms.

References: [193, 51, 201, 174, 48, 92, 86, 195]
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Conclusions - EC

Up to now, EC proved to be successful in cryptography and
cybersecurity.
EC is used:

1 When there exist no other, specialized approaches.
2 To rapidly check whether some concept (e.g., formula) is

correct.
3 To assess the quality of some other method.
4 To produce “good-enough” solutions.
5 To produce novel and human-competitive solutions (solutions

produced by EC that can rival the best solutions created by
humans).
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Conclusions - ML

Machine learning is a data-driven approach, and as such
limited to scenarios where we can obtain data.

In cryptography, in domains like attacks on strong PUFs and
profiled SCA, machine learning achieved excellent results.

In cybersecurity, the applications are more diverse: intrusion
detection and fuzzing are examples of well-explored and
active research domains.

While this tutorial covers topics that could be considered as AI
for security, security of AI is also very active domain!
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Conclusions

We presented here only a handful of applications, there are
more options.
Even for each of the applications, there is a plethora of
options still to try:

1 New algorithms.
2 Combinations of parameters.
3 Representations.
4 Fitness functions.

The results obtained up to now are good, but there is still
much room for improvement.
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Conclusions

As already said, there is a difference between attack and
constructive perspectives, which makes it often easier for AI
techniques to be used as attack mechanisms (at least for
now).

As a general research direction, it would be interesting to
consider new applications (while some of the current ones are
still very active, it would not be necessarily easy for new
researchers to join the research effort).
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Thank you for your attention!

Questions?
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In Julia Handl, Emma Hart, Peter R. Lewis, Manuel López-Ibáñez, Gabriela Ochoa, and Ben Paechter, editors, Parallel Problem
Solving from Nature – PPSN XIV, pages 613–622, Cham, 2016. Springer International Publishing.

Stjepan Picek, Bohan Yang, Vladimir Rozic, and Nele Mentens.

On the construction of hardware-friendly 4 × 4 and 5 × 5 s-boxes.
In Roberto Avanzi and Howard Heys, editors, Selected Areas in Cryptography – SAC 2016, pages 161–179, Cham, 2017.
Springer International Publishing.

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology

References XXVII

Stjepan Picek, Bohan Yang, Vladimir Rozic, Jo Vliegen, Jori Winderickx, Thomas De Cnudde, and Nele Mentens.

Prngs for masking applications and their mapping to evolvable hardware.
In Kerstin Lemke-Rust and Michael Tunstall, editors, Smart Card Research and Advanced Applications, pages 209–227, Cham,
2017. Springer International Publishing.

A. Poorghanad, A. Sadr, and A. Kashanipour.

Generating high quality pseudo random number using evolutionary methods.
In 2008 International Conference on Computational Intelligence and Security, volume 1, pages 331–335, 2008.

Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile Dumas.

Study of deep learning techniques for side-channel analysis and introduction to ASCAD database.
IACR Cryptology ePrint Archive, 2018:53, 2018.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos.

Vuzzer: Application-aware evolutionary fuzzing.
In Proceedings of the Network and Distributed System Security Symposium (NDSS), 2017.

Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek.

Reinforcement learning for hyperparameter tuning in deep learning-based side-channel analysis.
Cryptology ePrint Archive, Report 2021/071, 2021.
https://eprint.iacr.org/2021/071.
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Rührmair.
Splitting the interpose puf: A novel modeling attack strategy.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):97–120, Jun. 2020.

Stephen Wolfram.

Random sequence generation by cellular automata.
Adv. Appl. Math., 7(2):123–169, June 1986.

Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley.

Scheduling black-box mutational fuzzing.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer &#38; Communications Security, CCS ’13, pages 511–522,
New York, NY, USA, 2013. ACM.

Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel.

Revisiting a methodology for efficient cnn architectures in profiling attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):147–168, Jun. 2020.

Lichao Wu, Guilherme Perin, and Stjepan Picek.

I choose you: Automated hyperparameter tuning for deep learning-based side-channel analysis.
Cryptology ePrint Archive, Report 2020/1293, 2020.
https://eprint.iacr.org/2020/1293.

Lichao Wu and Stjepan Picek.

Remove some noise: On pre-processing of side-channel measurements with autoencoders.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(4):389–415, Aug. 2020.

Lichao Wu, Gerard Ribera, Noemie Beringuier-Boher, and Stjepan Picek.

A fast characterization method for semi-invasive fault injection attacks.
In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA 2020, pages 146–170, Cham, 2020. Springer International Publishing.

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology

References XXXII

Shelly Xiaonan Wu and Wolfgang Banzhaf.

Review: The use of computational intelligence in intrusion detection systems: A review.
Appl. Soft Comput., 10(1):1–35, January 2010.

Yang Yu, Michail Moraitis, and Elena Dubrova.

Profiled deep learning side-channel attack on a protected arbiter puf combined with bitstream modification.
Cryptology ePrint Archive, Report 2020/1031, 2020.
https://eprint.iacr.org/2020/1031.

Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard, and Alexandre Venelli.

Ranking loss: Maximizing the success rate in deep learning side-channel analysis.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(1):25–55, Dec. 2020.

Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.

Methodology for efficient cnn architectures in profiling attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(1):1–36, Nov. 2019.

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu.

A novel evaluation metric for deep learning-based side channel analysis and its extended application to imbalanced data.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):73–96, Jun. 2020.

Zhenbin Zhang, Liji Wu, An Wang, Zhaoli Mu, and Xiangmin Zhang.

A novel bit scalable leakage model based on genetic algorithm.
Security and Communication Networks, 8(18):3896–3905, 2015.

Stjepan Picek and Domagoj Jakobovic Evolutionary Computation and Machine Learning in Cryptology

1118

https://eprint.iacr.org/2020/1258
https://eprint.iacr.org/2021/179
https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/1031

	Introduction
	Boolean Functions - EC
	Substitution Boxes - EC
	Pseudorandom Number Generators - EC
	Ciphers - EC, ML
	Attacks on Ciphers - ML
	Quantum Protocols - EC
	Physically Unclonable Functions - EC, ML
	Hardware Trojans - EC, ML
	Side-channel Analysis - ML, EC
	Fault Injection - EC, ML
	Addition Chains - EC
	Cybersecurity
	Intrusion Detection - EC, ML
	Fuzzing - EC
	Conclusions
	References

