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Computing for efficient green 'stuff’
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layouts. modeling for solar, wind demand and production

Robustness. and tidal energies leads to efficient
production.
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Figure 2 : Evolution 2010-2020 de la consommation énergétique du Numérique rapportée & ka consommation électrique mondiaie’
[Source: calculé par The Shift Project 3 partir des données pubiides par Andrae et Edier (2015))
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Al B HUMANITY.

LINTELLIGENCE ARTIFICIELLE Ok, computing can help us reduce

AU SERVICE DE L'HUMAIN.

Energy consumption by the the environmental footprint...

digital sector could

increase tenfold by 2030, ..but, what about the impact of
accounting for between computing itself'p

20...50%

of global electricity use.

Cédric Villani, Marc Schoenauer, Yann Bonnet, Charly Berthet, Anne-Charlotte Cornut, Frangois Levin, Bertrand N
&Z 7, Rondepierre. Al for Humanity. https://www.aiforhumanity.fr &Z’Z‘&/—
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AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
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learning, etc. but are the best datasets: vision, NLP,
hardware for machine etc. 00001 qpaN
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CO, Emissions of deep learning

Direct impact

Consumption COse (Ibs)
Of Sta te Of the Air trave.l, 1 passenger, NY <+SF 1984
Human life, avg, 1 year 11,023
art of NLP American life, avg, 1 year 36,156
. Car, avg incl. fuel, 1 lifetime 126,000
deep learning

Training one model (GPU)
met h Od S NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468
Transformer (big) 192
w/ neural architecture search 626,155

Emma Strubell, Ananya Ganesh and Andrew McCallum. Energy and Policy Considerations for Deep Learning in
NLP. Annual Meeting of the Association for Computational Linguistics (ACL short). Florence, Italy. July 2019.
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Date of original Energy consumption Carbon footprint (Ibs

paper (kWh) of CO2e) Cloud compute cost (USD)
Transformer (65M R
parameters) Jun, 2017 27 26 $41-$140
Transformer
(213M Jun, 2017 201 192 $289-$981
parameters)
ELMo Feb, 2018 275 262 $433-$1,472
BERT (110M
parameters) Oct, 2018 1,507 1,438 $3,751-812,571
Transformer
(213M
g:[ﬂ'a'l‘eters) L Jan, 2019 656,347 626,155  $942,973-$3,201,722
architecture
search
GPT-2 Feb, 2019 2 = $12,902-$43,008

Note: Because of a lack of power draw data on GPT-2's training hardware, the researchers weren't able to calculate its carbon footprint.
Table: MIT Technology Review - Source: Strubell et al. « Created with Datawrapper

https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
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Common carbon footprint benchmarks
in Ibs of CO2 equivalent

Rounditrip flight b/w NY and SF (1

passenger) | 1,984

Human life (avg. 1 year) I 11,023

American life (avg. 1 year) . 36,156

US car including fuel (avg. 1 lifetime) EPA0]
Transformer (213M parameters) w/ 626,155

neural architecture search
Chart: MIT Technology Review « Source: Strubell et al. + Created with Datawrapper

https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
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The solution
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Measuring
Al's footprint
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Carbon emissions generated.

Electric energy consumed
Elapsed time used for execution

Number of parameters (weights) and
hyperparameters.

Floating point operations.

Focused on the cost of training.

HPC, Al, ML, simulation, modeling, etc.
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COMPUTER SCIENCE

‘ HPC, Al, ML, simulation, modeling, etc.

Energy-conscious computing

VIABLE ECO LIVING
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BETTER HARDWARE

- FPGASs, Application-Specific Instruction Set Processors
(ASIPs), Coarse-Grained Reconfigurable Processors
(CGRAs), etc.

- Low-precision/inexact computing.

SELF-SCALING AND

CLOUD COMPUTING

- Move data and processes to where greener
energy is available.

The solution
is a
multi-step
solution

SMART EXPERIMENTATION
- using optimization tools to focus the
hyperparameter search.

- HCl and visualisation tools.

SELF-ADAPTATION

MODEL REUSE AND
TRANSFER LEARNING

% Green Al
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Better
Hardware
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Smarter
experiments
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Itis unlikely that we get right of GPUs (or TPUs)
at training time.

There are hardware alternatives at use time:

- Field Programmable Gate Arrays (FPGAs),
Application-Specific Instruction-set
Processors (ASIPs), etc.

We should also keep exploring the use of
low-precision computing:

Reducing the quality (and therefore length) of
the floating-point representation of numbers.

Finding the right configuration of the
hyperparameters probably where more energy is
consumed.

This is an optimization problem => NP-Hard problem

However, better approaches like evolutionary
computing are here to help!

..but they need populations of individuals, hence more
energy.

This is a multi-objective optimization problem!

Self-scaling
and cloud
computing
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Self
adaptation
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Self-scaling computing facilities make
available a pool of shared resources.

Optimally schedule computing time.

Cloud computing allows to pick the location
where programs will be run.

Code is mobile!

We can, for example, "track the sun"and ensure
that the AlI/ML processes use renewable
sources.

We need cloud (computing)
transparency!

To look for methods that adapt their complexity
automatically to the complexity of the
problem being solved.

Neural networks based on adaptive resonance
theory (ART) and growing neural gas (GNG)
have rules to adapt themselves to the
complexity of the problem.



Model reuse and transfer learning

Source labels
A
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Source data
E.g. ImageNet
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| 5

Small
amount of
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I Target data
I Eg. PASCAL

We should not only work in solving key
problems in the area of green energies.

We should also readdress computing under an
environment-aware point of view.

€ toreport the budget/accuracy curve
observed that shows how much energy
needs to be used to achieve the results.

@ releasing pretrained models to save
others the cost of pre-training.
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Active learning and sample efficiency
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https://www.brandidea.com/activeLearning.html

Merci ! - Obrigado! - Thank you! - iGracias!
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