

Towards a Green Al Evolutionary solutions for an ecologically viable artificial intelligence

Nayat Sánchez-Pi and Luis Martí Inria Research Center in Chile, Santiago de Chile, Chile.

GECCO '21 Companion, July 10-14, 2021, Lille, France © 2021 Association for Computing Machinery. ACM ISBN 978-1-4503-8351-6/21/07_\$15.00 https://doi.org/10.1145/3449726.3461428

Instructors

Nayat Sánchez-Pi is currently the Director and CEO of the Inria Chile Research Center, created in 2012 by Inria, the French National Research Institute for Digital Sciences to facilitate scientific and industrial cooperation between France, Chile, and Latin America. Before that, she was a professor of Artificial Intelligence and Human-Computer Interaction at the Department of Informatics and Computer Science of the Institute of Mathematics and Statistics of the Rio de Janeiro State University. Prof. Sánchez-Pi's research interests have broadened over the years and span topics that range from artificial intelligence, machine learning, and data mining to ambient intelligence, ubiquitous computing, and multi-agent systems. She received a degree in Computer Science in 2000 from the University of Havana and a Ph.D. degree in Computer Science in 2011 from the Universidad Carlos III de Madrid. She has led numerous research projects applying evolutionary computation, machine learning, and other artificial intelligence methods.

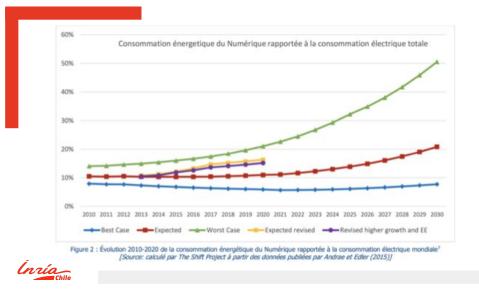
Computing for efficient green 'stuff'

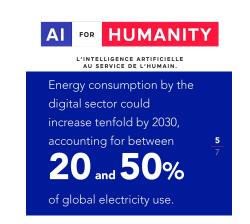
OPTIMIZATION Plant and export layouts. Robustness.

Inría

MODELING Wind and wave modeling for solar, wind and tidal energies

PREDICTION Being able to predict the demand and production leads to efficient production.





BETTER HARDWARE

GPUs were developed

but are the best

learning.

for rendering graphics

hardware for machine

BETTER DATASETS

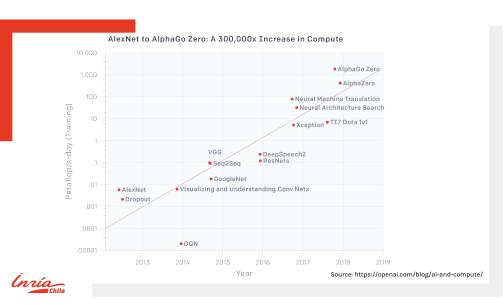
Important effort to

datasets: vision, NLP,

create challenges

etc.

Cédric Villani, Marc Schoenauer, Yann Bonnet, Charly Berthet, Anne-Charlotte Cornut, François Levin, Bertrand Rondepierre. **Al for Humanity**. <u>https://www.aiforhumanity.fr</u>



BETTER MODELS

transfer, active

learning, etc.

Deep, reinforcement,

(nría

Ok, computing can help us reduce the environmental footprint...

...but, what about the impact of computing itself?

Direct impact of state of the art of NLP deep learning methods

CO₂ Emissions of deep learning

Consumption	CO ₂ e (lbs)
Air travel, 1 passenger, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000
Training one model (GPU)	
	39
Training one model (GPU) NLP pipeline (parsing, SRL) w/ tuning & experimentation	39 78,468

626,155

Emma Strubell, Ananya Ganesh and Andrew McCallum. Energy and Policy Considerations for Deep Learning in NLP. Annual Meeting of the Association for Computational Linguistics (ACL short). Florence, Italy. July 2019.

w/ neural architecture search

Common carbon footprint benchmarks

in lbs of CO2 equivalent

Roundtrip flight b/w NY and SF (1 passenger)	1,984
Human life (avg. 1 year)	11,023
American life (avg. 1 year)	36,156
US car including fuel (avg. 1 lifetime)	126,000
Transformer (213M parameters) w/ neural architecture search	626,155

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

	Date of original paper	Energy consumption (kWh)	Carbon footprint (lbs of CO2e)	Cloud compute cost (USD)
Transformer (65M parameters)	Jun, 2017	27	26	\$41-\$140
Transformer (213M parameters)	Jun, 2017	201	192	\$289-\$981
ELMo	Feb, 2018	275	262	\$433-\$1,472
BERT (110M parameters)	Oct, 2018	1,507	1,438	\$3,751-\$12,571
Transformer (213M parameters) w/ neural architecture search	Jan, 2019	656,347	626,155	\$942,973-\$3,201,722
GPT-2	Feb, 2019	-	-	\$12,902-\$43,008

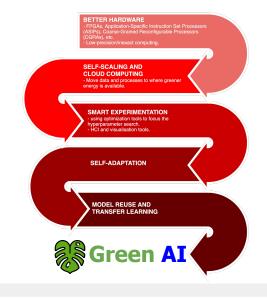
Note: Because of a lack of power draw data on GPT-2's training hardware, the researchers weren't able to calculate its carbon footprint. Table: MIT Technology Review - Source: Strubell et al. - Created with Datawrapper

https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

Inría

- → Carbon emissions generated.
- → Electric energy consumed
- → Elapsed time used for execution
- → Number of parameters (weights) and hyperparameters.
- → Floating point operations.
- → Focused on the cost of training.

The solution is a multi-step solution



(nría Chile

Better Hardware

Inría

It is unlikely that we get right of GPUs (or TPUs) at training time.

There are hardware alternatives at use time:

→ Field Programmable Gate Arrays (FPGAs), Application-Specific Instruction-set Processors (ASIPs), etc.

We should also keep exploring the use of *low-precision computing:*

Reducing the quality (and therefore length) of the **floating-point representation of numbers.**

Self-scaling and cloud computing

Self-scaling computing facilities make available a pool of shared resources.

Optimally schedule computing time.

Cloud computing allows **to pick the location** where programs will be run.

Code is mobile!

We can, for example, "track the sun" and ensure that the AI/ML processes use renewable sources.

We need cloud (computing) transparency!

Smarter experiments

Finding the **right configuration** of the **hyperparameters** probably where more energy is consumed.

This is an optimization problem => NP-Hard problem

However, better approaches like **evolutionary computing** are here to help!

...but they need populations of individuals, hence more energy.

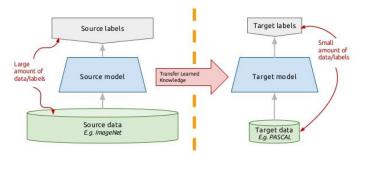
This is a multi-objective optimization problem!

Self adaptation

(nría Chile To look for **methods** that **adapt** their complexity **automatically** to the **complexity** of the **problem** being solved.

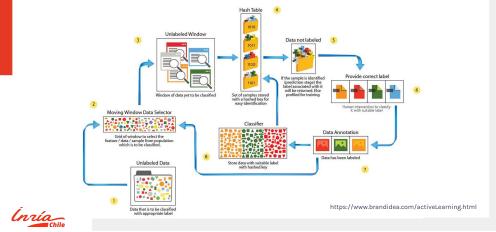
Neural networks based on adaptive resonance theory (ART) and growing neural gas (GNG) have rules to adapt themselves to the complexity of the problem.

Model reuse and transfer learning



Ínría

Active learning and sample efficiency



Final remarks

- → We should not only work in solving key problems in the area of green energies.
- → We should also readdress computing under an environment-aware point of view.
 - to report the budget/accuracy curve observed that shows how much energy needs to be used to achieve the results.
 - releasing pretrained models to save others the cost of pre-training.

