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• Feature Selection and Feature Construction

• Evolutionary Computation (EC) for Feature 

Selection and Feature Construction

• Evolutionary Feature Selection Methods

• Evolutionary Feature Construction Methods

• Issues and Challenges 
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Credit card application:

• 7 applicants (examples/instances/observations)

• 2 classes: Approve, Reject 
• 3 features/variables/attributes

Data set (Classification) — Example 1

Job Saving Family Class

Applicant 1 true high single Approve

Applicant 2 false high couple Approve

Applicant 3 true low couple Reject

Applicant 4 true low couple Approve

Applicant 5 true high children Reject

Applicant 6 false low single Reject

Applicant 7 true high single Approve
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What is a good feature?

COMP473 Week3:21

What is a Good feature?
• The measure of goodness is subjective with respect to the 

type of classifier. The features in this figure, x1 and x2, are 
good for a linear classifier.

COMP422  FS:

What is a Good feature?
• The measure of goodness is subjective with respect to the 

type of classifier. The features in this figure, x1 and x2, are 
good for a linear classifier.
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Non-Wrapper (Filter) Approach

• A feature construction system that does not adopt a wrapper ap-

proach is considered adopting a non-wrapper or filter approach.

• A measure of goodness in the form of a surrogate classifier is

required. The measure, however, should be designed differently

depending on type of classifiers will be using the constructed

features.
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What is a Good feature?

The measure of goodness is subjective with respect to the type of

classifier. The features in this figure, x1 and x2, are good for a linear

classifier.
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What is a Good feature?

The same set of features are not good for a decision tree classifier

that is not able to transform its input space.

COMP422 Feature Manipulation: 40

Why Use GP for Feature Construction?

• GP is flexible in making mathematical and logical functions

• There isn’t mush structural (topological) information in the

search space of possible functions, so using a meta-heuristic ap-

proach (such as evolutionary computation) seems reasonable.

COMP422 Feature Manipulation: 41

GP for Feature Construction: A System Diagram

COMP422 Feature Manipulation: 42

A Sample Measure of Goodness: The Entropy of
Class Intervals

Defining a measure of goodness for a single feature:

• The interval of a class along a feature is determined by the dis-

persion of the instances of that class along the feature axis. The

dispersion of instances itself is related to the distribution of data

points in that class.

• An interval I is represented with a pair (lower, upper) which

shows the lower and upper boundaries of the interval. Ic is used

to indicate an interval for class c.

• The interval of class c could be formulated as follows if the

class distributions were normal.

Ic = [µc − 3σc, µc + 3σc]

However, the normality assumption is not always satisfied.

What is a good feature?

COMP473 Week3:22

What is a Good feature?
• The same set of features are not good for a DT classifier that 

is not able to transform its input space.

COMP422  FS:

What is a Good feature?
• The same set of features are not good for a decision tree 

classifier that is not able to transform its input space.

6
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Fig. 9. (a) Decision tree induced by the J48 (C4.5) algorithm using the 1000
observations in the previous figure. (b) Class boundary generalized by the
decision tree. The decision tree inducer has failed to generalize the concept
of a line.

Fig. 10. (a) Simple GPMFC-constructed feature for the 1000 observations.
(b) J48 induced decision tree using the constructed feature, y.

E. Further Discussions

Theoretically, GP and symbolic learners both generate in-
telligible models: GP generates expression trees and symbolic
learners generate chains of rules or trees of decision stumps.
In practice, however, both of them can produce solutions
(constructed features or classifiers) that are not easily com-
prehensible; very often constructed features are unnecessarily
complicated and therefore unintelligible. Although in some of
our empirical results, the complexity of the constructed feature
and the complexity of the induced decision tree on those fea-
tures altogether were less than the complexity of the induced
decision tree on the original features (see the examples in the

Fig. 11. Visualization of the features in balance scale problem. The top four
plots depict the original features of the problem and the bottom plot is for
a constructed feature (x1x2 − x3x4). In each plot, the horizontal axis is the
instance number and the vertical axis is the value of the feature for the given
instance. The instances are grouped based on their class labels. The vertical
shaded areas from left to right correspond to the class labels: “left,” “balance,”
and “right.” The two dashed lines in the bottom plot depict the way a J48
decision tree inducer would partition the input (constructed) feature space in
order to learn the three concepts (classes).

previous subsection), in many cases the overall complexity
did not change or even increased after feature construction.
Two common causes of unnecessarily high complexity in GP
programs are verbosity and introns, both of which can be
addressed by algebraic or numeric simplification.

Even though in some cases the proposed feature construc-
tion system may not reduce the overall complexity of classifi-
cation systems (complexity of the constructed features plus the
complexity of the learnt classifier), throughout this paper, the
main focus was only on the complexity of induced decision
trees. This is because a decision tree with too many nodes
(on numeric features) can create serrated decision boundaries

COMP422 Feature Manipulation: 37

Non-Wrapper (Filter) Approach

• A feature construction system that does not adopt a wrapper ap-

proach is considered adopting a non-wrapper or filter approach.

• A measure of goodness in the form of a surrogate classifier is

required. The measure, however, should be designed differently

depending on type of classifiers will be using the constructed

features.
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What is a Good feature?

The measure of goodness is subjective with respect to the type of

classifier. The features in this figure, x1 and x2, are good for a linear

classifier.

COMP422 Feature Manipulation: 39

What is a Good feature?

The same set of features are not good for a decision tree classifier

that is not able to transform its input space.
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Why Use GP for Feature Construction?

• GP is flexible in making mathematical and logical functions

• There isn’t mush structural (topological) information in the

search space of possible functions, so using a meta-heuristic ap-

proach (such as evolutionary computation) seems reasonable.
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GP for Feature Construction: A System Diagram
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A Sample Measure of Goodness: The Entropy of
Class Intervals

Defining a measure of goodness for a single feature:

• The interval of a class along a feature is determined by the dis-

persion of the instances of that class along the feature axis. The

dispersion of instances itself is related to the distribution of data

points in that class.

• An interval I is represented with a pair (lower, upper) which

shows the lower and upper boundaries of the interval. Ic is used

to indicate an interval for class c.

• The interval of class c could be formulated as follows if the

class distributions were normal.

Ic = [µc − 3σc, µc + 3σc]

However, the normality assumption is not always satisfied.

What is a good feature?
GECCO,Dever, 
Colorado, USA. 20-24 
July 2016 Feature Selection and Feature Construction

• Feature selection aims to 
pick a subset of relevant 
features to achieve similar 
or better classification 
performance than using all 
features.

• Feature construction is  to  
construct new high-level 
features using original 
features to improve the 
classification performance.
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• “Curse of the dimensionality”
- Large number of features: 100s, 1000s, even 

millions

• Not all features are useful (relevant) 
• Redundant or irrelevant features may reduce the 

performance (e.g. classification accuracy)

• Costly: time, memory, and money

• Feature selection 
- to select a small subset of relevant features from 

the original large set of features in order to 
maintain or even improve the performance

Why Feature Selection ?
GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• The quality of input features can drastically affect the learning 
performance. 

• Even if the quality of the original features is good, 
transformations might be required to make them usable for 
certain types of classifiers. 

• Feature construction does not add to the cost of extracting
(measuring) original features; it only carries computational 
cost. 

• In some cases, feature construction can lead to 
dimensionality reduction or implicit feature selection. 

Why Feature Construction?
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• Reduce the dimensionality (No. of features)

• Improve the (classification) performance

• Simplify the learnt model 

• Speed up the processing time

• Help visualisation

• Improve interpretability and explainablity

• Reduce the cost, e.g. save memory 

• and  ?

What can FS/FC do ?
GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• Large search space: 2n possible feature subsets 
- 1990: n < 20
- 1998: n <= 50
- 2007: n ≈ 100s
- Now: 1000s, 1 000 000s

• Feature interaction
- Relevant features may become redundant
- Weakly relevant or irrelevant features may 

become highly useful 
• Slow processing time, or even not possible

• Multi-objective Problems

Challenges in FS and FC

COMP422 Feature Manipulation: 19

Search Strategy

Basically, many different search algorithms can be used (eg exhaus-

tive, random, GA).

Good representation of solutions (subsets) is very important. A

search algorithm can perform better by using the structural infor-

mation available to subsets of features: the lattice of subsets.

How would you use the lattice to perform a search?

COMP422 Feature Manipulation: 20

Forward Selection Algorithm

Forward Selection:

• Start with the empty set.

• At each step examine all individual features by tentatively

adding them to the current set of selected features. Choose the

feature that yields the highest improvement and add it to the set

of selected features.

• Repeat the above step until the performance can no longer be

improved.

How does this algorithm compare to exhaustive search?

COMP422 Feature Manipulation: 21

Backward Selection Algorithms

Backward Selection:

• Start with the set of all available features.

• At each step examine all individual features by tentatively re-

moving them from the current set of selected features. Pick the

feature that its removal yields the highest improvement and re-

move it from the set of selected features.

• Repeat the above step until the performance can no longer be

improved.

How does this algorithm compare to forward selection?

COMP422 Feature Manipulation: 22

Overcoming Computational Intensity in Feature
Selection

Things to do to make searching the exponentially-growing space of

subsets of features (with 2m elements) feasible:

• Don’t search the entire space; use some heuristics instead (e.g.

Forward Selection, GA, PSO, ...)

• Choose computationally cheap learning algorithms (e.g. Near-

est Centroid) or other measures (non-wrappers).

• Take a different approach (e.g. using GP to search the space

implicitly)

COMP422 Feature Manipulation: 23

Non-Wrapper (Filter) Approach

A feature selection system that does not adopt a wrapper approach

is considered adopting a non-wrapper or filter approach. It covers a

large number of feature selection algorithms:

1. Algorithms that use a search strategy and a surrogate classifier.

2. Algorithms that use single-feature ranking for feature selection.

3. Transformational dimensionality reduction (e.g. PCA and

LDA) (Note: these algorithms don’t perform selection over

original input variables)

4. A large number of other algorithms (e.g. RELIEF, ...)

COMP422 Feature Manipulation: 24

Feature Selection by Single Feature Ranking

To select m! features out of m original features:

1. Use an algorithm to measure the importance (goodness) of each

feature individually.

2. Sort (rank) all the m features in the descending order of their

importance.

3. Choose m! top (most important) features.

The importance of a feature is determined depending on their con-

tribution to prediction. Common measures of relevance:

• Pearson’s correlation

• Logistic Regression, Statistical testing (e.g. χ2 test)

• Information theory measure (e.g. IG and IGR)

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016 General FS/FC System

Constructed/Selec
ted Feature(s)

Evolutionary Feature 
Selection/Construction

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016 Feature FS/FC Process

• On training set:

• Responsible by a search 
mechanism

• Generate promising 
feature subset 
candidates 

Constructed/Selected 
Feature(s)

Features
evaluation

Ye
s

No

Initialization

• Evaluate feature 
subsets by an 
evaluation criterion 
(fitness function)

Stop?

Selected 
feature subset
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• Based on Evaluation  ——— learning algorithm
- Three categories: Filter, Wrapper, Embedded
- Hybrid (Combined): commonly wrapper + filter

Feature Selection Approaches

Filter
Original 
Features

Selected 
Features

Wrapper
Selected 
Features

Original 
Features

Selected Features

Learnt Classifier
Embedded Method

Selected  
Features

Evaluation
(Measure)

Learning 
Classifier

Original 
Features

Selected  
Features

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• Generally:

Feature Selection Approaches

Classification
Accuracy

Computational 
Cost

Generality
(different classifiers)

Filter Low Low High

Embedded Medium Medium Medium

Wrapper High High Low

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

Feature Selection

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• Conventional approaches
- The Relief algorithm
- The FOCUS algorithm 
- Sequential forward/backward floating selection
- Statistical feature selection methods
- Sparsity based feature selection methods

• Evolutionary Computation (EC) based approaches

Feature Selection Approaches

Li, J., Guo, R., Liu, C., & Liu, H. (2019, July). Adaptive unsupervised feature selection on attributed networks. In Proceedings of the 25th 
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 92-100).
Feng, Chao, Chao Qian, and Ke Tang. "Unsupervised feature selection by pareto optimization." In Proceedings of the AAAI Conference on 
Artificial Intelligence, vol. 33, pp. 3534-3541. 2019.
Tang, Chang, Xinwang Liu, Xinzhong Zhu, Jian Xiong, Miaomiao Li, Jingyuan Xia, Xiangke Wang, and Lizhe Wang. "Feature selective 
projection with low-rank embedding and dual Laplacian regularization." IEEE Transactions on Knowledge and Data Engineering (2019).
Li, Yun, Tao Li, and Huan Liu. "Recent advances in feature selection and its applications." Knowledge and Information Systems 53.3 (2017): 
551-577.
Cheng, Kewei, Jundong Li, and Huan Liu. "FeatureMiner: a tool for interactive feature selection." Proceedings of the 25th ACM 
International on Conference on Information and Knowledge Management. ACM, 2016.
Zhai, Yiteng, Yew-Soon Ong, and Ivor W. Tsang. "The Emerging" Big Dimensionality"." IEEE Computational Intelligence Magazine 9.3 
(2014): 14-26.
Gui, J., Sun, Z., Ji, S., Tao, D., & Tan, T. Feature selection based on structured sparsity: A comprehensive study. IEEE transactions on neural 
networks and learning systems, 28(7), (2017): 1490-1507.
Zhai, Yiteng, Yew-Soon Ong, and Ivor W. Tsang. "Making trillion correlations feasible in feature grouping and selection." IEEE 
transactions on pattern analysis and machine intelligence 38.12 (2016): 2472-2486.
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• Don't need domain knowledge 

• Don’t make any assumption
- e.g. differentiable, linearity, separability, equality

• Easy to handle constraints

• EC can simultaneously build model structures 
and optimise parameters

• Population based search is particularly suitable 
for multi-objective optimisation

Why Evolutionary Computation ? 
GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• EC Paradigms

• Evaluation

• Number of Objectives 

EC for Feature Selection

Xue, Bing, Mengjie Zhang, Will N. Browne, and Xin Yao. "A survey on evolutionary computation approaches to feature 
selection." IEEE Transactions on Evolutionary Computation20, no. 4 (2016): 606-626.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 3

Evolutionary Feature Selection

EC Paradigms Number of Objectives

Single 
Objective

Multi-
Objective

Evaluation

Wrapper 
Approaches

Filter 
Approaches

Combined 
Approaches

GPGAs

Evolutionary 
Algorithms

LCSs, ES, 

ABC, et al.
MemeticDE

Others

ACOPSO

Swarm 
Intelligence

Fig. 3. Overall categories of EC for feature selection.

(e.g. 50), in many situations such methods are computationally
too expensive to perform. Therefore, different heuristic search
techniques have been applied to feature selection, such as
greedy search algorithms, where typical examples are se-
quential forward selection (SFS) [23], sequential backward
selection (SBS) [24]. However, both methods suffer from the
so-called “nesting effect” because a feature that is selected
or removed cannot be removed or selected in later stages.
“plus-l-take-away-r” [25] compromises these two approaches
by applying SFS l times and then SBS r times. This strategy
can avoid the nesting effect in principle, but it is hard to
determine appropriate values for l and r in practice. To avoid
this problem, two methods called sequential backward floating
selection (SBFS) and sequential forward floating selection
(SFFS) were proposed in [26]. Both floating search methods
are claimed to be better than the static sequential methods.
Recently, Mao and Tsang [27] proposed a two-layer cutting
plane algorithm to search for the optimal feature subsets. Min
et al. [28] proposed a heuristic search and a backtracking
algorithm, which performs exhaustive search, to solve feature
selection problems using rough set theory. The results show
that heuristic search techniques achieved similar performance
to the backtracking algorithm, but used a much shorter time.
In recent years, EC technique as they are effective methods
have been applied to solve feature selection problems. Such
methods include GAs, GP, particle swarm optimisation (PSO),
and ant colony optimisation (ACO). Details will be described
in the next section.

Feature selection problems have a large search space, which
is often very complex due to feature interaction. Feature
interaction leads to individually relevant features becoming
redundant or individually weakly relevant features becoming
highly relevant when combined with other features. Compared
with traditional search methods, EC techniques do not need
domain knowledge and do not make any assumptions about
the search space, such as whether it is linearly or non-linearly
separable, and differentiable. Another significant advantage of
EC techniques is that their population based mechanism can
produce multiple solutions in a single run. This is particularly
suitable for multi-objective feature selection in order to find
a set of non-dominated solutions with the trade-off between
the number of features and the classification performance.
However, EC techniques have a major limitation of requiring
a high computational cost since they usually involve a large
number of evaluations. Another issue with EC techniques

is their stability since the algorithms often select different
features from different runs, which may require a further
selection process for real-world users. Further research to
address these issues is of great importance as the increasingly
large number of features increases the computational cost and
lowers the stability of the algorithms in many real-world tasks.

2) Evaluation criteria: For wrapper feature selection ap-
proaches, the classification performance of the selected fea-
tures is used as the evaluation criterion. Most of the popular
classification algorithms, such as decision tree (DT), support
vector machines (SVMs), Naı̈ve Bayes (NB), K-nearest neigh-
bour (KNN), artificial neural networks (ANNs), and linear
discriminant analysis (LDA), have been applied to wrappers
for feature selection [7], [8], [29]. For filter approaches,
measures from different disciplines have been applied, includ-
ing information theory based measures, correlation measures,
distance measures, and consistency measures, and [1].

Single feature ranking based on a certain criterion is a
simple filter approach, where feature selection is achieved by
choosing only the top-ranked features [7]. Relief [30] is a
typical example, where a distance measure is used to measure
the relevance of each feature and all the relevant features are
selected. Single feature ranking methods are computationally
cheap, but do not consider feature interactions, which often
leads to redundant feature subsets (or local optima) when
applied to complex problems, e.g. microarray gene data, where
genes possess intrinsic linkages [1], [2]. To overcome such
issues, filter measures that can evaluate the feature subset
as a whole have become popular. Recently, Wang et al.
[31] developed a distance measure evaluating the difference
between the selected feature space and all feature space to
find a feature subset, which approximates all features. Peng
et al. [32] proposed the minimum Redundancy Maximum
Relevance method based on mutual information, where the
proposed measures have been introduced to EC for feature
selection due to their powerful search abilities [33], [34].

Mao and Tsang [27] proposed a novel feature selection
approach by optimizing multivariate performance measures
(which can also be viewed as an embedded method since the
proposed feature selection framework was to optimise the gen-
eral loss function and was achieved based on SVMs). However,
the proposed method resulted a huge search space for high-
dimensional data, which required a powerful heuristic search
method to find the optimal solutions. Statistical approaches,
such as T-test, logistic regression, hierarchical clustering, and

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• Genetic algorithms (GAs), Genetic programming (GP)

• Particle swarm optimisation (PSO), ant colony optimisation(ACO)

• Differential evolution (DE), memetic algorithms, learning 
classifier systems (LCSs)

EC for Feature Selection
JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 3
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Intelligence

Fig. 3. Overall categories of EC for feature selection.

(e.g. 50), in many situations such methods are computationally
too expensive to perform. Therefore, different heuristic search
techniques have been applied to feature selection, such as
greedy search algorithms, where typical examples are se-
quential forward selection (SFS) [23], sequential backward
selection (SBS) [24]. However, both methods suffer from the
so-called “nesting effect” because a feature that is selected
or removed cannot be removed or selected in later stages.
“plus-l-take-away-r” [25] compromises these two approaches
by applying SFS l times and then SBS r times. This strategy
can avoid the nesting effect in principle, but it is hard to
determine appropriate values for l and r in practice. To avoid
this problem, two methods called sequential backward floating
selection (SBFS) and sequential forward floating selection
(SFFS) were proposed in [26]. Both floating search methods
are claimed to be better than the static sequential methods.
Recently, Mao and Tsang [27] proposed a two-layer cutting
plane algorithm to search for the optimal feature subsets. Min
et al. [28] proposed a heuristic search and a backtracking
algorithm, which performs exhaustive search, to solve feature
selection problems using rough set theory. The results show
that heuristic search techniques achieved similar performance
to the backtracking algorithm, but used a much shorter time.
In recent years, EC technique as they are effective methods
have been applied to solve feature selection problems. Such
methods include GAs, GP, particle swarm optimisation (PSO),
and ant colony optimisation (ACO). Details will be described
in the next section.

Feature selection problems have a large search space, which
is often very complex due to feature interaction. Feature
interaction leads to individually relevant features becoming
redundant or individually weakly relevant features becoming
highly relevant when combined with other features. Compared
with traditional search methods, EC techniques do not need
domain knowledge and do not make any assumptions about
the search space, such as whether it is linearly or non-linearly
separable, and differentiable. Another significant advantage of
EC techniques is that their population based mechanism can
produce multiple solutions in a single run. This is particularly
suitable for multi-objective feature selection in order to find
a set of non-dominated solutions with the trade-off between
the number of features and the classification performance.
However, EC techniques have a major limitation of requiring
a high computational cost since they usually involve a large
number of evaluations. Another issue with EC techniques

is their stability since the algorithms often select different
features from different runs, which may require a further
selection process for real-world users. Further research to
address these issues is of great importance as the increasingly
large number of features increases the computational cost and
lowers the stability of the algorithms in many real-world tasks.

2) Evaluation criteria: For wrapper feature selection ap-
proaches, the classification performance of the selected fea-
tures is used as the evaluation criterion. Most of the popular
classification algorithms, such as decision tree (DT), support
vector machines (SVMs), Naı̈ve Bayes (NB), K-nearest neigh-
bour (KNN), artificial neural networks (ANNs), and linear
discriminant analysis (LDA), have been applied to wrappers
for feature selection [7], [8], [29]. For filter approaches,
measures from different disciplines have been applied, includ-
ing information theory based measures, correlation measures,
distance measures, and consistency measures, and [1].

Single feature ranking based on a certain criterion is a
simple filter approach, where feature selection is achieved by
choosing only the top-ranked features [7]. Relief [30] is a
typical example, where a distance measure is used to measure
the relevance of each feature and all the relevant features are
selected. Single feature ranking methods are computationally
cheap, but do not consider feature interactions, which often
leads to redundant feature subsets (or local optima) when
applied to complex problems, e.g. microarray gene data, where
genes possess intrinsic linkages [1], [2]. To overcome such
issues, filter measures that can evaluate the feature subset
as a whole have become popular. Recently, Wang et al.
[31] developed a distance measure evaluating the difference
between the selected feature space and all feature space to
find a feature subset, which approximates all features. Peng
et al. [32] proposed the minimum Redundancy Maximum
Relevance method based on mutual information, where the
proposed measures have been introduced to EC for feature
selection due to their powerful search abilities [33], [34].

Mao and Tsang [27] proposed a novel feature selection
approach by optimizing multivariate performance measures
(which can also be viewed as an embedded method since the
proposed feature selection framework was to optimise the gen-
eral loss function and was achieved based on SVMs). However,
the proposed method resulted a huge search space for high-
dimensional data, which required a powerful heuristic search
method to find the optimal solutions. Statistical approaches,
such as T-test, logistic regression, hierarchical clustering, and

Xue, Bing, Mengjie Zhang, Will N. Browne, and Xin Yao. "A survey on evolutionary computation approaches to feature 
selection." IEEE Transactions on Evolutionary Computation20, no. 4 (2016): 606-626.
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CART, are relatively simple and can achieve good performance
[35]. Sparse approaches have recently become popular, such
as sparse logistic regression for feature selection [36], which
has been used for feature selection tasks with millions of
features. For example, the sparse logistic regression method
[36] automatically assigns a weight to each feature showing
its relevance. Irrelevant features are assigned with low weights
close to zero, which has the effect of filtering out these
features. Sparse learning based methods tend to learn simple
models due to their bias to features with high weights. These
statistical algorithms usually produce good performance with
high efficiency, but they often have assumptions about the
probability distribution of the data. Furthermore, the used
cutting plan search method in [36] works well when the search
space is unimodal, but EC approaches can deal well with both
unimodal and multimodal search space and the population
based search can find a Pareto front of non-dominated (trade-
off) solutions. Min et al. [28] developed a rough set theory
based algorithm to address feature selection problems under
the constraints of having limited resources (e.g. money and
time). However, many studies show that filter methods do not
scale well to problems with more than tens of thousands of
features [13].

3) Number of objectives: Most of the existing feature selec-
tion methods aim to maximise the classification performance
only during the search process or aggregate the classification
performance and the number of features into a single objective
function. To the best of our knowledge, all the multi-objective
feature selection algorithms to date are based on EC techniques
since their population based mechanism producing multiple
solutions in a single run is particularly suitable for multi-
objective optimisation.

B. Detailed Coverage of This Paper
As shown in Fig. 3, according to three different criteria,

which are the EC paradigms, the evaluation, and the num-
ber of objectives, EC based feature selection approaches are
classified into different categories. These three criteria are the
key components in a feature selection method. EC approaches
are mainly used as the search techniques in feature selection.
Almost all the major EC paradigms have been applied to
feature selection and the most popular ones are discussed in
this paper, i.e. GAs [37], [38], [39] and GP [19], [40], [41] as
typical examples in evolutionary algorithms, PSO [10], [29],
[42] and ACO [43], [44], [45], [46] as typical examples in
swarm intelligence, and other algorithms recently applied to
feature selection, including differential evolution (DE) [47],
[48]1, memetic algorithms [49], [50], LCSs [51], [52], evolu-
tionary strategy (ES) [53], artificial bee colony (ABC) [54],
[55], and artificial immune systems (AISs) [56], [57]. Based
on the evaluation criteria, we review both filter and wrapper
approaches, and also include another group of approaches
named “Combined”. “Combined” means that the evaluation
procedure includes both filter and wrapper measures, which
are also called hybrid approaches by some researchers [9],
[14]. The use here of “Combined” instead of “hybrid” is

1Some researchers classify DE as a swarm intelligence algorithm.
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Fig. 4. Different measures in EC based filter approaches.

to avoid confusion with the concept of hybrid algorithms in
the EC field, which hybridise multiple EC search techniques.
According to the number of objectives, EC based feature selec-
tion approaches are classified into single objective and multi-
objective approaches, where the multi-objective approaches
correspond to methods aiming to find a Pareto front of trade-
off solutions. The approaches that aggregate the number of
features and the classification performance into a single fitness
function are treated as single objective algorithms in this paper.

Similar to many earlier survey papers on traditional (non-
EC) feature selection [1], [7], [8], [9], this paper further
reviews different evolutionary filter methods according to
measures that are driven from different disciplines. Fig. 4
shows the main categories of measures used in EC based filter
approaches. Wrapper approaches are not further categorised
according to their measures because the classification algo-
rithm in wrappers is used as a “black box” during the feature
selection process such that it can often be easily replaced by
another classification algorithm.

The reviewed literature is organised as follows. Typical
approaches are reviewed in Section III, where each subsection
discusses a particular EC technique for feature selection (e.g.
Section III-A: GAs for feature selection, as shown by the left
branch in Fig. 3). Within each subsection, the research using
an EC technique is further detailed and discussed according
to the evaluation criterion and the number of objectives. In
addition, Section IV discusses the research on EC based filter
approaches for feature selection. The applications of EC for
feature selection are described in Section V.

TABLE I
CATEGORISATION OF GA APPROACHES

Single Objective Multi-Objective

Wrapper

[3], [37], [58], [38], [39], [44],
[59], [60], [61], [62], [63], [64],
[65], [66], [67], [68], [69], [70],
[71], [72], [73], [74], [75], [76],
[77], [78], [79], [80], [81], [82],
[83], [84], [85], [86], [87]

[88], [89], [90], [91],
[92], [93], [94], [95],
[96], [97]

Filter [75], [98], [99], [100], [101],
[102]

[102], [103], [104],
[105], [106]

Combined [107], [108], [109]

III. EC FOR FEATURE SELECTION

A. GAs for Feature Selection
GAs are most likely the first EC technique widely applied

to feature selection problems. One of the earliest works was
published in 1989 [37]. GAs have a natural representation of
a binary string, where “1” shows the corresponding feature is
selected and “0” means not selected. Table I shows the typical
works on GAs for feature selection. It can be seen that there
are more works on wrappers than filters, and more on single
objective than multi-objective approaches.
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(e.g. 50), in many situations such methods are computationally
too expensive to perform. Therefore, different heuristic search
techniques have been applied to feature selection, such as
greedy search algorithms, where typical examples are se-
quential forward selection (SFS) [23], sequential backward
selection (SBS) [24]. However, both methods suffer from the
so-called “nesting effect” because a feature that is selected
or removed cannot be removed or selected in later stages.
“plus-l-take-away-r” [25] compromises these two approaches
by applying SFS l times and then SBS r times. This strategy
can avoid the nesting effect in principle, but it is hard to
determine appropriate values for l and r in practice. To avoid
this problem, two methods called sequential backward floating
selection (SBFS) and sequential forward floating selection
(SFFS) were proposed in [26]. Both floating search methods
are claimed to be better than the static sequential methods.
Recently, Mao and Tsang [27] proposed a two-layer cutting
plane algorithm to search for the optimal feature subsets. Min
et al. [28] proposed a heuristic search and a backtracking
algorithm, which performs exhaustive search, to solve feature
selection problems using rough set theory. The results show
that heuristic search techniques achieved similar performance
to the backtracking algorithm, but used a much shorter time.
In recent years, EC technique as they are effective methods
have been applied to solve feature selection problems. Such
methods include GAs, GP, particle swarm optimisation (PSO),
and ant colony optimisation (ACO). Details will be described
in the next section.

Feature selection problems have a large search space, which
is often very complex due to feature interaction. Feature
interaction leads to individually relevant features becoming
redundant or individually weakly relevant features becoming
highly relevant when combined with other features. Compared
with traditional search methods, EC techniques do not need
domain knowledge and do not make any assumptions about
the search space, such as whether it is linearly or non-linearly
separable, and differentiable. Another significant advantage of
EC techniques is that their population based mechanism can
produce multiple solutions in a single run. This is particularly
suitable for multi-objective feature selection in order to find
a set of non-dominated solutions with the trade-off between
the number of features and the classification performance.
However, EC techniques have a major limitation of requiring
a high computational cost since they usually involve a large
number of evaluations. Another issue with EC techniques

is their stability since the algorithms often select different
features from different runs, which may require a further
selection process for real-world users. Further research to
address these issues is of great importance as the increasingly
large number of features increases the computational cost and
lowers the stability of the algorithms in many real-world tasks.

2) Evaluation criteria: For wrapper feature selection ap-
proaches, the classification performance of the selected fea-
tures is used as the evaluation criterion. Most of the popular
classification algorithms, such as decision tree (DT), support
vector machines (SVMs), Naı̈ve Bayes (NB), K-nearest neigh-
bour (KNN), artificial neural networks (ANNs), and linear
discriminant analysis (LDA), have been applied to wrappers
for feature selection [7], [8], [29]. For filter approaches,
measures from different disciplines have been applied, includ-
ing information theory based measures, correlation measures,
distance measures, and consistency measures, and [1].

Single feature ranking based on a certain criterion is a
simple filter approach, where feature selection is achieved by
choosing only the top-ranked features [7]. Relief [30] is a
typical example, where a distance measure is used to measure
the relevance of each feature and all the relevant features are
selected. Single feature ranking methods are computationally
cheap, but do not consider feature interactions, which often
leads to redundant feature subsets (or local optima) when
applied to complex problems, e.g. microarray gene data, where
genes possess intrinsic linkages [1], [2]. To overcome such
issues, filter measures that can evaluate the feature subset
as a whole have become popular. Recently, Wang et al.
[31] developed a distance measure evaluating the difference
between the selected feature space and all feature space to
find a feature subset, which approximates all features. Peng
et al. [32] proposed the minimum Redundancy Maximum
Relevance method based on mutual information, where the
proposed measures have been introduced to EC for feature
selection due to their powerful search abilities [33], [34].

Mao and Tsang [27] proposed a novel feature selection
approach by optimizing multivariate performance measures
(which can also be viewed as an embedded method since the
proposed feature selection framework was to optimise the gen-
eral loss function and was achieved based on SVMs). However,
the proposed method resulted a huge search space for high-
dimensional data, which required a powerful heuristic search
method to find the optimal solutions. Statistical approaches,
such as T-test, logistic regression, hierarchical clustering, and
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74CHAPTER 3. WRAPPER BASED SINGLE OBJECTIVE FEATURE SELECTION
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Figure 3.2: The evolutionary training process of a PSO based feature selec-
tion algorithm.

The evolutionary training process of a PSO based wrapper feature se-
lection algorithm is shown in Figure 3.2. The key step is the goodness/fitness
evaluation procedure. The position of a particle represents a selected fea-
ture subset. By removing the features that are not selected, the training set
is transformed to a new training set. The classification performance of the
selected features is evaluated on the transformed training set. Based on
the classification performance, the fitness of the particle is then calculated
according to the predefined fitness function. After evaluating the fitness of
all particles, the algorithm updates the pbest and gbest, and then updates
the velocity and position of each particle. The algorithm stops when a pre-
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• Segmented initialization mechanism respectively generates 
three sub-populations whose solutions are randomly located 
around the forward, middle and backward areas
- areas with a small, medium or large number of selected 

features respectively.

• Offspring modification:
- find out all the duplicated solutions 
- Modify duplicated solutions to become unique ones

‣ by each flipping one or two dimensions (each dimension 
corresponds to one original feature), according to the analysis of 
common features in the first nondominated front

Initialization in Multi-objective FS

Hang Xu, Bing Xue, and Mengjie Zhang. "Segmented Initialization and Offspring Modification in Evolutionary Algorithms for Bi-
objective Feature Selection". Proceedings of 2020 Genetic and Evolutionary Computation Conference (GECCO 2020). ACM Press. 
Cancun, Mexico. July 8th-12th 2020, 9pp

IGD and HV show that segmented initialization mechanism and offspring 
modification mechanism each contributed positively to the success of the new 
plug-in MOEAs, while combining them together contributed the most.

Initialization in Multi-objective FS
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Selection". Proceedings of 2020 Genetic and Evolutionary Computation Conference (GECCO 2020). ACM Press. Cancun, Mexico. July 8th-12th 2020, 9pp
、

Segmented Initialization and O�spring Modification in
Evolutionary Algorithms for Bi-objective Feature Selection GECCO ’20, July 8–12, 2020, Cancun, Mexico

Table 1: Example of Algorithm 3 with Totally 7 Features and
5 Solutions in the First Nondominated Front

Solution
Feature

1st 2nd 3rd 4th 5th 6th 7th

x 1 1 0 0 0 1 0 0
x 2 1 1 0 0 0 1 0
x 3 1 1 0 1 0 1 0
x 4 1 0 0 0 0 0 0
x 5 1 1 0 1 1 0 1

Selected Frequency 1 0.6 0 0.4 0.4 0.4 0.2
P+ (Line 6) 1.2 0.8 0.2 0.6 0.6 0.6 0.4

Unselected Frequency 0 0.4 1 0.6 0.6 0.6 0.8
P� (Line 7) 0.2 0.6 1.2 0.8 0.8 0.8 1

chances to add or remove a feature, in order to encourage more
variations for new o�spring. Moreover, it should be noted that no
matter how large the adding or removing possibility of a feature is,
it still needs to be randomly picked in Line 13, meaning that each
bit in the solution has a chance to be �ipped.

4 EXPERIMENTAL SETUPS
4.1 Comparison Algorithms
In the experiment, we adopt three benchmark MOEAs represent-
ing three mainstream MOEA types: a dominance based MOEA
(NSGA-II [5]), a decomposition based MOEA (MOEA/HD [23]),
and an indicator based MOEA (HypE [1]). NSGA-II is a classic
dominance based MOEA that adopts nondominated sorting and
crowding distance for environmental selection. MOEA/HD is a re-
cently proposed decomposition based MOEA that hierarchically
self-adaptively distributes the direction vectors, which is especially
designed and e�ective for complex Pareto front MOPs. HypE is a
classic indicator based MOEA that makes use of the Hypervolume
performance metric [21] as the environmental selection criterion.

Moreover, the proposed SIOM (segmented initialization and o�-
spring modi�cation) mechanism is respectively plugged into the
above three algorithms to create three variants: SIOM-NSGAII
(SIOM plugged into NSGA-II), SIOM-MOEAHD (SIOM plugged
into MOEA/HD), and SIOM-HypE (SIOM plugged into HypE). The
plug-in method is quite simple, where the original initialization
process is replaced by Algorithm 2 and the original reproduction
process is followed by Algorithm 3. It should be noted that the
original environmental selection and reproduction strategies of
each variant still remain the same.

4.2 Classi�cation Datasets
In total, 18 classi�cation datasets are adopted in the experiment, all
of which are based on the real-world data and can be downloaded
from the UCI machine learning repository [7]. As shown in Table 2,
the number of features varies from 18 (i.e. Climate) to 7070 (i.e.
Leukemia), covering both low and high dimensionalities. Moreover,
the number of classes varies from 2 (i.e. Climate) to 26 (i.e. ISOLET5),
while 8 of the datasets are multi-class classi�cation problems and
the other 10 are binary classi�cation problems. The number of
instances also varies, while the smallest one is 72 (i.e. Leukemia) and

Table 2: Datasets in Ascend Order of Feature Number

No. Dataset Names Features Instances Classes
1 Climate 18 540 2
2 Statlog_German 24 1000 2
3 Breast_Cancer 30 569 2
4 Connectionist_Bench_Sonar 60 208 2
5 Mice_Protein_Expression 77 1077 8
6 Hill_Valley 100 606 2
7 MUSK1 166 476 2
8 Semeion_Handwritten_Digit 256 1593 10
9 Arrhythmia 278 452 16
10 LSVT_Voice_Rehabilitation 310 126 2
11 Madelon_Train_Validation 500 2600 2
12 ISOLET5 617 1559 26
13 Multiple_Features 649 2000 10
14 SRBCT 2308 83 4
15 Leukemia1 5327 72 3
16 DLBCL 5469 77 2
17 Brain1 5920 90 5
18 Leukemia 7070 72 2

the largest is 2600 (i.e. Madelon). Therefore, the datasets used in this
work are both comprehensive and complicated enough to challenge
the e�ciency and e�ectiveness of each comparison algorithm for
feature selection in classi�cation.

4.3 Performance Metrics
For comprehensive analyses, there are two performance metrics ap-
plied in the experiment to measure both convergence and diversity
performances of each comparison algorithm, i.e. Hypervolume (HV)
[21] and Inverted Generation Distance (IGD) [30]. For HV, all the
objective values obtained by each algorithm are normalized by the
ideal and nadir points to the scale [0, 1] in each objective direction,
while the ideal and nadir points are repsectively set to (0, 0) and
(1.1, 1.1). The reference point of HV is set to (1, 1). For IGD, unlike
continuous and benchmark optimization problems (such as DTLZ
[6] or WFG [10]), feature selection is a discrete and real-world prob-
lem which is very di�cult to calculate the exact Pareto front. For
the sake of fairness, we �rst collect the �nal populations of all the
comparison algorithms and merge them into a union population.
Then, this union population is ranked by nondominated sorting,
while only the �rst nondominated front is reserved as the reference
points of IGD. Generally speaking, the smaller IGD values represent
the better algorithm performances, which is just opposite for HV.
Moreover, the Wilcoxon test [29] with a signi�cance level of 0.05
is applied to check whether two performances are signi�cantly
di�erent or not.

4.4 Parameter Settings
In this work, all the experiments are coded by MATLAB on the
open-source platform PlatEMO [18]. Each comparison algorithm
is run for 30 times independently on each classi�cation dataset,
while the initial random seeds are set as the same for all the al-
gorithms but changes with di�erent datasets and runs. Thus, all
the performances can be reproduced anytime and anywhere. The
customizable parameters for all the chosen algorithms are referred
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Table 3: Mean and Standard Deviation of IGD on Test Data,
where Performances of SIOM Versions Better than Bench-
mark Versions Are Highlighted in Grey and Those Not Sig-
ni�cantly Di�erent are Pre�xed by †

No. NSGA-II SIOM-NSGAII MOEA/HD SIOM-MOEAHD HypE SIOM-HypE

1 2.7541e-02 †2.8094e-02 2.6056e-02 †2.5309e-02 2.3140e-02 †2.0473e-02
± 1.78e-02 ± 1.88e-02 ± 1.47e-02 ± 1.33e-02 ± 1.45e-02 ± 1.33e-02

2 3.0766e-02 2.6738e-02 2.9258e-02 †2.7358e-02 3.1853e-02 †2.8169e-02
± 8.65e-03 ± 5.72e-03 ± 5.97e-03 ± 6.64e-03 ± 7.05e-03 ± 6.87e-03

3 1.9171e-02 1.6010e-02 1.9382e-02 1.6075e-02 2.5828e-02 †1.7509e-02
± 5.44e-03 ± 5.45e-03 ± 5.08e-03 ± 5.49e-03 ± 6.92e-03 ± 6.63e-03

4 7.1828e-02 5.4087e-02 5.2255e-02 5.9423e-02 7.3563e-02 †6.0459e-02
± 2.25e-02 ± 1.33e-02 ± 1.33e-02 ± 1.87e-02 ± 2.37e-02 ± 1.95e-02

5 3.9339e-02 3.0121e-02 1.5318e-01 †3.2831e-02 3.8027e-02 †3.2985e-02
± 1.69e-02 ± 5.93e-03 ± 1.93e-01 ± 8.71e-03 ± 7.44e-03 ± 6.74e-03

6 6.4000e-02 3.5805e-02 3.8137e-02 3.6259e-02 4.2683e-02 3.8640e-02
± 2.20e-02 ± 7.80e-03 ± 7.88e-03 ± 8.62e-03 ± 1.24e-02 ± 1.03e-02

7 8.3886e-02 4.0700e-02 5.9125e-02 4.2565e-02 7.8597e-02 5.3750e-02
± 1.53e-02 ± 9.15e-03 ± 1.52e-02 ± 9.83e-03 ± 1.37e-02 ± 9.64e-03

8 1.7138e-01 8.7910e-02 1.4786e-01 7.3506e-02 1.8262e-01 1.3175e-01
± 1.63e-02 ± 1.67e-02 ± 1.46e-02 ± 2.21e-02 ± 1.18e-02 ± 1.08e-02

9 5.3205e-02 3.0679e-02 1.9043e-01 5.5534e-02 6.7819e-02 †5.1123e-02
± 1.15e-02 ± 9.40e-03 ± 1.92e-02 ± 3.79e-02 ± 2.12e-02 ± 1.06e-02

10 1.2058e-01 3.3069e-02 1.0178e-01 3.2729e-02 1.2115e-01 5.4647e-02
± 1.98e-02 ± 1.23e-02 ± 1.79e-02 ± 1.33e-02 ± 1.35e-02 ± 1.16e-02

11 2.3433e-01 6.3770e-02 2.4804e-01 8.9064e-02 2.2342e-01 1.0028e-01
± 1.52e-02 ± 1.23e-02 ± 1.33e-02 ± 1.88e-02 ± 1.75e-02 ± 1.82e-02

12 1.3052e-01 3.3607e-02 1.3313e-01 3.9944e-02 1.2246e-01 4.9909e-02
± 1.28e-02 ± 6.12e-03 ± 1.06e-02 ± 8.71e-03 ± 9.04e-03 ± 7.00e-03

13 1.3078e-01 1.5668e-02 1.3619e-01 2.5488e-02 1.5954e-01 4.5891e-02
± 1.26e-02 ± 6.20e-03 ± 1.28e-02 ± 9.43e-03 ± 1.23e-02 ± 1.11e-02

14 4.7118e-01 2.4316e-01 5.2250e-01 4.0008e-01 4.7079e-01 2.4959e-01
± 2.78e-03 ± 1.43e-01 ± 3.61e-03 ± 7.57e-02 ± 3.07e-03 ± 1.27e-01

15 2.3735e-01 4.1850e-02 2.5769e-01 5.4007e-02 2.4632e-01 4.9974e-02
± 7.56e-03 ± 1.50e-02 ± 8.25e-03 ± 1.68e-02 ± 9.54e-03 ± 1.50e-02

16 2.4178e-01 5.9839e-02 2.5878e-01 6.3833e-02 2.4775e-01 6.6742e-02
± 6.60e-03 ± 1.57e-02 ± 5.77e-03 ± 1.24e-02 ± 7.76e-03 ± 1.84e-02

17 2.3192e-01 2.3935e-02 2.5770e-01 3.4972e-02 2.3736e-01 2.7818e-02
± 4.12e-03 ± 6.50e-03 ± 1.28e-02 ± 6.13e-03 ± 5.88e-03 ± 6.48e-03

18 2.3960e-01 5.0753e-02 2.6176e-01 6.6186e-02 2.4756e-01 5.5212e-02
± 7.18e-03 ± 2.55e-02 ± 1.02e-02 ± 3.11e-02 ± 9.62e-03 ± 2.52e-02

to their corresponding literatures [1, 5, 23]. The population size N
is adaptively set to the number of features but not beyond 200 in
order to balance the diversity and e�ciency, meaningN for datasets
with feature numbers larger than 200 is still kept to 200. The maxi-
mum objective function evaluation number is set to 100 times of
the population size, capping the maximum number of evolutionary
generations to about 100.

As for classi�cation, each dataset is randomly divided into a
training data subset and a test data subset with the proportions of
nearly 70% and 30% respectively, following a strati�ed split process
[15, 25, 26]. It should be noted that this division is �xed for a speci�c
dataset on all the 30 runs so that the statistical performance makes
sense, but randomized for di�erent datasets. During the training
process, KNN with 10-fold cross-validation is used to calculate the
classi�cation error on the training data subset to avoid the feature
selection bias [11, 19], while the number of nearest neighbors is set
to �ve for the balance between accuracy and e�ciency.

5 EMPIRICAL PERFORMANCES
5.1 IGD and HV Performances
In the experiment, the sampled solutions used to measure the per-
formance of an algorithm should only rely on the information from
the training data, because the test data is always kept unseen from

Table 4: Mean and Standard Deviation of HV on Test Data,
where Performances of SIOM Versions Better than Bench-
mark Versions Are Highlighted in Grey and Those Not Sig-
ni�cantly Di�erent are Pre�xed by †

No. NSGA-II SIOM-NSGAII MOEA/HD SIOM-MOEAHD HypE SIOM-HypE

1 8.8843e-01 †8.8913e-01 8.8859e-01 †8.8940e-01 8.8964e-01 †8.9046e-01
± 7.89e-03 ± 7.07e-03 ± 7.44e-03 ± 7.43e-03 ± 7.39e-03 ± 6.96e-03

2 7.2368e-01 †7.2578e-01 7.2476e-01 †7.2747e-01 7.2244e-01 †7.2394e-01
± 1.01e-02 ± 6.31e-03 ± 5.55e-03 ± 8.03e-03 ± 7.98e-03 ± 8.55e-03

3 9.3936e-01 †9.3930e-01 9.3751e-01 †9.3850e-01 9.2626e-01 9.3848e-01
± 6.29e-03 ± 5.60e-03 ± 5.22e-03 ± 6.05e-03 ± 1.46e-02 ± 5.96e-03

4 7.8557e-01 †7.9769e-01 8.0020e-01 †7.9177e-01 7.6884e-01 7.9011e-01
± 2.21e-02 ± 2.09e-02 ± 2.14e-02 ± 2.34e-02 ± 2.71e-02 ± 2.29e-02

5 7.2290e-01 7.3768e-01 5.9972e-01 7.3325e-01 7.2896e-01 7.3943e-01
± 2.53e-02 ± 1.51e-02 ± 2.14e-01 ± 1.90e-02 ± 1.56e-02 ± 1.27e-02

6 5.9247e-01 6.3030e-01 6.2509e-01 †6.3098e-01 6.1941e-01 †6.2524e-01
± 2.46e-02 ± 1.22e-02 ± 1.43e-02 ± 1.22e-02 ± 1.46e-02 ± 1.14e-02

7 8.3315e-01 9.0255e-01 8.6995e-01 8.9757e-01 8.3748e-01 8.7525e-01
± 2.35e-02 ± 1.56e-02 ± 2.41e-02 ± 1.52e-02 ± 2.50e-02 ± 1.83e-02

8 7.2989e-01 8.0715e-01 7.5261e-01 8.1625e-01 7.1856e-01 7.6815e-01
± 1.55e-02 ± 1.26e-02 ± 1.40e-02 ± 1.35e-02 ± 1.24e-02 ± 1.13e-02

9 6.6089e-01 6.9266e-01 5.0177e-01 6.6032e-01 6.4381e-01 6.6781e-01
± 1.67e-02 ± 1.45e-02 ± 2.26e-02 ± 4.83e-02 ± 2.50e-02 ± 1.60e-02

10 8.2075e-01 9.2341e-01 8.4570e-01 9.2429e-01 8.2964e-01 8.9074e-01
± 3.08e-02 ± 2.14e-02 ± 2.55e-02 ± 2.91e-02 ± 2.07e-02 ± 2.24e-02

11 5.8352e-01 8.1875e-01 5.7165e-01 7.5211e-01 5.9267e-01 7.3684e-01
± 1.51e-02 ± 3.38e-02 ± 1.53e-02 ± 3.35e-02 ± 1.84e-02 ± 2.93e-02

12 6.9352e-01 8.0820e-01 6.8977e-01 8.0297e-01 6.9876e-01 7.8173e-01
± 1.51e-02 ± 1.00e-02 ± 1.20e-02 ± 1.27e-02 ± 1.08e-02 ± 1.23e-02

13 7.8757e-01 9.0081e-01 7.8274e-01 8.8876e-01 7.6248e-01 8.6388e-01
± 1.13e-02 ± 1.02e-02 ± 1.18e-02 ± 1.18e-02 ± 1.12e-02 ± 1.21e-02

14 2.9424e-01 5.6236e-01 2.5868e-01 3.6473e-01 2.9455e-01 5.7069e-01
± 2.14e-03 ± 1.74e-01 ± 2.29e-03 ± 8.43e-02 ± 2.38e-03 ± 1.70e-01

15 5.3839e-01 7.1387e-01 5.2521e-01 6.9892e-01 5.2619e-01 7.0910e-01
± 1.76e-02 ± 1.97e-02 ± 1.84e-02 ± 2.46e-02 ± 2.03e-02 ± 2.72e-02

16 6.0251e-01 7.9549e-01 5.8483e-01 7.8223e-01 5.9509e-01 7.9343e-01
± 2.09e-02 ± 3.58e-02 ± 1.50e-02 ± 2.46e-02 ± 1.98e-02 ± 3.57e-02

17 4.8237e-01 6.3834e-01 4.6436e-01 6.2643e-01 4.7869e-01 6.3286e-01
± 2.88e-03 ± 8.24e-03 ± 8.95e-03 ± 7.22e-03 ± 3.90e-03 ± 6.19e-03

18 5.4917e-01 7.2973e-01 5.2839e-01 7.1279e-01 5.3623e-01 7.2762e-01
± 1.72e-02 ± 2.82e-02 ± 2.06e-02 ± 3.65e-02 ± 1.94e-02 ± 3.28e-02

the decision maker. Here, we use the �rst nondominated front ob-
tained from the training data to measure the performance of an
algorithm on the test data. It should be noted that some nondomi-
nated solutions on the training data can become dominated on the
test data. Thereby, we need to further select the �nal nondominated
solutions on the test data from the previously sampled solutions to
measure the IGD and HV performances.

The overall IGD and HV performances on each test dataset are
shown in Tables 3 and 4 respectively. It can be observed that all the
SIOM plug-in MOEAs perform better on most of the test datasets,
compared with their corresponding benchmark MOEAs, in terms of
either IGD or HV. Among them, SIOM-HypE gains the greatest im-
provement versus its benchmark HypE, with better performances
on all the test datasets and signi�cantly better on the majority. Ei-
ther SIOM-NSGAII or SIOM-MOEAHD only loses to its benchmark
MOEA twice out of the 18 datasets. To be more speci�c, SIOM-
NSGAII loses to NSGA-II on the 1st dataset (Climate) in IGD and on
the 3rd dataset (Breast_Cancer) in HV, while SIOM-MOEAHD loses
to MOEA/HD on the 9th dataset (Arrhythmia) in IGD and on the
4th dataset (Connectionist_Bench_Sonar) in HV. Nevertheless, only
the loss of SIOM-MOEAHD to MOEA/HD on the 9th dataset in IGD
is signi�cant, while SIOM-MOEAHD still performs signi�cantly
better than MOEA/HD on the 9th dataset in HV.
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Fig. 2. Example of the proposed diversity-based selection.

Algorithm 3 Div_Select(Pop,α,β, N)

Input: population Pop; selected indexes α; unselected indexes β;
population size N;
Output: population Pop;

1: get objective vectors Obj of solutions in Pop;
2: calculate crowding distances C for solutions in Pop(β);
3: while |α| < N do
4: sort β according to the descend order of C(β);
5: generate an empty diversity score set Div;
6: for i = 1, . . . , |β| do
7: find indexes j s.t. Obj(α(j), 1) == Obj(β, 1);
8: Div = Div ∪ |j|;
9: end for

10: k = β(arg mini(Div(i)));
11: remove k from β but add k into α;
12: end while
13: Pop = Pop(α);

the solution with a larger crowding distance comes first. Then,
in lines 7 and 8, the diversity score of an unselected solution
is set as the number of the already selected solutions with the
same number of selected features, i.e., the same value of the
1st-objective f1 that has already been defined in the first para-
graph of Section II-A. Finally, the solution with the smallest
diversity score is selected (lines 10 and 11), while the crowd-
ing distance only takes effect when there are multiple solutions
with the same smallest diversity score, based on the sorting
beforehand (line 4). Since the optimal solutions on the train-
ing data may not be the optimal solutions on the test data, i.e.,
there might be an overfitting issue, it is important to maintain
a good diversity for each size of the selected feature subset,
i.e., in the f1 objective direction.

An example of Algorithm 3 is presented in Fig. 2, where
the gray dots denote unique solutions and the red concentric
circles denote duplicated solutions (one circle one duplicated
solution), all in the objective space. We assume that solu-
tions {x1, x2, . . . , x8} are in the last nondominated front (the
kth front) that have not been selected (some of them will
need to be selected to form the new population), while all
the other solutions are in the first k − 1 nondominated fronts
that have already been selected, by the nondominated sort-
ing action taken in lines 13–15 of Algorithm 1. In Fig. 2,
solutions with the same number of selected features lie in
the same dashed vertical line, while the diversity score cal-
culated in Algorithm 3 actually means the number of already
selected solutions that have the same selected feature ratio
with a certain unselected solution. Thus, the diversity score is
equal to the number of already selected solutions on the same

Algorithm 4 Reproduce(Pop)

Input: population Pop;
Output: offspring set S;

1: set the number of offspring N = |Pop|;
2: set the neighborhood size T = max(4, #N ∗ 0.2%);
3: temporarily normalize the objective vectors of all the solutions

in Pop to the scale [0, 1];
4: generate a N ∗ T neighborhood matrix Nic, while Nic(i) con-

sists of T nearest solutions to Pop(i), according to the Euclidean
distances among normalized objective vectors;

5: generate an empty parent set Par;
6: for i = 1, . . . , N do
7: if rand < 0.8 then
8: randomly select a parent from Nic(i) into Par;
9: else

10: randomly select a parent from Pop into Par;
11: end if
12: end for
13: initialize the offspring set S = Pop;
14: for i = 1, . . . , N do
15: find indexes j s.t. Pop(i, j) &= Par(i, j);
16: if |j| > 1 then
17: k = randi(j, randi({1, . . . , |j| − 1}, 1));
18: do crossover: S(i, k) = Par(i, k);
19: end if
20: end for
21: run S = Mutate(S) in Algorithm 5;

dashed line, and the diversity scores for the eight solutions
{x1, x2, . . . , x8} in Fig. 2 are counted as {2, 4, 1, 2, 2, 1, 1, 1},
respectively. For instance, there are two selected solutions
which have the same number of features as solution x1, there-
fore, the diversity score of x1 is 2. Obviously, x3, x6, x7, and
x8 all rank the first by diversity score. Since there are multiple
choices, we further compare their crowding distances, turning
out that x6, x7, and x8 are superior to x3 with larger crowding
distances (the crowding distance of each boundary solution is
automatically set to infinite according to [33]). However, the
crowding distances of x6, x7, and x8 are still the same because
they overlap in the objective space. In this case, we just ran-
domly select one of them, such as x8. It should be noted that
the selection process is dynamic and only selects one solu-
tion in each round. Thereby, in the second selection round, x3

will rank better than x6 and x7 by diversity score, due to the
previous selection of x8.

D. Reproduction Modification

As shown in Algorithm 4, the reproduction process of
DAEA is mainly divided into three parts: 1) the niche mat-
ing (lines 1–12); 2) the k-bit crossover (lines 13–20); and
3) the hybrid mutation (line 21). The niche mating method ran-
domly selects parents with a proportion of 80% or 20% from
the local neighborhood or the global population alternatively,
which is similar to the regular settings, i.e., 85%/15% in [9]
and 90%/10% in [43]. We adopt the idea of niching because
it is a stabler and more effective way to exchange evolution-
ary information between two solutions with similar objective
vectors, as already proved in many research works [9], [43],
[46], [47]. In line 2, the neighborhood size is set to 20% of
the population size, similar to the regular setting 10% in [46],
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Algorithm 2 Dup_Analysis(Pop)

Input: population Pop;
Output: population Pop;

1: generate a |Pop| ∗ |Pop| matrix Dist, while Dist(i, j) denotes the
Manhattan distance between Pop(i) and Pop(j);

2: get objective vectors Obj of solutions in Pop, and find all the
unique objective vectors Obju;

3: generate an empty removal set R;
4: for i = 1, . . . , |Obju| do
5: find indexes j s.t. Obj(j) == Obju(i);
6: if |j| > 1 then
7: set t as the numbers of selected features and D as the

numbers of total features;
8: generate a |j| size dissimilarity set Diss;
9: for k = 1, . . . , |j| do

10: Diss(k) = min(Dist(j(k), j));
11: end for
12: Diss = (Diss/2)/t;
13: set threshold δ = 0.8 − 0.6 ∗ (t − 1)/(D − 1), as noted in

the text below;
14: find indexes k s.t. Diss(k) < δ;
15: R = R ∪ j(randi(k, |k| − 1));
16: end if
17: end for
18: remove solutions Pop(R) from Pop;

into three parts: 1) the duplication analysis (line 12); 2) the
nondominated sorting (lines 13–15); and 3) the diversity main-
tenance (line 16). In fact, the second part of selection has no
difference from the traditional dominance-based MOEAs [33],
[40], [79], while the method num(k) denotes the number of
solutions in the first k fronts (line 14). More details of the non-
dominated sorting method can be referred to [33]. Moreover,
it should be noted that all the duplicated solutions in the
decision space are eliminated in the beginning of environmen-
tal selection (line 11). As for the computational complexity,
normally, the most time-consuming part of multiobjective evo-
lutionary feature selection is the process of evaluating the
objective values, i.e., training the classification model with
a selected feature subset. Since the proposed algorithm needs
no extra objective function evaluations, such as using addi-
tional local search, its computational complexity remains a
reasonable level.

B. Duplication Analysis

As shown in Algorithm 2, the main idea of duplication anal-
ysis is using the Manhattan distances among solutions in the
decision space to estimate their dissimilarity degrees in order
to decide which duplicated solutions in the objective space
should be removed. In line 5, variable j is a set of indexes
corresponding to the solutions subject to (abbreviated as s.t.
in the pseudocodes) the condition that they have the same
objective vector, in order to find out all the solutions with
duplicated objective vectors. In lines 8–12, the dissimilarity
degree of a solution is calculated by its minimum Manhattan
distance to all the other solutions in the decision space, the
value of which should be between 0 and 1. The Manhattan
distance between two decision vectors actually reveals how
different their selected features are. In line 13, the removal

Fig. 1. Example of the proposed duplication analysis method.

threshold (δ) is set according to the number of selected fea-
tures (t) and the number of total features (D). The value of
δ varies from 0.2 to 0.8, as the value of t changes from D
to 1, making the removal criterion more inclusive. Then, in
lines 14 and 15, those duplicated solutions are separated into
two groups according to their dissimilarity degrees: 1) the
remote solutions with dissimilarity higher than or equal to the
removal threshold and 2) the clustered solutions with dissim-
ilarity lower than the removal threshold. Among them, all the
remote solutions and only one clustered solution are reserved,
while the method randi(k, |k| − 1) means randomly selecting
(|k| − 1) members from the array k (line 15). Thus, a larger
value of δ will make the duplicated solutions more likely to
be removed. Additionally, because δ is set to be negatively
correlated with t (line 13), it requires a higher dissimilarity
for the solution with a smaller number of selected features to
be reserved.

An example of the above-mentioned duplication analysis
method is shown in Fig. 1, where four different solutions
(x1, . . . , x4) for a feature selection problem with totally eight
features in the decision space are assumed to have the same
objective vector, mapping to the same point in the objective
space. In Fig. 1, each row denotes a solution vector and each
column denotes a feature, while the value 1 means the cor-
responding feature is selected. According to lines 8–12 in
Algorithm 2, the dissimilarity Diss for each solution is cal-
culated as 0.25, 0.25, 0.75, and 0.25, respectively, while the
current threshold δ = 0.8 − 0.6 ∗ (4 − 1)/(8 − 1) is approx-
imately equal to 0.543. Thereby, according to lines 14–18 in
Algorithm 2, x3 belonging to the remote group is directly
reserved, while the other three solutions belonging to the clus-
tered group can randomly reserve one. As a result, only two
of the four duplicated solutions are reserved, based on the
proposed duplication analysis method.

C. Diversity Maintenance

The pseudocode of the diversity maintenance process is
shown in Algorithm 3, where the input variables α and β

come from lines 15 and 16 of Algorithm 1, corresponding
to the indexes of the solutions in the first few nondominated
fronts. As shown in Algorithm 3, the proposed diversity-based
selection method adopts two selection criteria: 1) the diversity
score (lines 5–11) and 2) the crowding distance (lines 2–4).
The former acts as the main criterion while the latter acts as a
supplement. To be more specific, the sorting in line 4 makes

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on May 03,2021 at 00:06:18 UTC from IEEE Xplore.  Restrictions apply. 

Hang Xu, Bing Xue, and Mengjie Zhang. "Segmented Initialization and Offspring Modification in Evolutionary Algorithms for Bi-objective Feature 
Selection". Proceedings of 2020 Genetic and Evolutionary Computation Conference (GECCO 2020). ACM Press. Cancun, Mexico. July 8th-12th 2020, 9pp
Xu, H., Xue, B., & Zhang, M. (2020). A duplication analysis based evolutionary algorithm for bi-objective feature selection. IEEE Transactions on 
Evolutionary Computation.

• The reproduction process is modified to improve the 
quality of offspring; 

• A duplication analysis method is proposed to filter out 
the redundant solutions

• A diversity-based selection method is adopted to further 
select the reserved solutions 

The goal is to find multiple optimal feature subsets

Evolutionary Multimodal Optimisation for FS
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Evolutionary Multimodal Optimisation for FS

• In Breast Cancer Wisconsin (Original) Data Set, there are 
699 instances, 9 features and 2 classes.

• Using subset [F1, F2, F7] or [F2, F3, F7] with KNN can 
achieve the same 97.81% classification accuracy. 

• F1 is ‘Clump Thickness’ and F3 is ‘Uniformity of Cell 
Shape’. Obviously, the first feature is easier to be collected 
than the third one.

Why Multimodal Optimisation for FS?

Peng Wang, Bing Xue, Jing Liang and Mengjie Zhang. "Improved Crowding Distance in Multi-objective 
Optimization for Feature Selection in Classification". Proceeding of the 23th European Conference on 
Applications of Evolutionary Computation (EvoApplications 2021). Lecture Notes in Computer Science. 
Vol. , Leipzig, Germany. Seville, Spain, 7-9 April 2021
Peng Wang, Bing Xue, Jing Liang and Mengjie Zhang. " A Grid-dominance based Multi-objective 
Algorithmfor Feature Selection in Classification." IEEE Congress on Evolutionary Computation (CEC 2021). 
Krakow, Poland, 28 June - 1 July 2021, 8pp

• Filter measure based on mutual
information in backward
elimination:

PSO FS: with backward elimination 

Bach Hoai Nguyen, Bing Xue, Ivy Liu and Mengjie Zhang."Filter based Backward Elimination in Wrapper based PSO for Feature Selection in 
Classification", Proceedings of 201 IEEE Congress on Evolutionary Computation. Beijing, China. 6-11 July, 2014. IEEE Press. PP.3111-- 3118. 2015

Accurate Wrapper, Global

+

Fast Filter, Local

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• Introduce and develop the 
first multi-objective PSO 
approach to feature selection
- Simultaneously minimise the 

number of features and the 
error rate

- >800 citations since 2013

Multi-objective PSO for FS

Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm optimization for 
feature selection in classification: A multi-objective approach, IEEE 
Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013.
M. R. Sierra and C. A. C. Coello, "Improving PSO-based multi-objective 
optimization using crowding, mutation and epsilon-dominance", Proc. EMO, 
pp. 505-519, 2005
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• Simultaneously minimise the number of features and the error 
rate

Multi-objective PSO for FS

Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm optimization for feature selection in classification: A multi-objective 
approach, IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013.

• Multiple Reference Points based Decomposition for Multi-objective FS

MOEA/D for Feature Selection
4

(a) Balance (b) Towards f1 (c) Towards f2

Fig. 1: Effect of bias Pareto fronts on MOEA/D.

and f2, and the green dots show the best solutions for the
weight vectors. When the Pareto front is biased towards f1
(Fig. 1b) or f2 (Fig. 1c), a set of evenly distributed weight
vectors does not work well. Most solutions are obtained around
the center of the Pareto front, and only a few solutions around
the edge of the Pareto front are found. More weight vectors
should be located near the edge to obtain more solutions there.
Several works attempted to update weight vectors based on
the densities of regions to preserve the population diversity
[36], [37]. However, they require an additional computation
cost to adaptively adjust the weight vector set. Although
these proposed algorithms are tested on numeric problems
having irregular Pareto fronts, none of the problems has a
front as highly discontinuous as feature selection. Instead of
adaptively adjusting weight vectors, this work develops a new
decomposition mechanism for feature selection, which not
only alleviates the dependency on the Pareto front shape but
also copes well with the front’s high discontinuity.

Another characteristic of feature selection is the complicated
relationship between its two objectives. Firstly, the objective
of reducing the classification error has higher priority than
reducing the number of selected features. Secondly, the two
objectives are not always in conflict. Therefore, some parts of
a Pareto front on the conflicting regions are more difficult to
approximate than other parts on the non-conflicting regions.
In standard MOEA/D, all sub-problems are treated equally,
and they usually receive the same amount of computational
resource [25]. However, it is shown that some parts of a Pareto
front can be more challenging to approximate than others [38].
It is natural to allocate resources (weight vectors) differently to
different sub-problems with respect to their difficulties, which
results in better efficiency [39]. A similar question appears in
feature selection. Possibly, better Pareto front approximations
can be achieved by putting more efforts on the conflicting re-
gions rather than evenly spending resources on both conflicting
and non-conflicting regions.

The goal of this paper is to develop a decomposition
mechanism which can help MOEA/D to cope with different
characteristics of feature selection such as its unknown and
highly discontinuous Pareto front, the complicated relationship
between its two objectives. It is expected that the proposed
MOEA/D-based feature selection algorithm results in a set of
non-dominated solutions with a wide-range number of features
and better classification performance.

III. PROPOSED ALGORITHMS

The section starts by listing characteristics of feature se-
lection that illustrate difficulties when applying MOEA/D to

(a) Weight vector for FS (b) Not always conflicting

Fig. 2: Characteristics of Feature Selection.

feature selection. It then shows how to use multiple reference
points to decompose a feature selection problem, followed by
two mechanisms (static and dynamic) to allocate the reference
points. Finally, it introduces a repair mechanism, which helps
to ensure that the decomposition constraints are not violated
and the population diversity is preserved.

A. Characteristics of feature selection
There are several properties which make feature selection

different from many other multi-objective problems. The task
of feature selection is to reduce the classification error rate
(eRate) while selecting a small portion of the original feature
set (fRatio). eRate measures the ratio between the number of
wrongly classified instances and the total number of instances
(m). eRate is discrete and the interval between the adjacent
values (i.e. the granularity) is 1/m. Similarly, fRatio is the ratio
between the number of selected features and the total number
of original features n. fRatio is also discrete and the interval
between its adjacent values is 1/n. Therefore, the Pareto front
of feature selection is highly discontinuous. If weight vectors
are used to decompose feature selection, these vectors have to
be carefully selected, otherwise, there will be vectors which
do not correspond to any solution on the Pareto front as shown
by the dashed line in Fig. 2a. Furthermore, although both
objectives are in the same range [0,1], they typically have
different granularity due to the difference between 1/m and
1/n. It has been shown that solving multi-objective problems
where the objectives have different granularity usually results
in imbalanced Pareto fronts [40].

The relationship between the two objectives in feature
selection makes it an unusually challenging multi-objective
problem. In feature selection, the classification performance
is usually given a higher priority. For example, if a feature
set selects 10% more features than the other feature set
but achieves 10% better accuracy, the first set is definitely
preferred. Furthermore, the two objectives are not always in
conflict. Specifically, removing irrelevant or redundant features
from a feature set may improve the classification performance,
which means that the two objectives are not conflicting in
some regions. However, if all the features in a feature set
are relevant and complementary, removing any feature re-
duces the classification performance. So only after removing
all irrelevant/redundant features, the two objectives become
conflicting. In other words, there might be a threshold feature
ratio beyond which the two objectives are mostly harmonious.
Fig. 2b illustrates the situation, in which each point is the best
solution with the corresponding feature ratio. As can be seen

5

Fig. 3: Multiple reference points in MOEA/D.

in the figure, only the red points can form a Pareto front while
all green points are dominated by the solution at the threshold
feature ratio. It will be more effective for a multi-objective
algorithm to allocate more computational efforts on regions
with fRatio belows the threshold. However, the threshold is
problem dependent and not easy to identify. In the following
sections, both static and dynamic multiple reference points
strategies are introduced to address the above characteristics
of feature selection.

B. Decomposition with multiple reference points
In standard MOEA/D, the effectiveness of the weight vector

set depends on the shape of true Pareto front which is unknown
in feature selection. To alleviate the effect of the Pareto front
shape to produce more non-dominated feature subsets with
different numbers of features, we use multiple reference points
to decompose multi-objective feature selection problems in-
stead of multiple weight vectors. Specifically, we allocate a
set of R reference points on the fRatio axis. A reference
point placed at position refRatio on the fRatio axis represents
an idealized solution with an accuracy of 100% (i.e. 0%
eRate) using exactly (brefRatio ⇤ nc) features where n is
the total number of the original features. In the MOEA/D
search, there will be one individual in the population for each
reference points, just as there is one individual for each weight
vector when the problem is decomposed using weight vectors.
Fig. 3 shows a set of reference points marked by blue dots.
Using multiple reference points, the multi-objective feature
selection problem is decomposed into a sub-problem for each
reference point. The solution of a sub-problem for a reference
point at refRatio is the feature subset, whose size is at most
(nref = brefRatio ⇤ nc). Such a feature subset will be on
the true Pareto front. The search space of each sub-problem is
smaller than the original one since it is limited by the number
of features defined by the corresponding reference point.

In our proposed decomposition, the search space of a sub-
problem corresponding to a larger nref covers the search
space of a sub-problem corresponding to a lower nref . If
the two search spaces are disjointed, the search space of the
former sub-problem is smaller and the two sub-problems does
not share the same solution. However, with the disjointed
search spaces, a sub-problem probably does not contribute any
solution to the approximated Pareto front, which can affect the
front’s diversity [19]. More importantly, the disjointed search
spaces limit the assistance between different sub-problems,
which is an essential property of MOEA/D. Although our
decomposition does not ensure the uniqueness between two
neighboring sub-problems, it satisfies the two above desirable
properties.

The fitness function of a candidate feature subset S to a
sub-problem is designed as follows.

fitnessS = eRateS+100⇤max(|S|�nref , 0)+↵⇤fRatioS
(4)

where |S| is the number of selected features. The main task of
the sub-problem is to minimize the classification error eRateS ,
which is the first objective of multi-objective feature selection
and represented by the first component. The second component
is a penalty factor to ensure the condition that the number
of selected features in S should not exceed nref . The last
component is related to the second objective which is to reduce
the number of selected features. The coefficient ↵ is used to
control the priority of the second objective in comparison with
the first objective. Large values of ↵ will increase the chance
of selecting a solution with a smaller number of features but a
lower classification accuracy. If ↵ is set to 1, the two objectives
have the same priority. In feature selection, since reducing
classification error is the more important objective, ↵ is usually
smaller than 1.

A decomposition using weight vectors in a highly discontin-
uous space may lead to a sub-problem with no solutions, and
therefore may result in a very poor approximation of the Pareto
front. In contrast, a decomposition using reference points leads
to sub-problems that always have a solution from the Pareto
front, and therefore should always give a good approximation
of the true Pareto front. Because of the choice of the fitness
function, this decomposition also handles the strong preference
for classification performance in feature selection.

The idea of using multiple reference points in MOEA/D has
already been examined in some studies [41], [42]. However, in
those algorithms, the positions of the reference points need to
be updated every generation according to specific mechanisms.
In our approach, the reference points are placed on the fRatio
axis prior to the evolutionary process. Moreover, there is no
weight vector in the proposed algorithm. These two differences
make our algorithm simpler than other multiple reference
points EMO algorithms.

C. Reference points allocation
The previous section showed how multiple reference points

can be used to effectively decompose feature selection despite
its discontinuous Pareto front. This section describes how the
reference points are allocated on the fRatio axis. One way
is to fix locations of the reference points at the beginning,
which is called static allocation. A more advanced strategy
is to dynamically modify the locations, which is capable to
detect conflicting/non-conflicting regions.

1) Static allocation: In static allocation, the reference
points are uniformly placed on the fRatio axis and do not
change during the search. Specifically, given R reference
points, the position of the ith reference point is (i/R, 0).
Notice that there is no reference point at the location (0, 0)
since it defines an empty feature subset.

In MOEA/D, neighborhood is an important characteristic,
which allows the transfer of information to improve the
candidate solutions. For each sub-problem, its neighbors are
sub-problems whose reference points are close to this sub-
problem’s reference point. For example, when the number

Hoai Bach Nguyen, Bing Xue, Hisao Ishibuchi, Peter Andreae, and Mengjie Zhang. "Multiple Reference Points MOEA/D for Feature Selection". Proceedings 
of 2017 Genetic and Evolutionary Computation Conference (GECCO 2017) Companion. ACM Press. Berlin, German, 15 - 19 July 2017.pp 157-158
Bach Hoai Nguyen, Bing Xue, Peter Andreae, Hisao Ishibuchi, Mengjie Zhang. "Multiple Reference Points based Decomposition for Multi-objective Feature 
Selection in Classification: Static and Dynamic Mechanisms", IEEE Transactions on Evolutionary Computation, vol. 24, no. 1, pp.170 - 184, 2019
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Figure 5.4: Dynamic reference points example: fixed points are green,
moving points are red, dashed line shows the interval that moving points

are located in the corresponding iterations.

val containing the threshold feature ratio, beyond which the two objectives
are mostly not conflicting (Fig. 5.2b). The R reference points are divided
into F fixed points and M moving points (R = F + M ). The F fixed
points are evenly located across the I intervals, shown by the green points
on Fig. 5.4. At the beginning, the M moving points are all located on
the first interval, and the locating mechanism spreads the moving points
while avoiding overlapping between the two types of reference points as
much as possible. After a certain number of iterations defined by the divi-
sion between the maximum number of iterations and the number of inter-
vals, the moving points are re-allocated on the next interval. For example,
in Fig. 5.4, in the first 10 iterations, the three moving points are located
on the first interval. In the next 10 iterations, the moving points are re-
allocated to the second interval and so on. Here, the 10th, 20th... iterations
are called boundary iterations, since on these iterations the moving points
are re-allocated.

The re-allocation process is continued until the algorithm detects that
the two objectives are potentially not conflicting any more. As can be
seen in Fig. 5.2b, most solutions in the potentially non-conflicting regions
(green) are dominated by a solution in the conflicting region (red). There-
fore, to determine whether the two objectives are still conflicting in the

MOEA/D for Feature Selection

Hoai Bach Nguyen, Bing Xue, Hisao Ishibuchi, Peter Andreae, and Mengjie Zhang. "Multiple Reference Points MOEA/D for Feature Selection". Proceedings 
of 2017 Genetic and Evolutionary Computation Conference (GECCO 2017) Companion. ACM Press. Berlin, German, 15 - 19 July 2017.pp 157-158
Bach Hoai Nguyen, Bing Xue, Peter Andreae, Hisao Ishibuchi, Mengjie Zhang. "Multiple Reference Points based Decomposition for Multi-objective Feature 
Selection in Classification: Static and Dynamic Mechanisms", IEEE Transactions on Evolutionary Computation, vol. 24, no. 1, pp.170 - 184, 2019

Surrogate Training Set/ FS Processing
• Original fitness function (fori) vs Surrogate fitness function (fsur)

• Surrogate training set

• Surrogate FS/training process
Is iterations I-Is iterations

I iterations

fsur fori

fori

Estimate promising areas

Surrogate rate: Is/I

Hoai Bach Nguyen, Bing Xue, and Peter Andreae. "PSO with Surrogate Models for Feature Selection: Static and Dynamic Clustering-based 
Methods", Memetic Computing, vol. 10, pp. 291-300, 2018
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•

Surrogate Training Set/ FS Processing

Fig. 1: Overall algorithm

training set, the corresponding fitness function is a surrogate fitness function, de-
noted by fitnesssur. If the whole training set is used to build the classifier then
the fitness function is the original one, called fitnessori. In terms of PSO’s repre-
sentation, each feature corresponds to a position entry, whose value is either 1 or 0,
indicating the feature is selected or not selected, respectively. The overall proposed
algorithm, named SurSammPSO, is described in Fig. 1, in which the contribution
of this work is marked in blue. Socan is a sampled feature subset, Sobest is the best
Socan generated by the sampling process, and P is the swarm size.

4 Experiment Design

4.1 Datasets

Ten datasets (Table 1) with various numbers of features, classes and instances
chosen from the UCI machine learning repository [23] are used in the experiments.
Each dataset is randomly divided into two parts for training and test purpose,
which preserve the original class distribution and contain 70% and 30% instances,
respectively. DROP3 [20] is applied on the training set to create the surrogate
training set. During the training process, a 10-fold cross validation is used on the
training set or surrogate training set to calculate the classification accuracy. On
each dataset, feature selection algorithms are executed 40 independent times.

4.2 Parameter Settings

A KNN classification algorithm is used to classify instances, where K=3, which
is recommended in [20]. The weight � in Eq. (5) is set to 0.9 so that the search
process focuses more on the classification performance than the number of features.

Hoai Bach Nguyen, Bing Xue, and Peter Andreae. "PSO with Surrogate Models for Feature Selection: Static and Dynamic Clustering-based 
Methods", Memetic Computing, vol. 10, pp. 291-300, 2018

Effect of the surrogate training set
Table 2: Results of OriPSO and SurPSO

Dataset NF
Training Results Test Results

Time (ms)
AveTrain ± Std T AveTest ± Std T

Vehicle

All 18.0 89.44 ± 0.00 - 83.07 ± 0.00 -
OriPSO 4.8 91.41 ± 0.69 = 84.66 ± 1.29 - 113187.62
SurPSO 5.1 91.43 ± 0.69 85.23 ± 0.82 34294.93
German

All 24.0 83.14 ± 0.00 - 65.33 ± 0.00 -
OriPSO 5.6 78.70 ± 0.52 - 67.63 ± 1.90 = 229110.30
SurPSO 6.4 84.33 ± 0.52 68.35 ± 0.75 60600.90

Ionosphere

All 34.0 90.24 ± 0.00 - 86.67 ± 0.00 -
OriPSO 4.8 95.27 ± 0.81 + 88.48 ± 2.12 = 33564.40
SurPSO 4.0 94.64 ± 0.81 88.38 ± 2.61 9903.90
Lung

All 56.0 86.36 ± 0.00 - 80.00 ± 0.00 =
OriPSO 5.1 99.89 ± 1.73 + 79.50 ± 4.44 = 707.38
SurPSO 4.4 99.20 ± 1.73 79.50 ± 5.45 451.75
Sonar

All 60.0 88.97 ± 0.00 - 84.13 ± 0.00 +
OriPSO 14.8 95.55 ± 1.78 + 81.94 ± 3.32 = 23605.65
SurPSO 12.4 93.55 ± 1.78 82.58 ± 3.14 7291.62

Movementlibras

All 90.0 98.52 ± 0.00 - 95.06 ± 0.00 -
OriPSO 9.2 98.54 ± 0.16 = 95.33 ± 0.41 = 105780.20
SurPSO 9.4 98.63 ± 0.16 95.29 ± 0.32 41165.30
Plant

All 64.0 99.55 ± 0.00 + 99.10 ± 0.00 +
OriPSO 3.0 99.24 ± 0.04 = 98.67 ± 0.03 = 1756442.18
SurPSO 3.1 99.26 ± 0.04 98.68 ± 0.05 566479.72
Hillvalley

All 100.0 79.83 ± 0.00 - 59.07 ± 0.00 -
OriPSO 24.8 81.54 ± 0.83 = 58.85 ± 1.88 - 1557361.75
SurPSO 22.3 81.16 ± 0.83 59.92 ± 1.46 443232.00
LSVT

All 310.0 79.55 ± 0.00 - 55.26 ± 0.00 -
OriPSO 27.9 85.45 ± 4.72 = 65.53 ± 1.53 = 18240.05
SurPSO 27.4 85.11 ± 4.72 65.07 ± 4.89 4708.20

Multiple Features

All 649.0 99.49 ± 0.00 - 98.57 ± 0.00 -
OriPSO 118.2 99.66 ± 0.05 = 99.04 ± 0.10 = 7203332.90
SurPSO 143.6 99.65 ± 0.05 99.05 ± 0.12 2068439.52

achieves similar test performance in comparison with OriPSO. In terms of the num-
ber of selected features, except for the last dataset with a large number of features,
the size of feature subsets selected by the two algorithms are roughly equal. Despite
of maintaining or improving the classification performance, SurPSO’s evolutionary
processes are much shorter than that of OriPSO. Specifically, on most of datasets
SurPSO spends 70% less time than OriPSO to evolve a feature subset. Although
OriPSO is already quite fast on the Lung dataset (only 707 ms), SurPSO is still
able to reduce about 40% of the OriPSO’s computation time. So the surrogate
training set significantly reduces the computation cost without deteriorating the
test performance. On some datasets, SurPSO even improves the performance due
to the DROP3’s intention to remove noisy instances.

5.2 E↵ect of the Sampling Local Search

To analyse the e↵ect of the proposed local search, OriSamPSO, which applies the
local search to the original fitness function is compared with using all features and
OriPSO. The comparisons are illustrated in Table 3.

• On all datasets SurPSO maintains or improve the testing accuracy while 
reducing 70% computation time than OriPSO

• Relevance: 
- Classification performance
- The relevance (mutual information) between each selected feature and the 

class labels

• Redundancy:  
- Number of features
- The relevance (mutual information) between the selected features

Information Theory Feature Selection

!"#$%&& = (%) − (%+
where,

!"# = %
!!"#

&(($; *)

!", = %
!!,!""#
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- is the selected feature subset 
.', .( ∶ single feature in 1
2 is the class labels
345 : relevance between 1 and *
346 : redundancy in 1

Liam Cervante, Bing Xue and Mengjie Zhang."Binary Particle Swarm Optimisation for Feature Selection: A Filter Based 
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Peng, Hanchuan, Fuhui Long, and Chris Ding. "Feature selection based on mutual information criteria of max-dependency, max-
relevance, and min-redundancy." IEEE Transactions on pattern analysis and machine intelligence27.8 (2005): 1226-1238.
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July 2016

• Promote rough set theory for feature selection
- Others’: mainly < 200 features 
- Ours: more than 600 features

Filter FS based on Rough Set
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The	lower	
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Universe

Boundary
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• MRFS based on mutual information
- Relief
- Fisher Score

Feature Subset Selection based on Ranking
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• Information theory in evolutionary feature selection
- Fast algorithm — mutual information
- New measures, evaluate multiple features 
- Evolutionary multi-objective filter feature selection
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many di�erent models to obtain the same accuracy. Furthermore, while the
wrapper methods can produce solutions with high accuracy, filter methods
are usually faster and more general. Combining the strength of these two
approaches in the evaluation function is expected to produce better solutions.
In addition, combining the two measures can also better distinguish the subtle
di�erence between feature subsets, providing a smoother fitness landscape
to facilitate the search process. However, simply combining these measures
may be impractical in terms of computation time. Therefore, a smart way is
needed to combine them without requiring more running time. Among the
commonly used filter measures, distance is a multivariate measure that can
evaluate the discriminating ability of a feature set and it is used as the base
measure of KNN. Incorporating this measure with the KNN wrapper method
will not increase the computation time much because the distance measure
is calculated only once but used twice. Therefore, in the fitness function of
PPSO, balanced KNN classification accuracy is combined with a distance
measure using a weighting coe�cient (“) as described in Section 3.2.2. Its
description is repeated here for reading convenience.

fitness = (“ · balanced_accuracy + (1 ≠ “) · distance) (4.3)

where
distance = 1

1 + exp≠5(Db≠Dw)
(4.4)

Db = 1
M

MX

i=1

min
{j|j ”=i,class(Ii) ”=class(Ij)}

Dis(Ii, Ij) (4.5)

Dw = 1
M

MX

i=1

max
{j|j ”=i,class(Ii)=class(Ij)}

Dis(Ii, Ij) (4.6)

Db is the average distance between each instance and the nearest instance of
other classes. Dw is the average distance between each instance to the farthest
instance of the same class. Dis(Ii, Ij) is the number of matches or overlapping
between two nominal vectors divided by the size of the vectors, which is as
in Chapter 3. Since KNN also works based on this overlapping distance
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Particle’s position

Candiate solution

Potential cut-point table Cut-point index
#C C1 C2 C3 C4

F1 2 5.25 6.8
F2 3 10.7 24.9 50.2
F3 4 -0.45 0.67 5.2 20.5
F4 1 -32.5
…
FN 3 -3.72 -1.54 6.55

F1 F2 F3 F4 … FN
2 0 3 0 … 2

6.8 5.2 … -1.54

Figure 4.4: Particle representation of PPSO.

search space especially in multivariate discretisation on high-dimensional data.
Therefore, PPSO uses BBPSO to choose a cut-point from potential cut-points
of each feature to narrow the search space into potentially promising areas.

4.2.4.1 Particle representation

Potential cut-points are entropy-based cut-points that have their information
gain satisfying the MDLP criterion shown in Equation (2.3) on Page 31.
Each feature may have a di�erent number of potential cut-points which are
calculated and stored in a potential cut-point table. Figure 4.4 shows an
example of this table and a particle’s position as well as the corresponding
candidate solution. Each particle position is an integer vector denoting the
chosen cut-point indexes. The size of the vector, therefore, is equal to the
number of the original features and the evolved value needs to be between
1 and the number of potential cut-points of the corresponding feature. For
example, in Figure 4.4, the first feature (F1) has two potential cut-points
with index 1 and 2. Therefore, the first dimension of the particle needs to
fall in the range [1,2]. If it is 2 as in the example, then the cut-point 6.8 is
chosen to discretise F1.

During the updating process, if the updated value of a dimension is
outside the cut-point index range, then it is set to 0, which indicates that the
corresponding feature does not have a good cut-point and therefore should
be ignored, not selected.

•
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Table 3.2: Experimental results
Dataset Method Ave-Size Best Mean±StdDev TRLS TCLS

SRBCT

Full 2308.0 87.08 – –

PSO 915.0 99.17 96.56 ± 1.55 = –

PSO-RG 606.2 99.17 95.60 ± 1.66 = –

PSO-RLS 545.1 99.17 96.08 ± 1.73 –

PSO-CLS 59.7 100.00 99.97 ± 0.15

DLBCL

Full 5469.0 83.00 – –

PSO 2279.9 95.83 93.61 ± 2.19 = +

PSO-RG 305.5 93.33 85.92 ± 4.06 – –

PSO-RLS 1417.4 97.33 93.72 ± 1.79 +

PSO-CLS 47.4 96.67 90.86 ± 3.19

9Tumor

Full 5726.0 36.67 – –

PSO 2564.2 65.00 51.22 ± 5.23 + =

PSO-RG 1894.3 60.00 50.22 ± 4.54 + =

PSO-RLS 1352.0 58.33 48.39 ± 4.88 –

PSO-CLS 46.7 60.00 51.39 ± 4.22

Leukemia1

Full 5327.0 79.72 – –

PSO 2143.8 95.56 93.88 ± 1.47 = –

PSO-RG 786.1 94.31 89.63 ± 2.96 – –

PSO-RLS 1534.9 95.56 93.45 ± 1.71 –

PSO-CLS 31.9 95.42 94.84 ± 1.16

Brain1

Full 5920.0 72.08 – –

PSO 2481.6 80.00 75.89 ± 1.68 = =

PSO-RG 519.7 77.08 72.00 ± 3.13 – –

PSO-RLS 1549.0 77.50 75.00 ± 1.80 –

PSO-CLS 1081.5 82.50 76.78 ± 2.09

Leukemia2

Full 11225.0 89.44 – –

PSO 4577.7 93.89 92.07 ± 1.40 = –

PSO-RG 1116.6 95.00 90.72 ± 2.59 = –

PSO-RLS 3426.5 93.89 91.72 ± 1.46 –

PSO-CLS 53.7 98.33 95.56 ± 1.68

Brain2

Full 10367.0 62.50 – –

PSO 4249.9 81.25 75.83 ± 2.99 = +

PSO-RG 654.9 85.00 73.74 ± 4.95 = =

PSO-RLS 3099.0 82.50 75.35 ± 3.16 +

PSO-CLS 2647.7 78.75 73.47 ± 2.82

Prostate

Full 10509.0 85.33 = –

PSO 4603.1 88.17 85.04 ± 1.59 = –

PSO-RG 873.2 89.33 84.97 ± 2.55 = –

PSO-RLS 2690.3 89.17 85.79 ± 1.49 –

PSO-CLS 2670.3 91.17 86.98 ± 1.76

11Tumor

Full 12533.0 71.42 – –

PSO 5588.9 87.67 84.26 ± 1.35 = –

PSO-RG 2108.4 86.82 83.84 ± 2.25 = –

PSO-RLS 3163.9 87.77 84.19 ± 1.47 –

PSO-CLS 266.8 90.72 87.51 ± 1.73

Lung

Full 12600.0 78.05 – –

PSO 5353.3 84.73 83.18 ± 0.77 = –

PSO-RG 887.3 84.72 82.13 ± 1.78 – –

PSO-RLS 3453.9 86.87 83.50 ± 1.16 –

PSO-CLS 311.6 96.43 90.78 ± 2.61
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Table 3.3: Comparison with traditional methods

Dataset Method Size
Training Test

Best Mean ST r Best Mean ST e

SRBCT

Full 2,308.0 83.35 – 87.08 –

LFS 6.1 98.19 – 88.75 –

CFS 80.9 100.00 = 100.00 =

PSO-CLS 59.7 100.00 100.00 100.00 99.97

DLBCL

Full 5,469.0 81.71 – 83.00 –

LFS 4.0 98.24 – 74.00 –

CFS 58.0 99.22 – 91.67 =

PSO-CLS 47.4 100.00 100.00 96.67 90.86

9Tumor

Full 5,726.0 33.44 – 36.67 –

LFS 12.6 82.39 – 41.67 –

CFS 38.0 90.71 – 53.33 +

PSO-CLS 46.7 97.78 97.78 60.00 51.39

Leukemia1

Full 5,327.0 79.77 – 79.72 –

LFS 4.8 99.17 – 81.39 –

CFS 56.0 100.00 = 93.19 –

PSO-CLS 31.9 100.00 100.00 95.42 94.84

Brain1

Full 5,920.0 65.07 – 72.08 –

LFS 9.9 89.13 – 59.17 –

CFS 115.4 99.93 – 79.58 +

PSO-CLS 1081.5 100.00 99.96 82.50 76.78

Leukemia2

Full 11,225.0 88.82 – 89.44 –

LFS 4.3 99.08 – 90.00 –

CFS 79.0 100.00 = 98.89 +

PSO-CLS 53.7 100.00 100.00 98.33 95.56

Brain2

Full 10,367.0 63.52 – 62.50 –

LFS 5.6 98.80 + 53.33 –

CFS 63.4 100.00 + 71.25 –

PSO-CLS 2647.7 99.20 98.55 78.75 73.47

Prostate

Full 10,509.0 82.08 – 85.33 –

LFS 4.9 82.44 – 73.17 –

CFS 51.6 98.12 – 90.17 +

PSO-CLS 2670.3 98.92 98.64 91.17 86.98

Lung

Full 12,600.0 71.59 – 78.05 –

LFS 12.2 95.12 – 80.55 –

CFS NA NA NA

PSO-CLS 311.6 99.11 99.02 96.43 90.78

11Tumor

Full 12,533.0 71.01 – 71.42 –

LFS 14.3 79.96 – 61.71 –

CFS NA NA NA

PSO-CLS 266.8 100.00 100.00 90.72 87.51
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Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue. "Genetic Programming for Measuring Peptide Detectability". Proceedings of the 10th International 
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2014. pp. 593-604

GP for Embedded Feature Selection
• Existing feature selection metrics have some biases class 

imbalance problems

• Each terminal node (leaf) consists of a (“basic”) feature 
selection metric, which returns a set of features considered 
highly discriminative by such metric 

• The set operations may be union (∪), intersection (∩), set 
difference (�), and so on 

GP for Embeded Feature Selection

Viegas, Felipe, Leonardo Rocha, Marcos Gonçalves, Fernando Mourão, Giovanni Sá, Thiago Salles, Guilherme Andrade, and Isac Sandin. 
"A genetic programming approach for feature selection in highly dimensional skewed data." Neurocomputing 273 (2018): 554-569.
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Obtain the test error 
Errorg  of  Ib 
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{Xi, Xm, ǥ, Xk}?

Collect all the distinct features
{Xi, Xm, ǥ, Xk} in Ib  

End

For feature Xj in  
{Xi, Xm, ǥ, Xk}, permute the 

values of Xj within the 
sub-test set

Obtain the generalisation 
error  Errpmt of Ib  over the 

permuted sub-test set 

Calculate the raw feature 
importance FIxj of Xj 

 FIxj=(Errpmt – Errorg)

Yes

Raw feature 
importances

GP run for Permutation Feature Importance Calculating Permutation Feature Importance 

Calculate Permutation 
Feature Importance

No

Figure 3.2: GP for Permutation Importance (GPPI).

Permutation feature/variable importance in random forests (RF) is a
widely used score to measure the importance of features [53]. Permuting
a feature refers to rearranging the values of the feature within the dataset
randomly. For example, the values of a feature are denoted as {4,7,9}, the
permutation of the feature takes a random form among {4,9,7}, {7,4,9},
{7,9,4}, {9,7,4}, {9,4,7}. The rationale behind permutation importance is
that important features should have a higher influence on the performance
of models, i.e. for regression problems, permuting a more important fea-
ture will lead to a higher regression error. Based on this hypothesis, we
measure the feature importance in GP for SR based on permutation.

Qi. Chen, Mengjie. Zhang, and Bing. Xue. "Feature Selection to Improve Generalisation of Genetic 
Programming for High-Dimensional Symbolic Regression", IEEE Transaction on Evolutionary 
Computation, vol. 21, no. 5, pp. 792-806, 2017.

• Permutation feature importance:
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Figure 3.2 presents the main process of GPPI. While the left part of the
figure shows the process of calculating permutation feature importance in
one GP run, the right part describes the process to obtain the permutation
importance of one feature. The whole process is defined as:

1. Randomly split the training data into a sub-training set and a sub-
test set.

2. Carry out a standard GP run and get the best-of-run individual Ib,
which has the lowest training error over the sub-training set.

3. Compute the generalisation error of Ib over the sub-test set, which is
referred to Errorg(Ib).

4. For each distinct feature Xj in Ib, permute its values within the sub-
test set, and get the test error of Ib on the permuted sub-test set,
shown as Errpmt(Ib).

5. Calculate the distance between Errorg(Ib) and Errpmt(Ib), and use it
to measure the raw feature importance of the feature FIraw(Xj), i.e.

FIraw(Xj) = Errpmt(Ib)� Errorg(Ib) (3.3)

Steps 4 and 5 need to be performed for each distinct feature in the best-
of-run individual Ib. It is important to note that the importance values of
features absent from Ib are defined to be 0. The whole process repeats n

(n � 30) times on the best-of-run individuals collected from n independent
GP runs on the given training data, respectively. The condition n � 30 is to
reduce the bias of random seed used in GP runs on the importance values.
The pseudo-code of this procedure is shown in Algorithm 1.

In order to make the feature selection according to the importance val-
ues to be flexible and problem-independent, the final importance of a fea-
ture is defined as the scaled importance, which is the average raw feature
importance normalised by the standard error of raw feature importance.

Feature Selection for Symbolic Regression

Dick, G., Rimoni, A. P., And Whigham, P. A re-examination of the use of genetic programming on the oral 
bioavailability prob- lem. In Proceedings of the 17th Annual Conference on Genetic and Evolutionary 
Computation Conference (GECCO) (2015), ACM, pp. 1015– 1022. 
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Figure 3.5: Distribution of the Corresponding Test NRMSEs.

programs manipulating the irrelevant features. Thus the evolutionary pro-
cess is more likely to be guided towards the better models. Better feature
selection methods can shrink the search space of GP to be much smaller
but more effective since they can discard more irrelevant features while
keeping important features. Thus less effort is needed for GP to converge
to (near) optimal models. It also explains the pattern that the difference
on NRMSEs between GP-GPPI and the other three methods is increasing
over generations, and why GP-GPPI has a distinguished advantage over
the other methods.

Results on the Test Sets — Generalisation Ability

Figure 3.5 shows the distribution of generalisation errors of the 100 best-
of-run individuals. The overall trend is similar to the training set, i.e. GP-
GPPI outperforms the other methods. Particularly on LD50, GP-GPPI has

Feature Selection for Symbolic Regression
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Figure 3.6: The Testing Error Evolution Plots.

Wilcoxon test. While on DLBCL, GP-GPPI has notable generalisation gain
over the other three methods, on the other three tasks, GP-GPPI still out-
performs the other methods. On LD50 and DLBCL, while GP-RF has
slightly but not significantly better generalisation performance than GP,
GP-C5.0 has significantly higher test NRMSEs than GP on LD50 and slightly
better generalisation gain than GP on DLBCL. On CCUN and CCN, GP-
RF can not improve the generalisation performance of GP to a significant
level. GP-C5.0 achieves a significant generalisation gain on CCN.

In summary, GPPI can enhance the generalisation of GP more effec-
tively because it can discard more noisy/irrelevant features than other fea-
ture selection methods (feature selection results will be presented in more
detail in Section 3.5), so that GP is more likely to construct models using
the relevant features. Moreover, the GP models with a continuous prop-
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Table 3.6: Comparisons between LASSO, Random Forest (RF), GP, and
GP-GPPI

Benchmark Method
Training NRMSE
(Medain±MAD)

Test NRMSE
(Medain±MAD)

Significance
Test
(with GP-GPPI)
(training, test)

F1

LASSO 0.17 0.22 (�, �)
RF 0.055±0.0013 0.16±0.0017 (�, �)
GP 0.012±0.016 0.095±0.03 (+, �)
GP-GPPI 0.037±0.043 0.049±0.064

F2

LASSO 0.11 0.09 (�, �)
RF 0.040±4.20E-4 0.078±5.61E-4 (�, �)
GP 0.002±2.97E-3 0.005±4.45E-3 (=, =)
GP-GPPI 0.005±4.45E-3 0.004±2.97E-3

LD50

LASSO 0.04 0.68 (+, �)
RF 0.097±7.61E-4 0.23±0.0013 (+, �)
GP 0.19±0.009 0.25±0.026 (+, �)
GP-GPPI 0.21±4.45E-3 0.21±4.45E-3

DLBCL

LASSO 0.18 0.22 (�, �)
RF 0.058±7.77E-4 0.13±0.0014 (+, �)
GP 0.088±0.012 0.182±0.032 (�, �)
GP-GPPI 0.081±0.012 0.11±0.019

CCUN

LASSO 0.13 0.15 (�, �)
RF 0.030±1.18E-4 0.098±2.25E-4 (+, =)
GP 0.073±1.48E-3 0.099±2.22E-3 (+, =)
GP-GPPI 0.076±1.48E-3 0.097±2.97E-3

CCN

LASSO 0.21 0.23 (�, �)
RF 0.054±1.77E-4 0.141±3.44E-4 (+, �)
GP 0.133±2.97E-3 0.143±2.97E-3 (+, �)
GP-GPPI 0.139±2.22E-3 0.139±2.97E-3

ods performed well. The examples of the evolved models are shown in
Table 3.5. The mathematically simplified forms of the models are also pre-
sented in Table 3.5 for an easier analysis of the models. In these three
runs, regarding the relevant features in the target function F1 = �gX1X2

X2
3

(g = 6.67408E�11), it can be observed that GP-GPPI can include all the im-
portant features, and uses only the relevant features to construct the mod-
els. On the other hand, the other three GPSR methods and standard GP
either include some noisy features or can not include all the relevant fea-
tures. Concerning the shape of the models, it is also easy to find that mod-

Qi. Chen, Mengjie. Zhang, and Bing. Xue. "Feature 
Selection to Improve Generalisation of Genetic 
Programming for High-Dimensional Symbolic 
Regression", IEEE Transaction on Evolutionary 
Computation, vol. 21, no. 5, pp. 792-806, 2017.
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due to interactions between features. Therefore, we limit the
dimensions corresponding to these features in the search space
to a smaller search space, that is, these features are less likely
to be selected. In the variable-range strategy, the search ranges
of these features are set to [0, δ], where δ denotes the upper
bound value for the dimensions corresponding to these features.
If the feature weights are between the weight of the knee point
and 0, the search ranges for the dimensions corresponding to
these features are linearly reduced from [0, 1] to [0, δ] based
on the weights of features.

2) Subset Updating Mechanism: To help PSO escape from
potential local optima, we design a promising subset updating
mechanism in Task 1. During the evolutionary process, if gbest
does not change within the given iterations (m), we modify the
feature set in Task 1. We randomly select some features from the
unselected features in the first step to replace the same number
of features in Task 1 (i.e., keep the size unchanged). Equation (8)
is used to determine the number of features updated. Since
the promising feature subset may be updated during the search
process, the combination of potentially complementary features
in Task 1 will likely be enhanced to some extent

numChange = ρ ∗ numSelect (8)

where numChange and numSelect represent the number of fea-
tures updated and the number of features in Task 1, respectively.
The scale factor ρ is used to control the number of updates.
A high ρ value provided by the user may result in a lot of
useful information to be lost, whereas a low ρ value does not
achieve the objective of jumping out of possible local optima.
Therefore, a sensitive analysis is conducted in Section IV-C
to determine the appropriate values for ρ and δ.

D. Overall of the Proposed Method

Fig. 3 shows the flowchart of the proposed PSO-EMT method.
In Fig. 3, two important steps are designed for successfully
applying evolutionary multitasking for FS. The purpose of step
1 is to generate two related FS tasks that can help each other
to form a multitasking system. The input of step 1 is the
training data. The outputs are two related FS tasks, which are
based on the promising feature subset and the entire feature
set, respectively. In this step, the proposed knee point selection
scheme is used to determine the promising feature subset. The
purpose of step 2 is to select a feature subset through knowledge
transfer between these two related tasks in step 1. The inputs of
step 2 are two related FS tasks. The output is a feature subset,
which has a higher discriminating ability about the class labels.
In this step, the proposed variable-range strategy and the subset
updating mechanism are applied to reduce the search space of
PSO and maintain the diversity of the population, respectively.
Note that these two FS tasks are solved simultaneously in step
2.

IV. EXPERIMENTAL DESIGN

This section describes the details of the experimental setup,
including the investigated datasets, the compared methods, and
the parameter settings.

Fig. 3. Framework of the PSO-EMT.

TABLE I
DATASETS

A. Datasets

Ten gene expression datasets with thousands of features
are used in the experimental analyses. They are open sources
on https://ckzixf.github.io/dataset.html. Table I shows the key
characteristics of these datasets. The distribution of data is
highly unbalanced. The classification on such datasets is a
challenging task.
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Fig. 2. Example is used to select promising features based on the knee point.

related tasks. In this situation, we adopt a multipopulation
framework to transfer knowledge between Task 1 and Task 2.
During the search process, a skill factor is used to allocate
the particles for each FS task. In other words, if a parti-
cle whose skill factor value is 1, the particle is assigned to
solve Task 1; otherwise, it is used to address Task 2. Vertical
cultural transmission is another important operator in PSO-
EMT, which can change the value of skill factor to implement
transfer solutions between Task 1 and Task 2. The way of
transferring knowledge plays an important role in knowledge
transfer, which has a great influence on the quality of the
final selected feature subset. The crossover is an effective
information-sharing operator, which can occur between the
different or same subpopulations. In this study, the crossover
on the particle’s velocity called assortative mating is applied to
transfer knowledge between Task 1 and Task 2. Sharing knowl-
edge by assortative mating not only can enhance the diversity
for each subpopulation (task) but also can provide assistance
to find better feature subsets. During the evolutionary process,
a random mating probability (rmp) is defined to control when
to transfer knowledge from another task. At each generation,
if a random number rand is less than or equal to rmp, (4) is
adopted to update particle’s velocity; otherwise, (2) is applied
to update particle’s velocity.

2) Fitness Function: In this study, the k-nearest neighbor
(KNN) algorithm [32] is adopted as an evaluator to assess the
selected subset. Equation (6) represents the fitness function
that considers both the number of selected features and the
classification accuracy of using the subset for classification

fitness = α ∗ γR(D) + (1 − α) ∗ |S|
|N| (6)

where γR(D) denotes the classification error rate of the learn-
ing algorithm, |S| represents the number of selected features,
and |N| indicates the total number of available features in the
dataset. α is a parameter to reflect the role of the classification
error rate and the number of selected feature subsets, where
α ∈ [0, 1] according to [41]. In the multitasking system, since
Task 1 is to select features from a subset of the available fea-
tures and Task 2 is to select features from the entire set of the
available features, the number of features in Task 1 is much
smaller than that in Task 2. In order to ensure that the clas-
sification accuracy is always more important than the number
of selected features in Task 1, we set α = 0.999999 in this

study. For Task 2, we set α = 0.9 to increase the impact of the
number of selected features on subset evaluation, which can
effectively speed up the removal of redundant features from
the entire feature set.

To handle unbalanced data in the FS process, a balanced
accuracy [42] is used to determine the accuracy of the learning
algorithm. Equation (7) shows the classification error rate

γR(D) = 1 − 1
c

∗
c∑

i=1

TPRi (7)

where c denotes the number of classes in a classification
problem, and TPRi represents the proportion of correctly iden-
tified instances in class i. Since the balanced accuracy is no
bias to each class in the classification problem, the weight for
each class is set to 1/c.

3) Final Selected Features: It is noted that the final goal
in this article is to obtain a feature subset that can achieve
high classification accuracy in high-dimensional classification
problems. However, two feature subsets will be produced when
applying evolutionary multitasking in step 2, which are from
Task 1 and Task 2, respectively. We will choose the selected
features from Task 1 as the final feature subset to return, and
the reasons are as follows. During the search process, Task 1
focuses on the promising areas (i.e., the features in Task 1 are
important about the class labels) and continuously obtains useful
information from Task 2 to jump out of potential local optima.
It is difficult that Task 2 finds a subset with high accuracy
due to its huge search space and complex interactions between
the large number of features. The feature subset obtained from
Task 1 is potentially better than that from Task 2.

C. Further Improvement Mechanisms

PSO often suffers from premature convergence and easily
falling into local optima. We propose two mechanisms to over-
come these deficiencies, which are: 1) variable-range strategy
and 2) feature subset updating mechanism.

1) Variable-Range Strategy: When implementing PSO for
FS, a particle represents a potential feature subset, and each
position value is within a fixed range (i.e., [0, 1]), which indicates
whether the corresponding feature should be reserved or not by
using a user-defined threshold (e.g., 0.6). Since the importance
of each feature in the dataset is different, using a fix range
for each feature in Task 2 is difficult to find a good feature
subset due to the huge search space. A variable-range strategy
based on the importance of features is proposed, which aims to
reduce the search space by adapting the search range of each
feature. The proposed strategy can effectively ensure that the
features with higher (lower) importance have a higher (lower)
probability to be selected.

The search range of each dimension is determined based
on two demarcation values (e.g., the weight of the knee point
and point 0). The knee point was described in Section III-A.
If the weights of the features are greater than that of the knee
point, their search ranges of the corresponding dimensions
are set to [0, 1]. If the feature weights are less than 0, these
features are less helpful for solving problems. However, these
features may become useful when combined with other features

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on May 02,2021 at 21:29:09 UTC from IEEE Xplore.  Restrictions apply. 

• Fitness function:

• Knowledge transfer
- Multipopulation framework
- Assortative mating - crossover 
- Vertical cultural transmission

‣ assign the skill factor for each 
generated individual 

• Variable-Range Strategy 
- linearly reduced from [0, 1] to 

[0, δ] 

• Subset Updating Mechanism:
- Update candidate features in

Task 1, size unchanged

Evolutionary Multitasking-Based 
Feature Selection Method 

K. Chen, B. Xue, M. Zhang and F. Zhou, "An Evolutionary Multitasking-Based Feature Selection Method for High-Dimensional Classification," 
in IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2020.3042243.
L. Feng et al., “An empirical study of multifactorial PSO and muli-tifactorial DE,” in Proc. IEEE Congr. Evol. Comput., San Sebastian, Spain, 2017, pp. 
921–928. 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: EVOLUTIONARY MULTITASKING-BASED FS METHOD 7

due to interactions between features. Therefore, we limit the
dimensions corresponding to these features in the search space
to a smaller search space, that is, these features are less likely
to be selected. In the variable-range strategy, the search ranges
of these features are set to [0, δ], where δ denotes the upper
bound value for the dimensions corresponding to these features.
If the feature weights are between the weight of the knee point
and 0, the search ranges for the dimensions corresponding to
these features are linearly reduced from [0, 1] to [0, δ] based
on the weights of features.

2) Subset Updating Mechanism: To help PSO escape from
potential local optima, we design a promising subset updating
mechanism in Task 1. During the evolutionary process, if gbest
does not change within the given iterations (m), we modify the
feature set in Task 1. We randomly select some features from the
unselected features in the first step to replace the same number
of features in Task 1 (i.e., keep the size unchanged). Equation (8)
is used to determine the number of features updated. Since
the promising feature subset may be updated during the search
process, the combination of potentially complementary features
in Task 1 will likely be enhanced to some extent

numChange = ρ ∗ numSelect (8)

where numChange and numSelect represent the number of fea-
tures updated and the number of features in Task 1, respectively.
The scale factor ρ is used to control the number of updates.
A high ρ value provided by the user may result in a lot of
useful information to be lost, whereas a low ρ value does not
achieve the objective of jumping out of possible local optima.
Therefore, a sensitive analysis is conducted in Section IV-C
to determine the appropriate values for ρ and δ.

D. Overall of the Proposed Method

Fig. 3 shows the flowchart of the proposed PSO-EMT method.
In Fig. 3, two important steps are designed for successfully
applying evolutionary multitasking for FS. The purpose of step
1 is to generate two related FS tasks that can help each other
to form a multitasking system. The input of step 1 is the
training data. The outputs are two related FS tasks, which are
based on the promising feature subset and the entire feature
set, respectively. In this step, the proposed knee point selection
scheme is used to determine the promising feature subset. The
purpose of step 2 is to select a feature subset through knowledge
transfer between these two related tasks in step 1. The inputs of
step 2 are two related FS tasks. The output is a feature subset,
which has a higher discriminating ability about the class labels.
In this step, the proposed variable-range strategy and the subset
updating mechanism are applied to reduce the search space of
PSO and maintain the diversity of the population, respectively.
Note that these two FS tasks are solved simultaneously in step
2.

IV. EXPERIMENTAL DESIGN

This section describes the details of the experimental setup,
including the investigated datasets, the compared methods, and
the parameter settings.

Fig. 3. Framework of the PSO-EMT.

TABLE I
DATASETS

A. Datasets

Ten gene expression datasets with thousands of features
are used in the experimental analyses. They are open sources
on https://ckzixf.github.io/dataset.html. Table I shows the key
characteristics of these datasets. The distribution of data is
highly unbalanced. The classification on such datasets is a
challenging task.
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Fig. 2. Example is used to select promising features based on the knee point.

related tasks. In this situation, we adopt a multipopulation
framework to transfer knowledge between Task 1 and Task 2.
During the search process, a skill factor is used to allocate
the particles for each FS task. In other words, if a parti-
cle whose skill factor value is 1, the particle is assigned to
solve Task 1; otherwise, it is used to address Task 2. Vertical
cultural transmission is another important operator in PSO-
EMT, which can change the value of skill factor to implement
transfer solutions between Task 1 and Task 2. The way of
transferring knowledge plays an important role in knowledge
transfer, which has a great influence on the quality of the
final selected feature subset. The crossover is an effective
information-sharing operator, which can occur between the
different or same subpopulations. In this study, the crossover
on the particle’s velocity called assortative mating is applied to
transfer knowledge between Task 1 and Task 2. Sharing knowl-
edge by assortative mating not only can enhance the diversity
for each subpopulation (task) but also can provide assistance
to find better feature subsets. During the evolutionary process,
a random mating probability (rmp) is defined to control when
to transfer knowledge from another task. At each generation,
if a random number rand is less than or equal to rmp, (4) is
adopted to update particle’s velocity; otherwise, (2) is applied
to update particle’s velocity.

2) Fitness Function: In this study, the k-nearest neighbor
(KNN) algorithm [32] is adopted as an evaluator to assess the
selected subset. Equation (6) represents the fitness function
that considers both the number of selected features and the
classification accuracy of using the subset for classification

fitness = α ∗ γR(D) + (1 − α) ∗ |S|
|N| (6)

where γR(D) denotes the classification error rate of the learn-
ing algorithm, |S| represents the number of selected features,
and |N| indicates the total number of available features in the
dataset. α is a parameter to reflect the role of the classification
error rate and the number of selected feature subsets, where
α ∈ [0, 1] according to [41]. In the multitasking system, since
Task 1 is to select features from a subset of the available fea-
tures and Task 2 is to select features from the entire set of the
available features, the number of features in Task 1 is much
smaller than that in Task 2. In order to ensure that the clas-
sification accuracy is always more important than the number
of selected features in Task 1, we set α = 0.999999 in this

study. For Task 2, we set α = 0.9 to increase the impact of the
number of selected features on subset evaluation, which can
effectively speed up the removal of redundant features from
the entire feature set.

To handle unbalanced data in the FS process, a balanced
accuracy [42] is used to determine the accuracy of the learning
algorithm. Equation (7) shows the classification error rate

γR(D) = 1 − 1
c

∗
c∑

i=1

TPRi (7)

where c denotes the number of classes in a classification
problem, and TPRi represents the proportion of correctly iden-
tified instances in class i. Since the balanced accuracy is no
bias to each class in the classification problem, the weight for
each class is set to 1/c.

3) Final Selected Features: It is noted that the final goal
in this article is to obtain a feature subset that can achieve
high classification accuracy in high-dimensional classification
problems. However, two feature subsets will be produced when
applying evolutionary multitasking in step 2, which are from
Task 1 and Task 2, respectively. We will choose the selected
features from Task 1 as the final feature subset to return, and
the reasons are as follows. During the search process, Task 1
focuses on the promising areas (i.e., the features in Task 1 are
important about the class labels) and continuously obtains useful
information from Task 2 to jump out of potential local optima.
It is difficult that Task 2 finds a subset with high accuracy
due to its huge search space and complex interactions between
the large number of features. The feature subset obtained from
Task 1 is potentially better than that from Task 2.

C. Further Improvement Mechanisms

PSO often suffers from premature convergence and easily
falling into local optima. We propose two mechanisms to over-
come these deficiencies, which are: 1) variable-range strategy
and 2) feature subset updating mechanism.

1) Variable-Range Strategy: When implementing PSO for
FS, a particle represents a potential feature subset, and each
position value is within a fixed range (i.e., [0, 1]), which indicates
whether the corresponding feature should be reserved or not by
using a user-defined threshold (e.g., 0.6). Since the importance
of each feature in the dataset is different, using a fix range
for each feature in Task 2 is difficult to find a good feature
subset due to the huge search space. A variable-range strategy
based on the importance of features is proposed, which aims to
reduce the search space by adapting the search range of each
feature. The proposed strategy can effectively ensure that the
features with higher (lower) importance have a higher (lower)
probability to be selected.

The search range of each dimension is determined based
on two demarcation values (e.g., the weight of the knee point
and point 0). The knee point was described in Section III-A.
If the weights of the features are greater than that of the knee
point, their search ranges of the corresponding dimensions
are set to [0, 1]. If the feature weights are less than 0, these
features are less helpful for solving problems. However, these
features may become useful when combined with other features
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TABLE III
AVERAGE TEST RESULTS

Thirty independent runs are conducted for each method. The
Wilcoxon rank-sum test with a significance level of 0.05 is
used to verify the performance of the proposed method. In the
following results, “+,” “–,” and “≈” indicate that the proposed
FS method is significantly better than, worse than, and similar
with the compared methods. The larger the number of “+”
symbols, the better the proposed method.

A. Performance of PSO-EMT

Table III shows the training time (Time), average feature
subset size (Size), best classification accuracy (Best), average
classification accuracy (Mean), and standard deviation (Std) of
classification accuracies of the involved methods.

1) PSO-EMT Versus FULL: Table III shows that PSO-EMT
significantly improves the classification accuracy over using
the full set of original features on all datasets. PSO-EMT
can achieve the highest improvement on the 9Tumor dataset
where the average and best accuracies are increased by 22.06%
and 30.73%, respectively. On the Leuk3 dataset, PSO-EMT
can achieve 5.37% improvement on the average accuracy and
8.18% improvement on the best accuracy. In addition, the
feature sizes obtained by PSO-EMT are much fewer than the
original feature size on all the examined datasets. The feature
size is reduced roughly by 98% on the DLBCL dataset, which
is the largest reduction.

2) PSO-EMT Versus PSO: Compared with PSO, PSO-EMT
achieves significantly better performance on all datasets in
terms of the classification accuracy and the number of selected
features. The mean classification accuracy on eight out of
ten datasets are increasing at least 10% by PSO-EMT. The
highest improvement is on 9Tumor by 15.28% on the average
classification accuracy and 21.67% on the best classification
accuracy. However, using PSO to choose a feature subset on
9Tumor, the classification accuracy only increases 6.78% on
average accuracy and 9.06% on best accuracy. In terms of
dimensionality reduction, although PSO reduces the original
feature size by around half on all datasets, the numbers of
selected features achieved by PSO-EMT are still much smaller
than PSO on all datasets. The highest dimensionality reduction
occurs on Leuk3, where PSO-EMT chooses about 20 times
fewer features than PSO and still increases 4.68% and 5.10%
on average and best classification accuracies, respectively.

3) PSO-EMT Versus CSO: PSO-EMT chooses fewer fea-
tures on three out of ten datasets, and it outperforms CSO
on seven out of ten datasets. PSO-EMT obtains the highest
enhancement on the Prostate dataset that the mean and best
classification accuracies are improved by 9.70% and 6.22%,
respectively. On the Leuk2 dataset, PSO-EMT selects about
166 fewer features than CSO, but its average and best classifica-
tion accuracy are increased by 9.24% and 6.96%, respectively.
In addition, the results of the significance test indicate that
PSO-EMT obtains significantly better or similar classification
performance than CSO on seven out of ten examined datasets.

4) PSO-EMT Versus AMSO: In terms of dimension reduc-
tion, AMSO selects slightly fewer features than that of
PSO-EMT on all datasets. However, PSO-EMT achieves better
than or similar to classification performance compared with
AMSO on eight out of ten classification datasets. On the Brain1
dataset, PSO-EMT obtains the highest improvement, that is,
the average and best classification accuracies are enhanced
by 14.70% and 10.00%, respectively. In terms of the signifi-
cance test, the proposed method achieves significantly better
classification performance than AMSO on half of the datasets
(9Tumor, Brain1, Leuk2, 11Tumor, and Lung).

5) PSO-EMT Versus VLPSO: Compared with VLPSO, the
proposed method obtains higher average classification accuracy
on nine out of ten datasets. In terms of the number of selected
features, although VLPSO achieves a smaller number of features
than PSO-EMT, the feature subset size selected by PSO-EMT
is already very small. For instance, the feature subset selected
by PSO-EMT on Brain1 is 5.93% of the original features,
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TABLE III
AVERAGE TEST RESULTS

Thirty independent runs are conducted for each method. The
Wilcoxon rank-sum test with a significance level of 0.05 is
used to verify the performance of the proposed method. In the
following results, “+,” “–,” and “≈” indicate that the proposed
FS method is significantly better than, worse than, and similar
with the compared methods. The larger the number of “+”
symbols, the better the proposed method.

A. Performance of PSO-EMT

Table III shows the training time (Time), average feature
subset size (Size), best classification accuracy (Best), average
classification accuracy (Mean), and standard deviation (Std) of
classification accuracies of the involved methods.

1) PSO-EMT Versus FULL: Table III shows that PSO-EMT
significantly improves the classification accuracy over using
the full set of original features on all datasets. PSO-EMT
can achieve the highest improvement on the 9Tumor dataset
where the average and best accuracies are increased by 22.06%
and 30.73%, respectively. On the Leuk3 dataset, PSO-EMT
can achieve 5.37% improvement on the average accuracy and
8.18% improvement on the best accuracy. In addition, the
feature sizes obtained by PSO-EMT are much fewer than the
original feature size on all the examined datasets. The feature
size is reduced roughly by 98% on the DLBCL dataset, which
is the largest reduction.

2) PSO-EMT Versus PSO: Compared with PSO, PSO-EMT
achieves significantly better performance on all datasets in
terms of the classification accuracy and the number of selected
features. The mean classification accuracy on eight out of
ten datasets are increasing at least 10% by PSO-EMT. The
highest improvement is on 9Tumor by 15.28% on the average
classification accuracy and 21.67% on the best classification
accuracy. However, using PSO to choose a feature subset on
9Tumor, the classification accuracy only increases 6.78% on
average accuracy and 9.06% on best accuracy. In terms of
dimensionality reduction, although PSO reduces the original
feature size by around half on all datasets, the numbers of
selected features achieved by PSO-EMT are still much smaller
than PSO on all datasets. The highest dimensionality reduction
occurs on Leuk3, where PSO-EMT chooses about 20 times
fewer features than PSO and still increases 4.68% and 5.10%
on average and best classification accuracies, respectively.

3) PSO-EMT Versus CSO: PSO-EMT chooses fewer fea-
tures on three out of ten datasets, and it outperforms CSO
on seven out of ten datasets. PSO-EMT obtains the highest
enhancement on the Prostate dataset that the mean and best
classification accuracies are improved by 9.70% and 6.22%,
respectively. On the Leuk2 dataset, PSO-EMT selects about
166 fewer features than CSO, but its average and best classifica-
tion accuracy are increased by 9.24% and 6.96%, respectively.
In addition, the results of the significance test indicate that
PSO-EMT obtains significantly better or similar classification
performance than CSO on seven out of ten examined datasets.

4) PSO-EMT Versus AMSO: In terms of dimension reduc-
tion, AMSO selects slightly fewer features than that of
PSO-EMT on all datasets. However, PSO-EMT achieves better
than or similar to classification performance compared with
AMSO on eight out of ten classification datasets. On the Brain1
dataset, PSO-EMT obtains the highest improvement, that is,
the average and best classification accuracies are enhanced
by 14.70% and 10.00%, respectively. In terms of the signifi-
cance test, the proposed method achieves significantly better
classification performance than AMSO on half of the datasets
(9Tumor, Brain1, Leuk2, 11Tumor, and Lung).

5) PSO-EMT Versus VLPSO: Compared with VLPSO, the
proposed method obtains higher average classification accuracy
on nine out of ten datasets. In terms of the number of selected
features, although VLPSO achieves a smaller number of features
than PSO-EMT, the feature subset size selected by PSO-EMT
is already very small. For instance, the feature subset selected
by PSO-EMT on Brain1 is 5.93% of the original features,
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However, PSO-EMT achieves significantly better or similar
accuracy than FCBF on eight out of ten datasets. Although
the number of features obtained by PSO-EMT is 230 more
than that of FCBF on 9Tumor, the average and best accu-
racies of PSO-EMT are increased by 16.33% and 25.00%
compared with that of FCBF, respectively. On Leuk1, Prostate,
and Lung, although PSO-EMT achieves a lower average clas-
sification accuracy than FCBF, the best accuracy of PSO-EMT
is still increased by 4.10%, 1.24%, and 1.49%, respectively.
Note that FCBF is an effective filter FS method to deal
with high-dimensional data. However, FCBF is prone to be
trapped into local optima since it uses the heuristic search
strategies (i.e., sequential forward or backward selection)
in the second stage. PSO-EMT can effectively overcome
this issue to achieve better subsets due to its strong global
searchability.

3) PSO-EMT Versus ReliefF: As can be seen from the fourth
column of Table IV, PSO-EMT selects fewer features on all
test classification datasets and achieves significantly better and
similar average classification accuracy on six out of ten datasets.
The main reason is that ReliefF evaluates the importance of
features individually, and the selected feature subset still con-
tains some redundant features. PSO-EMT achieves the highest
improvement on Brain2 that the average and best classification
accuracies are improved by 4.27% and 12.00%, respectively.
On the 9Tumor dataset, PSO-EMT achieves a lower average
classification accuracy than ReliefF, but PSO-EMT obtains
5.00% higher than ReliefF in terms of the best accuracy.

4) PSO-EMT Versus SBMLR: Although the performance of
PSO-EMT in both the number of selected features and the
training time is slightly worse than SBMLR, the classification
accuracies of PSO-EMT are better than SBMLR on seven out of
ten datasets. This is because SBMLR uses a sparse multinomial
logistic regression method to determine feature subsets, which
easily leads to overfitting of the trained model. For instance,
the highest improvement of PSO-EMT is achieved on 11Tumor
by 16.02% on the average accuracy and 18.94% on the best
accuracies.

5) PSO-EMT Versus SPEC: Compared with SPEC, the
proposed PSO-EMT method evolves smaller feature subsets
with higher classification accuracies in all datasets, except
for Leuk1. On the Brain2 dataset, PSO-EMT achieves high-
est improvement, that is, the best and average classification
accuracies are improved by 24.27% and 32.00%, respec-
tively. In terms of the training time, PSO-EMT is a little
bit slower than SPEC. This is because SPEC uses the spectral
graph theory to measure features and requires less comput-
ing resources. In general, PSO-EMT has better tradeoff of
the classification performance and the training time than that
of SPEC.

In summary, among 50 comparisons with the five traditional
methods, the number of wins, loses, and draws of PSO-EMT
is 32, 13, and 5, respectively. The results indicate that the
proposed method can achieve significantly better classification
accuracy with a smaller feature subset than the compared tra-
ditional methods on most of the investigated high-dimensional
classification problems.

TABLE V
COMPARED RESULTS OF PSO-EMT AND PSO-EMTM-

TABLE VI
COMPARED RESULTS OF PSO-EMT AND PSO-EMTS-

D. Experiments on More Types of High-Dimensional
Datasets

In order to further examine the performance of the proposed
method, we conduct more experiments on other types of
high-dimensional datasets. Due page limitations, we have put
the details into the online supplementary materials. The results
on these different types of high-dimensional datasets show
that PSO-EMT is able to obtain a feature subset with higher
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Figs. 5 and 6 show the average fitness value changing of Task
1 and Task 2 on the ten test datasets during the evolutionary
process. As shown in Figs. 5 and 6, in terms of the convergence
rate, PSO-EMT displays superior convergence performance
over PSO-EMTm- on all datasets. This indicates that using
evolutionary multitasking to remove redundant and/or irrelevant
features and add more relevant ones, PSO-EMT can achieve
smaller fitness value than PSO-EMTm- during the evolutionary
process. This is due to the knowledge transfer between different
tasks that can effectively help PSO-EMT jump out of local
optima.

In summary, evolutionary multitasking is an effective tech-
nique to enhance FS performance in terms of the classification
accuracy, the number of selected features, and the training time,
especially on the high-dimensional problems.

B. Effect of Subset Updating Mechanism

To investigate the influence of the subset updating mechanism
in the proposed FS method, we compare the results of with
(PSO-EMT) and without (PSO-EMTs-) the subset updating
mechanism, which is shown in Table VI. The results of the
significance test show that PSO-EMT is significantly better
than PSO-EMTs- on three datasets (i.e., Brain1, Leuk2, and
Leuk3) and similar on the remaining seven datasets (i.e., Leuk1,
DLBCL, 9Tumor, Prostate, Brain2, 11Tumor, and Lung). The
number of features selected by PSO-EMT is smaller than PSO-
EMTs- on eight out of ten datasets. The highest dimensionality
reduction occurs on Leuk3 where PSO-EMT chooses about 146
fewer features than PSO-EMTs-. Also, the average accuracy
of PSO-EMT is increased by 1.02% and the best accuracy
of PSO-EMT is increased by 1.25%. Furthermore, PSO-EMT
costs a shorter computational time in comparison with PSO-
EMTs- on eight datasets. In general, PSO-EMT saves about 5%
training time of PSO-EMTs- on all examined datasets. Fig. 7
shows the average feature size of gbest from 10 (i.e., after
using the subset updating mechanism for the first time during
the search process) to 100 of PSO-EMT and PSO-EMTs-.
The figure shows that the subset updating mechanism provides
effective redundant and/or irrelevant feature removal capability
during the evolutionary process, enabling PSO-EMT to search
for a good feature subset. In addition, the subset updating
mechanism can increase the feature interactive in Task 1 during
the FS process.

C. Effect of Variable-Range Strategy

To investigate the contribution of the variable-range strategy
on the training time, the number of selected features, and the
classification accuracy, we compare the results of with (PSO-
EMT) and without (PSO-EMTv-) the variable-range strategy
in the proposed method. The results are recorded in Table VII.
As can be seen from Table VII, the training time of PSO-
EMT is shorter than PSO-EMTv- on all datasets. This shows
that the variable-range strategy can effectively reduce search
space by adapting the search range of each feature during the
FS process. In terms of the feature subset size, PSO-EMT
outperforms PSO-EMTv- on eight out of ten datasets. On the
Lung dataset, PSO-EMT chooses about 24 fewer features than

TABLE VII
COMPARED RESULTS OF PSO-EMT AND PSO-EMTV-

PSO-EMTv-, but the average and best accuracies of PSO-
EMT are still increased by 1.07% and 0.50%, respectively.
In terms of the results of the Wilcoxon test, PSO-EMT is
significantly better than PSO-EMTv- on three datasets (i.e.,
DLBCL, Brain1, and Lung), and similar on the remaining
seven datasets (i.e., Leuk1, 9Tumor, Prostate, Leuk2, Brain2,
Leuk3, and 11Tumor). On the DLBCL dataset, PSO-EMT
achieves the highest improvement where the average and best
classification accuracies are increased by 1.53% and 0.95%,
respectively.

VII. CONCLUSION

The goal of this article was to develop an effective hybrid
method for FS on high-dimensional classification. The goal has
been successfully achieved by designing a novel FS method
based on PSO and MFO that can effectively select a feature
subset via information sharing between two related tasks.

The results showed that the proposed method can achieve
better classification accuracy with smaller number of features
than state-of-the-art FS methods in most of the examined
datasets. This is due to the effectiveness of information transfer
between the designed two related tasks. In terms of the training
time, the proposed method requires less computational cost than
other compared methods in most cases due to the search space
control strategies, such as the variable-range strategy and the
knee point selection scheme. In addition, the proposed subset
updating mechanism can successfully maintain the diversity
of the population during the search process. This mechanism
can help PSO-EMT escape from potential local optima and
explore more fruitful regions during the FS process.

This is the first work that aims to use the idea of evolutionary
multitasking to handle FS in the high-dimensional classification
problems. It provides a new effective way for FS. In general,
the proposed method can not only achieve high classification
accuracy with a small feature subset but also can reduce the
training time.

The proposed method has accomplished the implicit knowl-
edge transfer between different tasks only by sharing global
best solutions in PSO without taking into account the other
useful information, such as individual position and velocity.
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while the improvement of PSO-EMT is obtained by 16.18%
and 10.83% on the average and best accuracies, respectively.
In terms of the significance test, the results show that PSO-
EMT obtains significantly better classification accuracy than
that of VLPSO on nine out of ten datasets. This indicates
that PSO-EMT is much more effective than VLPSO for the
high-dimensional classification problems.

In summary, PSO-EMT performs better than other methods
in most cases. Over the 50 comparisons with the five methods,
PSO-EMT wins 40, draws 4, and loses 6 in terms of classification
accuracy on all datasets. The effectiveness of PSO-EMT is con-
tributed by evolutionary multitasking, which not only considers
the entire features but also focuses on the important features
during the FS process. In addition, the variable-range strategy
and subset updating mechanism are designed to guide particles
search to focus on more promising areas. Therefore, PSO-EMT
has better performance than its counterparts in evolving feature
subsets with better classification accuracies. Section VI will
further investigate the evolutionary multitasking, subset updat-
ing mechanism, and variable-range strategy that contribute to
the effectiveness of PSO-EMT.

B. Training Time

The training time of PSO-EMT and the compared approaches
are shown in the third column of Table III. The training time
of PSO-EMT is the smallest among all the five methods on
three datasets (i.e., DLBCL, Brain2, and Leuk3). Compared
with PSO, the training time of PSO-EMT is between 1/3 and
1/7 of that of PSO. CSO needs the longest computational
time among all compared algorithms. The main reason is that
CSO needs to store the fitness values of the previously cho-
sen feature subsets to avoid repeated assessments. However,
the fitness evaluation time saved appears to be influenced by
the time required to match the archiving solution. Compared
with AMSO and VLPSO, the training time of PSO-EMT is
a little longer on seven datasets (i.e., Leuk1, 9Tumor, Brain1,
Prostate, Leuk2, 11Tumor, and Lung). This is because a fea-
ture ranking method was embedded in AMSO and VLPSO
to design solution representation strategies, which can effec-
tively reduce the search space during the FS process. In terms
of classification performance, the feature subsets returned by
PSO-EMT significantly achieve better classification accura-
cies than AMSO and VLPSO on seven datasets (i.e., 9Tumor,
Brain1, Prostate, Leuk2, Leuk3, 11Tumor, and Lung) and nine
datasets (i.e., DLBCL, 9Tumor, Brain1, Prostate, Leuk2, Brain2,
Leuk3, 11Tumor, and Lung), respectively. In general, among
the five algorithms, the proposed PSO-EMT method has the
best tradeoff between the effectiveness and efficiency.

C. Comparisons With Traditional Methods

In this section, we compare the results of PSO-EMT with five
classical FS approaches (i.e., CFS, FCBF, ReliefF, SBMLR,
and SPEC). Table IV shows the results of PSO-EMT with five
other comparison methods on ten datasets.

1) PSO-EMT Versus CFS: Table IV shows that PSO-
EMT achieves better classification accuracy than CFS on
six out of ten datasets, where PSO-EMT obtains the highest

TABLE IV
COMPARED PSO-EMT AND TRADITIONAL METHODS

improvement on Brain2 where the mean and best classifica-
tion accuracy are increased by 4.27% and 12%, respectively.
In terms of the best accuracy, PSO-EMT achieves better
results for all datasets, except for Leuk1 and Prostate. For
example, although PSO-EMT achieves a lower average clas-
sification accuracy than CFS on the Lung dataset, PSO-EMT
improves the best classification accuracy by 0.24%. Note that
CFS is a filter-based and deterministic FS approach, which
is usually faster than wrapper-based FS methods. However,
its computational time is longer than PSO-EMT on seven
datasets due to the pairwise correlation measures. This shows
that PSO-EMT is more suitable for high-dimensional data
than CFS.

2) PSO-EMT Versus FCBF: Compared with FCBF, PSO-
EMT chooses more features than that of FCBF on all datasets.
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TABLE III
AVERAGE TEST RESULTS

Thirty independent runs are conducted for each method. The
Wilcoxon rank-sum test with a significance level of 0.05 is
used to verify the performance of the proposed method. In the
following results, “+,” “–,” and “≈” indicate that the proposed
FS method is significantly better than, worse than, and similar
with the compared methods. The larger the number of “+”
symbols, the better the proposed method.

A. Performance of PSO-EMT

Table III shows the training time (Time), average feature
subset size (Size), best classification accuracy (Best), average
classification accuracy (Mean), and standard deviation (Std) of
classification accuracies of the involved methods.

1) PSO-EMT Versus FULL: Table III shows that PSO-EMT
significantly improves the classification accuracy over using
the full set of original features on all datasets. PSO-EMT
can achieve the highest improvement on the 9Tumor dataset
where the average and best accuracies are increased by 22.06%
and 30.73%, respectively. On the Leuk3 dataset, PSO-EMT
can achieve 5.37% improvement on the average accuracy and
8.18% improvement on the best accuracy. In addition, the
feature sizes obtained by PSO-EMT are much fewer than the
original feature size on all the examined datasets. The feature
size is reduced roughly by 98% on the DLBCL dataset, which
is the largest reduction.

2) PSO-EMT Versus PSO: Compared with PSO, PSO-EMT
achieves significantly better performance on all datasets in
terms of the classification accuracy and the number of selected
features. The mean classification accuracy on eight out of
ten datasets are increasing at least 10% by PSO-EMT. The
highest improvement is on 9Tumor by 15.28% on the average
classification accuracy and 21.67% on the best classification
accuracy. However, using PSO to choose a feature subset on
9Tumor, the classification accuracy only increases 6.78% on
average accuracy and 9.06% on best accuracy. In terms of
dimensionality reduction, although PSO reduces the original
feature size by around half on all datasets, the numbers of
selected features achieved by PSO-EMT are still much smaller
than PSO on all datasets. The highest dimensionality reduction
occurs on Leuk3, where PSO-EMT chooses about 20 times
fewer features than PSO and still increases 4.68% and 5.10%
on average and best classification accuracies, respectively.

3) PSO-EMT Versus CSO: PSO-EMT chooses fewer fea-
tures on three out of ten datasets, and it outperforms CSO
on seven out of ten datasets. PSO-EMT obtains the highest
enhancement on the Prostate dataset that the mean and best
classification accuracies are improved by 9.70% and 6.22%,
respectively. On the Leuk2 dataset, PSO-EMT selects about
166 fewer features than CSO, but its average and best classifica-
tion accuracy are increased by 9.24% and 6.96%, respectively.
In addition, the results of the significance test indicate that
PSO-EMT obtains significantly better or similar classification
performance than CSO on seven out of ten examined datasets.

4) PSO-EMT Versus AMSO: In terms of dimension reduc-
tion, AMSO selects slightly fewer features than that of
PSO-EMT on all datasets. However, PSO-EMT achieves better
than or similar to classification performance compared with
AMSO on eight out of ten classification datasets. On the Brain1
dataset, PSO-EMT obtains the highest improvement, that is,
the average and best classification accuracies are enhanced
by 14.70% and 10.00%, respectively. In terms of the signifi-
cance test, the proposed method achieves significantly better
classification performance than AMSO on half of the datasets
(9Tumor, Brain1, Leuk2, 11Tumor, and Lung).

5) PSO-EMT Versus VLPSO: Compared with VLPSO, the
proposed method obtains higher average classification accuracy
on nine out of ten datasets. In terms of the number of selected
features, although VLPSO achieves a smaller number of features
than PSO-EMT, the feature subset size selected by PSO-EMT
is already very small. For instance, the feature subset selected
by PSO-EMT on Brain1 is 5.93% of the original features,
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However, PSO-EMT achieves significantly better or similar
accuracy than FCBF on eight out of ten datasets. Although
the number of features obtained by PSO-EMT is 230 more
than that of FCBF on 9Tumor, the average and best accu-
racies of PSO-EMT are increased by 16.33% and 25.00%
compared with that of FCBF, respectively. On Leuk1, Prostate,
and Lung, although PSO-EMT achieves a lower average clas-
sification accuracy than FCBF, the best accuracy of PSO-EMT
is still increased by 4.10%, 1.24%, and 1.49%, respectively.
Note that FCBF is an effective filter FS method to deal
with high-dimensional data. However, FCBF is prone to be
trapped into local optima since it uses the heuristic search
strategies (i.e., sequential forward or backward selection)
in the second stage. PSO-EMT can effectively overcome
this issue to achieve better subsets due to its strong global
searchability.

3) PSO-EMT Versus ReliefF: As can be seen from the fourth
column of Table IV, PSO-EMT selects fewer features on all
test classification datasets and achieves significantly better and
similar average classification accuracy on six out of ten datasets.
The main reason is that ReliefF evaluates the importance of
features individually, and the selected feature subset still con-
tains some redundant features. PSO-EMT achieves the highest
improvement on Brain2 that the average and best classification
accuracies are improved by 4.27% and 12.00%, respectively.
On the 9Tumor dataset, PSO-EMT achieves a lower average
classification accuracy than ReliefF, but PSO-EMT obtains
5.00% higher than ReliefF in terms of the best accuracy.

4) PSO-EMT Versus SBMLR: Although the performance of
PSO-EMT in both the number of selected features and the
training time is slightly worse than SBMLR, the classification
accuracies of PSO-EMT are better than SBMLR on seven out of
ten datasets. This is because SBMLR uses a sparse multinomial
logistic regression method to determine feature subsets, which
easily leads to overfitting of the trained model. For instance,
the highest improvement of PSO-EMT is achieved on 11Tumor
by 16.02% on the average accuracy and 18.94% on the best
accuracies.

5) PSO-EMT Versus SPEC: Compared with SPEC, the
proposed PSO-EMT method evolves smaller feature subsets
with higher classification accuracies in all datasets, except
for Leuk1. On the Brain2 dataset, PSO-EMT achieves high-
est improvement, that is, the best and average classification
accuracies are improved by 24.27% and 32.00%, respec-
tively. In terms of the training time, PSO-EMT is a little
bit slower than SPEC. This is because SPEC uses the spectral
graph theory to measure features and requires less comput-
ing resources. In general, PSO-EMT has better tradeoff of
the classification performance and the training time than that
of SPEC.

In summary, among 50 comparisons with the five traditional
methods, the number of wins, loses, and draws of PSO-EMT
is 32, 13, and 5, respectively. The results indicate that the
proposed method can achieve significantly better classification
accuracy with a smaller feature subset than the compared tra-
ditional methods on most of the investigated high-dimensional
classification problems.

TABLE V
COMPARED RESULTS OF PSO-EMT AND PSO-EMTM-

TABLE VI
COMPARED RESULTS OF PSO-EMT AND PSO-EMTS-

D. Experiments on More Types of High-Dimensional
Datasets

In order to further examine the performance of the proposed
method, we conduct more experiments on other types of
high-dimensional datasets. Due page limitations, we have put
the details into the online supplementary materials. The results
on these different types of high-dimensional datasets show
that PSO-EMT is able to obtain a feature subset with higher
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Measuring the Purity of Class Intervals

Given a discrete or categorical random variable C (the class

label) which can take values c1, c2, . . . , cL with probabilities

p(c1), p(c2), . . . , p(cL), the Shannon entropy of C is defined by

H(C) = −
∑L

i=1
p(ci) logb p(ci)

where b is base of the logarithm and is usually 2.

A class interval establishes a new probability space. Therefore, the

probability of classes in the above equation should be conditioned

on the values of the feature that fall in the interval.

Given X , a feature, C, the set of all class labels, and c!, the class of

interest with corresponding interval Ic!, the Shannon entropy of the

interval of class c! is

H(Ic!) = −
∑

c∈C p(c|X ∈ Ic!) log2 p(c|X ∈ Ic!)
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Single vs. Multiple Feature Construction

• With only one constructed feature, the common option is to use

an augmented datasets.

• Possible ways to make multiple features are: random restart and

picking multiple individuals. However, these methods usually

lead to very high correlation between constructed features.

• Another way of making multiple features is to use a fitness func-

tion that has this potential.
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lead to very high correlation between constructed features.

• Another way of making multiple features is to use a fitness func-

tion that has this potential.
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Example Papers for Reading

• Kourosh Neshatian, Mengjie Zhang, Peter Andreae: Genetic Programming

for Feature Ranking in Classification Problems. SEAL 2008: 544-554.

http://dx.doi.org/10.1007/978-3-540-89694-4_55

• Kourosh Neshatian, Mengjie Zhang, Mark Johnston: Feature Con-

struction and Dimension Reduction Using Genetic Programming.

Australian Conference on Artificial Intelligence 2007: 160-170.

http://dx.doi.org/10.1007/978-3-540-76928-6_18

• Kourosh Neshatian, Mengjie Zhang: Using genetic pro-

gramming for context-sensitive feature scoring in classifica-

tion problems. Connect. Sci. 23(3): 183-207 (2011).

http://dx.doi.org/10.1080/09540091.2011.630065

• Kourosh Neshatian’s PhD Thesis:

http://homepages.ecs.vuw.ac.nz/˜mengjie/students/KouroshPhd_thesis.p
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Example Papers for Reading

• Bing Xue, Mengjie Zhang, Will Browne. Particle swarm optimization

for feature selection in classification: A multi-objective approach, IEEE

Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013.

http://dx.doi.org/10.1109/TSMCB.2012.2227469

• Bing Xue, Liam Cervante, Lin Shang, Will Browne and Mengjie Zhang.

Binary PSO and rough set theory for feature selection: a multi-objective

filter based approach”. International Journal of Computational Intelligence

and Applications (IJCIA), Vol. 13, No. 2 (2014). pp. 1450009 – 1- 34.

http://dx.doi.org/10.1142/S1469026814500096

• Bing Xue, Mengjie Zhang, Will N. Browne. Particle Swarm Optimisa-

tion for Feature Selection in Classification: Novel Initialisation and Updat-
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http://dx.doi.org/10.1016/j.asoc.2013.09.018
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Example Papers for Reading
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Zhang. A Multi-Objective Particle Swarm Optimisation for Fil-

ter Based Feature Selection in Classification Problems”. Con-
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• Bing Xue, Liam Cervante, Lin Shang, Will N. Browne,
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22, Issue 04, August 2013. pp. 1350024 – 1 - 31.

http://dx.doi.org/10.1142/S0218213013500243

• http://www.informatik.uni-trier.de/˜ley/pers/hd/x/Xue:Bing

• http://ecs.victoria.ac.nz/Main/BingXue.Papers
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Examples of good and bad class intervals

Overlapping intervals: ��
x
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Non-overlapping intervals: �
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Measuring the Purity of Class Intervals

Given a discrete or categorical random variable C (the class

label) which can take values c1, c2, . . . , cL with probabilities

p(c1), p(c2), . . . , p(cL), the Shannon entropy of C is defined by

H(C) = −
∑L

i=1
p(ci) logb p(ci)

where b is base of the logarithm and is usually 2.

A class interval establishes a new probability space. Therefore, the

probability of classes in the above equation should be conditioned

on the values of the feature that fall in the interval.

Given X , a feature, C, the set of all class labels, and c!, the class of

interest with corresponding interval Ic!, the Shannon entropy of the

interval of class c! is

H(Ic!) = −
∑

c∈C p(c|X ∈ Ic!) log2 p(c|X ∈ Ic!)
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Non-Wrapper (Filter) Approach

• A feature construction system that does not adopt a wrapper ap-

proach is considered adopting a non-wrapper or filter approach.

• A measure of goodness in the form of a surrogate classifier is

required. The measure, however, should be designed differently

depending on type of classifiers will be using the constructed

features.
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What is a Good feature?

The measure of goodness is subjective with respect to the type of

classifier. The features in this figure, x1 and x2, are good for a linear

classifier.
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What is a Good feature?

The same set of features are not good for a decision tree classifier

that is not able to transform its input space.
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Why Use GP for Feature Construction?

• GP is flexible in making mathematical and logical functions

• There isn’t mush structural (topological) information in the

search space of possible functions, so using a meta-heuristic ap-

proach (such as evolutionary computation) seems reasonable.
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GP for Feature Construction: A System Diagram
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A Sample Measure of Goodness: The Entropy of
Class Intervals

Defining a measure of goodness for a single feature:

• The interval of a class along a feature is determined by the dis-

persion of the instances of that class along the feature axis. The

dispersion of instances itself is related to the distribution of data

points in that class.

• An interval I is represented with a pair (lower, upper) which

shows the lower and upper boundaries of the interval. Ic is used

to indicate an interval for class c.

• The interval of class c could be formulated as follows if the

class distributions were normal.

Ic = [µc − 3σc, µc + 3σc]

However, the normality assumption is not always satisfied.
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• 4 features, 3 classes

GP for FC Measure: Original VS Constructed
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Fig. 9. (a) Decision tree induced by the J48 (C4.5) algorithm using the 1000
observations in the previous figure. (b) Class boundary generalized by the
decision tree. The decision tree inducer has failed to generalize the concept
of a line.

Fig. 10. (a) Simple GPMFC-constructed feature for the 1000 observations.
(b) J48 induced decision tree using the constructed feature, y.

E. Further Discussions

Theoretically, GP and symbolic learners both generate in-
telligible models: GP generates expression trees and symbolic
learners generate chains of rules or trees of decision stumps.
In practice, however, both of them can produce solutions
(constructed features or classifiers) that are not easily com-
prehensible; very often constructed features are unnecessarily
complicated and therefore unintelligible. Although in some of
our empirical results, the complexity of the constructed feature
and the complexity of the induced decision tree on those fea-
tures altogether were less than the complexity of the induced
decision tree on the original features (see the examples in the

Fig. 11. Visualization of the features in balance scale problem. The top four
plots depict the original features of the problem and the bottom plot is for
a constructed feature (x1x2 − x3x4). In each plot, the horizontal axis is the
instance number and the vertical axis is the value of the feature for the given
instance. The instances are grouped based on their class labels. The vertical
shaded areas from left to right correspond to the class labels: “left,” “balance,”
and “right.” The two dashed lines in the bottom plot depict the way a J48
decision tree inducer would partition the input (constructed) feature space in
order to learn the three concepts (classes).

previous subsection), in many cases the overall complexity
did not change or even increased after feature construction.
Two common causes of unnecessarily high complexity in GP
programs are verbosity and introns, both of which can be
addressed by algebraic or numeric simplification.

Even though in some cases the proposed feature construc-
tion system may not reduce the overall complexity of classifi-
cation systems (complexity of the constructed features plus the
complexity of the learnt classifier), throughout this paper, the
main focus was only on the complexity of induced decision
trees. This is because a decision tree with too many nodes
(on numeric features) can create serrated decision boundaries
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Multi-tree GP for FC

Min

+ *

F7 F2 F2F4

+

- *

F9 F4 F8F5

CF2                  Class2CF1                    Class1 -

+ Max

F6 F3 F9F8

CF3                    Class3

1. Constructed feature set (CF):   CF1, CF2, CF3

• CF1 = Min ((F7 + F2), (F4 * F2))
• CF2 = (F9 - F4) + (F5 * F8)
• CF3 = (F6 + F3) - Max (F8 , F9))

2. Selected feature set (Ter): F2, F3, F4, F5, F6, F7, F8, F9

3. Combination set (CFTer):  CF1, CF2, CF3, F2, F3, F4, F5, F6, F7, F8, F9

Binh Ngan Tran, Bing Xue, Mengjie Zhang. "Class Dependent Multiple Feature Construction Using Genetic Programming for High-
Dimensional Data". Proceedings of the 30th Australasian Joint Conference on Artificial Intelligence (AI2017) Lecture Notes in Computer 
Science. Vol. 10400. Springer. Melbourne, Australia, August 19-20th, 2017. pp. 182-194.
Binh Tran and Bing Xue and Mengjie Zhang. "Genetic programming for multiple-feature construction on high-dimensional 
classification", Pattern Recognition, vol. 93, pp. 404-417, 2019

Class-Dependent Terminal Sets
• A constructed feature aims at discriminating instances of a 

class (c) from other classes => It is constructed based on 
features that are relevant to class c.

• Class-relevant measure:

• Half of the top-ranked features will be used to form the 
terminal set of class c. 
- => eliminate irrelevant features 
- => narrow the search space

•

6.2. THE PROPOSED METHOD: MGPFC 185

6.2.2 MGPFC Fitness Function

To evaluate an individual, its m constructed features are used to transform
the training set into a new training set with m features. The discriminating
ability of the transformed dataset indicates how good the constructed features
are. While a wrapper measure based on a classification algorithm can be
a good indicator for searching good feature sets, the resulted feature set
may not be general for other classification algorithms. On the other hand,
a filter measure is based on the intrinsic characteristics of the data, its
solutions may be e�ective for many learning algorithms, however, with the
price of lower classification accuracy than wrapper approaches. Therefore,
a hybrid approach that combines both wrapper and filter was proposed to
synthesise their strengths. Decision Tree is used to evaluate the classification
performance of the constructed feature set as it is a fast learning algorithm.
For filter approach, a distance measure is chosen because it is simple and
multivariate which means it can evaluate the discriminating ability of a set of
features at a time.

To evaluate an individual with m trees, its constructed features are
used to transform the training set into a new dataset with m features. The
discriminating ability of the transformed training set will be used to determine
the fitness of the individual. Equation (6.1) describes the fitness function
which combines the classification performance and a distance measure using
a weighting coe�cient –.

Fitness = – · Accuracy + (1 ≠ –) · Distance (6.1)

where Accuracy is the average accuracy of DT over K-fold (K=3) cross-
validation (CV) on the transformed training set. To avoid overfitting, this
K-fold CV is repeated L times (L=3) with di�erent data splitting similar to
[127]. Totally, K ◊ L models were built to evaluate the set of constructed
features. Therefore, 9 models are trained in each evaluation, which requires an
equivalent running time as a 10F-CV. Because many high-dimensional datasets
are unbalanced, the same balanced accuracy [189] as previous chapters was

Class-Dependent Multi-tree GP for FC
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Binh Ngan Tran, Bing Xue, Mengjie Zhang. "Class Dependent Multiple Feature Construction Using Genetic Programming for High-
Dimensional Data". Proceedings of the 30th Australasian Joint Conference on Artificial Intelligence (AI2017) Lecture Notes in Computer 
Science. Vol. 10400. Springer. Melbourne, Australia, August 19-20th, 2017. pp. 182-194.
Binh Ngan Tran, Evolutionary Computation for Feature Manipulation in Classification on High-dimensional Data, PhD thesis, Victoria
University of Wellington, New Zealand, http://researcharchive.vuw.ac.nz/xmlui/handle/10063/7078
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Figure 6.10: Constructed features on Leukemia1.

stances of one class from the others, contributions to the superior results of
CDFC mainly came from its fitness function. While both methods used an
entropy-based measure to minimise the impurity of the constructed feature
values within each class, CDFC incorporated an additional distance measure
to evaluate the whole set of constructed features. The aim of the distance
measure is to maximise the distance between instances of di�erent classes and
minimise the distance between instances of the same class. This is the reason
why the data clouds produced by CDFC are more compact and scattered far
away from each other.

6.6.5 Comparison with Feature Selection Results

The results of CDFC have shown that feature construction is a promising
approach to dimensionality reduction on high-dimensional data. This section
will compare the results of CDFC with the best results obtained by feature
selection methods in Chapters 3 and 4 using all the four datasets that have
been used in all the experiments of feature selection and feature construction
methods in this thesis, namely DLBCL, Prostate, Leukemia1 and SRBCT.
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Figure 6.7: Results of multiple-tree GP (CDFC) versus single-tree GP
(1TGPFC) for multiple feature construction.

The average results over the 50 runs of both methods are displayed in Figure
6.7.

Results from Figure 6.7 showed that using the CDFC constructed features,
all the three learning algorithms obtained significantly higher accuracies than
using the ones created by 1TGPFC on all datasets. KNN obtained the largest
increase of 8.1% average accuracy on Prostate, NB had 7.2% biggest gap
on CNS, and DT achieved 13% increase on SRBCT. Comparisons between
the three learning algorithms in Figure 6.7(d) showed that KNN had the
highest improvement on four datasets. On the other four datasets, DT had
the largest di�erence of 10.5% and 13% on Leukemia1 and SRBCT, which
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resetting gbest

• Use a filter measure to identify:
– Relevant features: correlated to the class label.
– Redundant features: correlated with each other.

• Symmetric uncertainty (SU) is a normalised version of information gain (IG).

Binh Tran, Mengjie Zhang and Bing Xue, "A PSO Based Hybrid Feature Selection Algorithm For High-Dimensional Classification". Proceedings of 2016 IEEE World 
Congress on Computational Intelligence/ IEEE Congress on Evolutionary Computation (WCCI/CEC 2016). Vancouver, Canada. 24-29 July, 2016. pp.3801-3808.
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5 - 6 times faster 
than PSO

• A PSO based hybrid FS algorithm for high-
dimensional classification.

• PSO-LSSU combines wrapper and filter 
measures:
- The fitness function.
- The local search.

• PSO-LSSU achieved much smaller feature 
subsets with significantly better classification 
performance than the compared methods in 
most cases.

Binh Tran, Mengjie Zhang and Bing Xue, "A PSO Based Hybrid Feature Selection Algorithm For High-Dimensional Classification". Proceedings of 2016 IEEE World 
Congress on Computational Intelligence/ IEEE Congress on Evolutionary Computation (WCCI/CEC 2016). Vancouver, Canada. 24-29 July, 2016. pp.3801-3808.

Biology: PSO with local search on pbest and 
resetting gbest
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July 2016 GP for FS and FC in Biology

Figure 4: Constructed Features

Figure 7: Ovarian feature correlation

overfitting by constructing new high-level features with bet-
ter distribution than the original skewed features. However,
the number of features constructed by one best individual is
still too small to be representative for the whole feature set
with a large number of features. Increasing the number of
constructed features may further improve the performance
of these learning algorithms on high-dimensional data. Our
future work will focus on this direction.
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Figure 8: Madelon feature correlation

Figure 9: Feature distributions
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5.2 The constructed feature
To see why SVM can improve its performance by using

only one constructed feature, we pick the best constructed
feature in one GP run on Leukemia dataset to analyse.
Figure 1 shows this GP tree with the the size of ten and
constructing a new feature based on four original features:
D13637 at, D42043 at, D78611at and X95735 at. The val-
ues of these four selected features are plotted in Figure 2 to
Figure 3. Among these features, X95735 at has the least
number of overlapping values between two classes. How-
ever, by combining these features, the constructed feature
can split di↵erent instances in di↵erent classes into two com-
pletely separate intervals. Figure 4 shows the feature values
created by this constructed feature and a similar constructed
feature for DLBCL GEMS dataset. The result shows that
GP has the ability to select informative features to build
high-level features with a higher discriminating ability.

Figure 1: Leukemia constructed feature
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5.3 Overfitting problem
To analyse the overfitting problem, we choose Colon, the

smallest dataset, to have a closer look at the distribution of
each feature. Figure 5 shows the boxplot of the first 100 fea-
tures of Colon dataset. We can see that all of these features
have a skewed distribution. Each feature also has many out-
liers scattering far away from its mean value. In the experi-
ment, Colon is divided into 10 folds each of which has about
6 instances. Therefore, there is a very high chances that
the distributions of the training and the test folds are very
di↵erent. As a result, the constructed or selected features
based on the training fold can not be generalised to correctly
predict the unseen data in the test fold. This may be the
reason why the training and test accuracies are so di↵er-
ent. This explanation is concordant to the result of Ovarian
dataset where both SVM and GP achieve similar perfor-
mance on training and test sets. The boxplot of the first
one hundred features of this dataset in Figure 6 shows that
these features have a rather symmetric distribution without
many outliers. This is also the only dataset that KNN gives
similar performance on training and test sets.

Similar to Ovarian, Madelon dataset also has a symmetric
distribution. However, GP and SVM have very di↵erent
behaviours in this dataset. While GP has nearly the same
classification accuracies on training and test sets with about
63%, SVM achieve 100% accuracy on training set but only
about 50% in test set. By plotting the relationship between

Figure 2: Feature X95735 at and D42043 at

Figure 3: D13637 at and D78611 at

features of these two datasets in Figure 7 and Figure 8, we
find that Ovarian features are more correlated to each other
(about 0.4 to 0.6) than Madelon features (about 0.01 to
0.03). This indicates that for non-linear data GP can work
better than libSVM which is a linear classification algorithm.
A↵ected by this overfitting problem, SVM has the poor-

est test performance on most of the datasets. However, only
one constructed feature can significantly improve its perfor-
mance on 6 datasets while other created subsets can not.
This can be explained by looking at the distribution of the
constructed feature. Figure 9 shows the boxplot of the con-
structed features and its four original base features. Com-
pared to the original features, the constructed feature has
a much better distribution without outliers. Therefore, the
overfitting problem may be alleviated in the transformed
dataset using this constructed feature.

6. CONCLUSIONS AND FUTURE WORK
In general, results show that GP constructed features can

improve the performance of kNN, SVM and GP classifiers
on high-dimensional problems. Using only the constructed
feature, SVM achieve a higher accuracies than using all fea-
tures and other created subsets in most datasets. Among
the six created subsets, the construct feature and the termi-
nal features achieve the highest performance in GP. The last
four subsets achieve similar performance in kNN and SVM
on all datasets.
Analysis of the constructed feature shows that by choos-

ing informative features, GP can construct new features
which have higher discriminating ability than original fea-
tures. The big di↵erence between training and test sets on
most of the datasets indicates the problem of overfitting. By
analysing the datasets, we found that this problem occurs
when the data has a skewed distribution with many out-
liers. GP also shows its ability to alleviate the problem of

5.2 The constructed feature
To see why SVM can improve its performance by using

only one constructed feature, we pick the best constructed
feature in one GP run on Leukemia dataset to analyse.
Figure 1 shows this GP tree with the the size of ten and
constructing a new feature based on four original features:
D13637 at, D42043 at, D78611at and X95735 at. The val-
ues of these four selected features are plotted in Figure 2 to
Figure 3. Among these features, X95735 at has the least
number of overlapping values between two classes. How-
ever, by combining these features, the constructed feature
can split di↵erent instances in di↵erent classes into two com-
pletely separate intervals. Figure 4 shows the feature values
created by this constructed feature and a similar constructed
feature for DLBCL GEMS dataset. The result shows that
GP has the ability to select informative features to build
high-level features with a higher discriminating ability.
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5.3 Overfitting problem
To analyse the overfitting problem, we choose Colon, the

smallest dataset, to have a closer look at the distribution of
each feature. Figure 5 shows the boxplot of the first 100 fea-
tures of Colon dataset. We can see that all of these features
have a skewed distribution. Each feature also has many out-
liers scattering far away from its mean value. In the experi-
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constructed feature. Figure 9 shows the boxplot of the con-
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a much better distribution without outliers. Therefore, the
overfitting problem may be alleviated in the transformed
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the six created subsets, the construct feature and the termi-
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which have higher discriminating ability than original fea-
tures. The big di↵erence between training and test sets on
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when the data has a skewed distribution with many out-
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Figure 1 shows this GP tree with the the size of ten and
constructing a new feature based on four original features:
D13637 at, D42043 at, D78611at and X95735 at. The val-
ues of these four selected features are plotted in Figure 2 to
Figure 3. Among these features, X95735 at has the least
number of overlapping values between two classes. How-
ever, by combining these features, the constructed feature
can split di↵erent instances in di↵erent classes into two com-
pletely separate intervals. Figure 4 shows the feature values
created by this constructed feature and a similar constructed
feature for DLBCL GEMS dataset. The result shows that
GP has the ability to select informative features to build
high-level features with a higher discriminating ability.
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5.3 Overfitting problem
To analyse the overfitting problem, we choose Colon, the

smallest dataset, to have a closer look at the distribution of
each feature. Figure 5 shows the boxplot of the first 100 fea-
tures of Colon dataset. We can see that all of these features
have a skewed distribution. Each feature also has many out-
liers scattering far away from its mean value. In the experi-
ment, Colon is divided into 10 folds each of which has about
6 instances. Therefore, there is a very high chances that
the distributions of the training and the test folds are very
di↵erent. As a result, the constructed or selected features
based on the training fold can not be generalised to correctly
predict the unseen data in the test fold. This may be the
reason why the training and test accuracies are so di↵er-
ent. This explanation is concordant to the result of Ovarian
dataset where both SVM and GP achieve similar perfor-
mance on training and test sets. The boxplot of the first
one hundred features of this dataset in Figure 6 shows that
these features have a rather symmetric distribution without
many outliers. This is also the only dataset that KNN gives
similar performance on training and test sets.

Similar to Ovarian, Madelon dataset also has a symmetric
distribution. However, GP and SVM have very di↵erent
behaviours in this dataset. While GP has nearly the same
classification accuracies on training and test sets with about
63%, SVM achieve 100% accuracy on training set but only
about 50% in test set. By plotting the relationship between
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features of these two datasets in Figure 7 and Figure 8, we
find that Ovarian features are more correlated to each other
(about 0.4 to 0.6) than Madelon features (about 0.01 to
0.03). This indicates that for non-linear data GP can work
better than libSVM which is a linear classification algorithm.
A↵ected by this overfitting problem, SVM has the poor-

est test performance on most of the datasets. However, only
one constructed feature can significantly improve its perfor-
mance on 6 datasets while other created subsets can not.
This can be explained by looking at the distribution of the
constructed feature. Figure 9 shows the boxplot of the con-
structed features and its four original base features. Com-
pared to the original features, the constructed feature has
a much better distribution without outliers. Therefore, the
overfitting problem may be alleviated in the transformed
dataset using this constructed feature.

6. CONCLUSIONS AND FUTURE WORK
In general, results show that GP constructed features can

improve the performance of kNN, SVM and GP classifiers
on high-dimensional problems. Using only the constructed
feature, SVM achieve a higher accuracies than using all fea-
tures and other created subsets in most datasets. Among
the six created subsets, the construct feature and the termi-
nal features achieve the highest performance in GP. The last
four subsets achieve similar performance in kNN and SVM
on all datasets.
Analysis of the constructed feature shows that by choos-

ing informative features, GP can construct new features
which have higher discriminating ability than original fea-
tures. The big di↵erence between training and test sets on
most of the datasets indicates the problem of overfitting. By
analysing the datasets, we found that this problem occurs
when the data has a skewed distribution with many out-
liers. GP also shows its ability to alleviate the problem of
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• Feature distribution

GP for FS and FC

Figure 4: Constructed Features

Figure 7: Ovarian feature correlation

overfitting by constructing new high-level features with bet-
ter distribution than the original skewed features. However,
the number of features constructed by one best individual is
still too small to be representative for the whole feature set
with a large number of features. Increasing the number of
constructed features may further improve the performance
of these learning algorithms on high-dimensional data. Our
future work will focus on this direction.
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Feature Clustering for 
GP-Based FC on High-Dimensional Data
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Binh Ngan Tran, Bing Xue, Mengjie Zhang. "Using Feature Clustering for GP-Based Feature Construction on High-Dimensional Data". Proceedings 
of the 20th European Conference on Genetic Programming (EuroGP 2017). Lecture Notes in Computer Science. Vol. 10196. Amsterdam. 18-21 April 
2017. pp.210--226.

Eliminating redundant features may improve GP performance in FC • Results of cluster analysis 

5.5. FURTHER ANALYSIS 171

Table 5.6: Results of cluster analysis

Dataset #Features #Clusters
%Dimensionality

reduction
ASC

Colon 2000 104.10 0.95 0.80
DLBCL 5469 819.20 0.85 0.96
Leukemia 7129 901.30 0.87 0.98
CNS 7129 79.30 0.99 1.00
Prostate 10509 1634.80 0.84 0.85
Ovarian 15154 601.20 0.96 0.31
Alizadeh 1095 93.60 0.91 0.94
Yeoh 2526 97.60 0.96 1.00

the experiments were conducted based on a 10-fold CV framework on each
dataset, the average of ASC over 10 folds was calculated. Table 5.6 shows the
original number of features, the average number of clusters generated with
the redundancy level of 0.9, the percentage of dimensionality reduction, and
the average of ASC over 10 folds of each dataset.

As can be seen from the fourth column of Table 5.6, all datasets obtained
at least 84% of dimensionality reduction after applying the proposed feature
clustering algorithm. The number of input features into GP was significantly
reduced with the largest reduction of 99% on CNS and 96% on Ovarian and
Yeoh. The third column of Table 5.6 also showed di�erences in the number
of clusters generated on di�erent datasets regardless of its original number
of features. For example, CNS had a much smaller number of clusters than
Colon although its original feature set size was more than three times larger
than Colon. This again confirms that it is very di�cult to predefine an
appropriate number of clusters for each dataset to maintain a certain level of
redundancy among all features in the same cluster.

Results of the silhouette coe�cients shown in the last column of the table
were 0.8 or above on all datasets except for Ovarian. This indicates that the
clusters generated by RFC were compact and separated. Only on Ovarian,
this coe�cient was low. An investigation on this dataset showed that most

Feature Clustering for 
GP-Based FC on High-Dimensional Data
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Figure 5.5: Leukemia constructed feature.

of the features in this dataset have their correlation coe�cient with other
features higher than 0.5. Therefore, features in di�erent clusters might still
be highly correlated but with a lower level than the predefined threshold (0.9).
However, even though its silhouette coe�cient was low (0.31), the results of
this dataset shown in Table 5.2 revealed that the feature clustering method
enabled the constructed feature to perform significantly better than the one
constructed from the whole feature thanks to the significant reduction of 96%
in dimensionality.

5.5.2 The Constructed Features

This section investigates the reason why the constructed and selected features
can achieve good performance by showing a constructed feature by a GP run
on a dataset as a typical example. Leukemia was chosen because the size
of the constructed feature (or GP tree size) on this dataset is smaller than
others. This is also a challenging dataset as can be seen from its results in
Tables 5.2 and 5.3.

Figure 5.5 shows the GP tree of the constructed feature and its values
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Figure 5.6: Leukemia original features.

returned by CGPFC in the run of seed 1 on fold 5 of the Leukemia dataset.
It was constructed from four original features, which are feature M19507_at,
X61587_at, U09087_s_at, and U82759_at whose values are plotted in Figure
5.6. Note that this dataset has two classes of leukemia patients, namely acute
lymphoblastic leukemia (ALL) or acute myelogenous leukemia (AML).

It can be seen from these scatter plots in Figure 5.6 that the selected
features had low impurity or high correlation to the class labels. Specifically,Hybrid GAs-GP Representation for FS and FC

• A combination of the vector and 
tree-based representations.

• The high-level feature and selected 
original features are evaluated as 
one feature set, which ensures to 
consider the interactions between 
two kinds of features.

Hoai Bach Nguyen, Bing Xue, and Peter Andreae. "A Hybrid GA-GP Method for Feature Reduction in Classification". 
Proceedings of the 11th International Conference on Simulated Evolution and Learning (SEAL 2017). Lecture Notes 
in Computer Science. Vol. 10593. Shenzhen, China. November 10-13, 2017. pp. 591-604.

Multi-objective GP for FC and FS

Nag, Kaustuv, and Nikhil R. Pal. "Feature Extraction and Selection for Parsimonious Classifiers with Multiobjective Genetic 
Programming." IEEE Transactions on Evolutionary Computation (2019).

• c-class problem into c binary classification problems 

• evolve c sets of binary classifiers employing a steady-
state multi-objective GP with three minimizing 
objectives. 
- (i) false positives (FPs), 
- (ii) false negatives (FNs),
- (iii) the number of leaf nodes of the corresponding 

encoding tree. 

• Each binary classifier is composed of a binary tree and 
a linear support vector machine (SVM) 

• During crossover and mutation, the SVM-weights are 
used to determine the usefulness of the corresponding 
nodes 
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Multi-objective GP for FC and FS

Nag, Kaustuv, and Nikhil R. Pal. "Feature Extraction and Selection for Parsimonious Classifiers with Multiobjective Genetic 
Programming." IEEE Transactions on Evolutionary Computation (2019).

•

GP for FC in Clustering: Multi-Tree

• Each tree creates a single constructed feature.

• Each individual contains t trees, to give t constructed features.

Andrew Lensen, Bing Xue, and Mengjie Zhang. "New Representations in Genetic Programming for Feature 
Construction in k-means Clustering". Proceedings of the 11th International Conference on Simulated Evolution 
and Learning (SEAL 2017). Lecture Notes in Computer Science. Vol. 10593. Shenzhen, China. November 10-
13, 2017. pp. 543--555.

GP Representation – Vector
• Having to set t is annoying. Can we use a single tree?
• Introduce a new concat operator which can create vectors of 

CFs.
- Automatically build up a suitable length vector.
- Extend the function set to work on vectors.

Example output gives 4 features:
[min(0.63,F23), F37/0.59, F86, F85]

• However, each tree must be larger.

Andrew Lensen, Bing Xue, and Mengjie Zhang. "New Representations in Genetic Programming for Feature 
Construction in k-means Clustering". Proceedings of the 11th International Conference on Simulated Evolution 
and Learning (SEAL 2017). Lecture Notes in Computer Science. Vol. 10593. Shenzhen, China. November 10-
13, 2017. pp. 543--555.

• GP for image ananlysis: evolve image descriptors

• Keypoints identification, feature extraction, feature
construction/selection
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• The traditional way
• Domain-specific pre-extracted features approach (DS-GP)

Image Recognition/Classification

The input is raw image pixel values

The feature areas need to be designed by 
domain-experts

Transform the pixel values of the 
selected areas to a different domain

Select a subset out of the extracted 
features (optional)

Feed the extracted features (with or 
without selection) to GP-based classifier

GP for Image Classification

8.2 The Proposed Approach 189

8.2.1 Individual Representation

GP has a tree-based representation, which is known for variable lengths of evolved
solutions. The individual representation of the proposed FELGP approach is based
on STGP [22], where each function has input and output types, and each terminal
has an output type. To define the type constraints, a new program structure is de-
veloped, as shown in Fig. 8.2. The new program structure has the input, filtering
& pooling, feature extraction, concatenation, classification, combination, and output
layers. Each layer except for the input and output layers has di�erent functions for
di�erent purposes. The input layer represents the input of the FELGP system, such
as the terminals. The filtering & pooling layer has filtering and pooling functions,
which operate on images. The feature extraction layer extracts informative features
from the images using existing feature extraction methods. The concatenation layer
concatenates features produced by its children nodes into a feature vector. The fil-
tering & pooling, feature extraction and concatenation layers belong to the process
of feature learning, where informative features are learned from raw images. The
learned features can be directly fed into any classification algorithm for classifica-
tion. Therefore, a classification layer is connected with the concatenation layer. The
classification layer has several classification functions that can be used to train the
classifiers using the learned features. The combination layer has several combination
functions to combine the outputs of the classification functions. The classification
and combination layers belong to the process of ensemble learning, where the clas-
sification functions are selected and trained, and the outputs of the classifiers are
combined. Finally, the output layer performs the plurality voting on the outputs
produced by the combination layer to obtain the combined predictions.
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Fig. 8.2 The new program structure of FELGP and an example solution/program that can be
evolved by FELGP

Compared with the program structure of the EGP method [3], the new program
structure of the FELGP approach has one more layer, i.e., the feature extraction layer.

Y. Bi, B. Xue and M. Zhang, "Genetic Programming With a New Representation to Automatically Learn Features 
and Evolve Ensembles for Image Classification," in IEEE Transactions on Cybernetics, vol. 51, no. 4, pp. 1769-1783, 
April 2021, doi: 10.1109/TCYB.2020.2964566.
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July 2016 Biological Datasets

Data set # Features # Samples # Classes

Pancreatic 
Cancer 6771 181 2

Ovarian Cancer1 15154 253 2

Ovarian Cancer 
2 15000 216 2

Prostate Cancer 15000 322 4

Toxpath 7105 115 4

Arcene 10,000 200 2

Apple-plus 773 40 4

Apple-minus 365 40 4

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016 Biomarker Identification

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and Classification 
using Genetic Programming". Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 2014). ACM Press. 2014.pp.249—256
Soha Ahmed, Genetic Programming for Biomarker Detection in Classification of Mass Spectrometry Data, PhD thesis, 2015, School of Engineering 
and Computer Science, Victoria University of Wellington, New Zealand

m/z values in Apple-plus data 
set (12 biomarkers)

New Method (9 ✓
) 

Method 2 (3✓)

331.21 ✗ ✓
471.09 ✓ ✓

107.05, 169.05, 238.05, 275.09, 45
6.11, 459.13

✓ ✗

456.62, 475.10 ✗ ✗
449.11 ✓ ✓
229.09 ✓ ✗

Apple minus m/z (5 
biomarkers)

New Method (5 ✓ ) Method 2 (2✓)

463.0 ✓ ✗
447.09 ✓ ✓
273.03 ✓ ✓
435.13 ✓ ✗
227.07 ✓ ✗
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• Multi-objective:
- visualizations quality; 
- visualizations complexity; 

• Based on t-distributed Stochastic 
Neighbor Embedding (t-SNE) 

GP for FS/FC for Visualisations

Andrew Lensen, Mengjie Zhang, and Bing Xue. "Genetic Programming for Evolving a Front of Interpretable Models for Data 
Visualization", IEEE Transactions on Cybernetics, vol. , Issue. , pp. ,. Online 21 Feb 2020

GP for FS/FC for Visualisations
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
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Fig. 11. Complexity of 13.

Fig. 12. Complexity of 19.

feature set, yet they are able to separate three classes of the
dataset well. In particular, the blue, red, and purple classes can
be separated out by drawing two vertical lines through the plot.
In other words, two thresholds can be applied to the output of
the top tree (x-axis) in order to roughly separate the classes
into three groups: 1) red; 2) orange and green; and 3) purple
and blue. Given that all features have the same range of [0, 1]

Fig. 13. Complexity of 26.

Fig. 14. Complexity of 33.

and the only feature subtracted in the tree is f21, this suggests
that the blue and purple classes have particularly small fea-
ture values for f21 (as they have high x values), and the red
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Fig. 11. Complexity of 13.

Fig. 12. Complexity of 19.

feature set, yet they are able to separate three classes of the
dataset well. In particular, the blue, red, and purple classes can
be separated out by drawing two vertical lines through the plot.
In other words, two thresholds can be applied to the output of
the top tree (x-axis) in order to roughly separate the classes
into three groups: 1) red; 2) orange and green; and 3) purple
and blue. Given that all features have the same range of [0, 1]

Fig. 13. Complexity of 26.

Fig. 14. Complexity of 33.

and the only feature subtracted in the tree is f21, this suggests
that the blue and purple classes have particularly small fea-
ture values for f21 (as they have high x values), and the red
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Fig. 15. Complexity of 59.

class has particularly large values (as it has low x values). f21
in the Dermatology dataset corresponds to the “thinning of
the suprapapillary epidermis” feature, which is a feature com-
monly associated with the skin condition of psoriasis [39]. In
the visualization in Fig. 11, the red class corresponds to a diag-
nosis (class label) of psoriasis—and indeed, the red instances
appear on the left side of the plot, which is consistent with
having a high value of f21 being subtracted from the rest of
the tree. This sort of analysis can be used by a clinician to
understand that this feature alone could be used to diagnose
psoriasis with reasonable accuracy, and also provides greater
confidence in the visualization’s accuracy.

When the model complexity is increased to 19 (Fig. 12),
the separation of points within classes starts to become better-
defined, and the orange class starts to become more distinct
from the yellow and green classes. The top tree actually uses
fewer unique features (three) than at a complexity of 13, with
significant weight put on f32: x = 4nf 32+f32+2nf 14+nf 3+f3,
whereas the bottom tree uses four unique features: y = nf 20 +
f20 + nf 19 + f19 + nf 8− nf 27, again for a total of seven unique
features across both trees. The blue class (“lichen planus”) is
clearly distinct from the other classes along the x-axis—given
that the top tree weights f32 heavily, it seems likely that a high
value of this feature is characteristic of the “lichen planus”
diagnosis. Indeed, the dermatology literature commonly
reports on this symptom being indicative of this diagnosis [39].

The trees shown in Fig. 13 appear very similar to the
previous model, with the top tree varying only by the omission
of one nf14 node, and the introduction of the subtraction of the

Fig. 16. Complexity of 104.

nf8 feature. This is, however, sufficient to cause some of the
orange points to be separated from the yellow and green points
along the x-axis—indicating that higher values of nf8 may indi-
cate a point belongs to the orange class rather than the yellow
one. The major change in the bottom tree is the introduction
of the nf21 and nf6 features, which helps to compact the blue
class and starts to separate the red class more strongly.

Fig. 14 further pushes the blue class away from the other
classes at the expense of squashing the other classes together.
This is achieved by making the top tree (x-axis) weight f3
and f32 even more strongly. It is interesting to note that all
the trees analyzed so far have been strictly linear functions,
utilizing only arithmetic and subtraction. This is perhaps not
unexpected: utilizing more sophisticated functions is likely
to require complex trees to fully take advantage of them—
for example, taking the maximum of two simple subtrees is
unlikely to be more representative of the original dataset than
simply adding together features. This also has the benefit of
making the simpler trees easier to interpret and understand.
While there are many methods for doing linear transformations
for visualization, such as the PCA, these methods generally
function by weighting all features to different extents; the
GP-tSNE only selects a subset of features to be used, and
so is inherently more interpretable. The sequential analysis
of increasingly more complex models clearly provides addi-
tional insight that would be lacking in a nonmultiobjective
approach. This analysis technique is also an exclusive benefit
of GP-tSNE among other visualization techniques which are
primarily black boxes with one visualization produced per run.

B. Complex Models

From here, the improvement in quality with the addition
of more complexity begins to show clear diminishing returns,
with the cost decreasing by only about 0.1 as the complexity
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July 2016 Feature Selection/Construction Bias

• If the whole dataset is used during FS/FC process, the 
experiments(or evaluation) have FS/FC Bias

• What if only a small number of instances available ?
- In classification, use k-fold cross validation 
- How to use k-fold cross validation in FS/FC to evaluate a FS/FC 

system ?

Feature 
Selection

GECCO,Dever, 
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July 2016

• Many works on bio-data containing feature selection 
- which leads to biased results
- conclusion might change 

Feature Selection Bias
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Figure 4. Structures of experiments with and without feature selection bias.

the index of the features, where the index of the features are listed in a descending order
by their frequency. It would be much more interesting to discover the biological finding
of these genes, but since the original meanings of the features/genes in GEMS are not
given, it is impossible to perform such research. In the future, we intend to collaborate with
researchers from biology to deep analyse the biological finding of the selected genes.

4.6. Further discussions

In this section, the re-substitution estimator was used to evaluate the performance of
the feature selection algorithms, which is the same as in Chuang et al. (2008) and many
other existing papers (Abedini et al., 2013; Ahmed et al., 2012; Alba et al., 2007; Babaoglu
et al., 2010; Huang et al., 2007; Mishra et al., 2009; Mohamad et al., 2011, 2013; Santana
et al., 2010; Shen et al., 2007; Yu et al., 2009). The re-substitution estimator, in other words,
means the whole dataset is used during the evolutionary feature selection process (as
shown in Figure 4(a)). There is no separate unseen data to test the generality of the selected
features. According toAmbroise andMcLachlan (2002), there is a feature selectionbias issue
here, so one cannot claim that the selected features can be used for future unseen data.

Feature selection bias typically happens when the dataset includes only a small number
of instances, especially on the gene expression data, where n-fold CV (10-CV) or LOOCV is
needed. Figure 4 compares the structures experiments with and without feature selection
bias. It can be seen that with selection bias, the algorithm reports the classification per-
formance of the (inner) CV loop and “such results are optimistically biased and are a subtle
meansof trainingon the test set” (Kohavi and John, 1997). Therefore, the conclusionsdrawn
from the re-substitution estimator with selection bias may be different from that without
bias. This, however, has not been seriously investigated in EC for gene selection.

5. Experiment II

In this section, the second set of experiments have been conducted, where the feature
selection bias issue is removed.

5.1. Performance evaluation

To avoid feature selection bias and compare the performance of the algorithms with and
without bias, the second set of experiments without feature selection bias have been

Binh Tran, Bing Xue and Mengjie Zhang. "Genetic Programming for Feature Construction and Selection in 
Classification on High-dimensional Data", Memetic Computing, vol 8, Issue 1, pp3-15. 2016
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• 3-CV as an inner loop to evaluate each feature subset 

• In each evaluation to get :
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GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

• Large Search space:
- Large search space: bit-string/vector with a length equal to the 

total number of features 
- Classification accuracy or existing filter measures in the fitness 

function, which often cannot lead to a smooth fitness landscape 
or with low locality 

• Long computational time
- A large number of evaluations 
- Wrapper: each evaluation involves a learning process of a 

machine learning or data mining algorithm 
- Filters are computationally cheaper than wrappers 

• Poor scalability
- the dimensionality of the search space often equals to the total 

number of features, thousands, or even millions
- the number of instances is large 

Weakness and Issues 

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016 Weakness and Issues 

• Feature selection or construction bias issue

• Generalisation issue
- especially wrappers: selected or constructed features can 

easily overfit the wrapped learning algorithm and the 
training data, leading to poor performance on unseen test 
data

- Feature construction

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016 Future Directions

• Fitness function:
- reduce the computational cost, 
- smooth the landscape of the search space, 
- improve the learning and generalisation performance, and 
- efficient and effective filter measure
- hybridise wrapper and filter measures
- Surrogate models 

• Representation 
- Reduce the search space
- Incorporate more information of about the features, e.g.

relative importance of features, feature interactions or feature 
similarity 

- Embedded feature selection or construction
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GECCO,Dever, 
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July 2016 Future Directions

• Search mechanism 
- Combinatorial optimisation
- Memetic computing 
- Large-scale optimisation
- Adaptive parameter control techniques 

• Multi-objective feature selection or feature construction
- How to keep non-dominated solutions
- Objective space, solution space and search space
- Distance measure, e.g. crowding distance
- How to maintain archive set

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016 Future Directions

• Explainable machine learning:
- increase the interpretability/understandability of the obtained 

feature set 
- Simple models via feature selection/construction

• Feature construction 
- Construct multiple features
- both feature selection and feature construction

• Transfer learning/Multi-tasking via or for feature selection
and/or construction

• Instance selection and construction 

• Combining EC with machine learning approaches 

• Feature selection and feature construction for other machine
learning tasks: clustering, regression, text mining, etc.

GECCO,Dever, 
Colorado, USA. 20-24 
July 2016

Thank you 
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