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Bing Xue is a currently a Professor in Computer Science and Program Director
of Science in School of Engineering and Computer Science at VUW. She has
over 300 papers published in fully refereed international journals and
conferences and her research focuses mainly on evolutionary computation,
feature selection, feature construction, machine learning, classification, symbolic
regression, evolving deep neural networks, image analysis, transfer Iearnin%
multi-objective machine learning. Dr Xue is currently the founding Chair of IEEE
Computational Intelligence Society (CIS) Task Force on Evolutiona[}/ Feature
Selection and Construction, Vice-Chair of IEEE CIS Task Force on Transfer
Learning & Transfer Optimization, Vice-Chair of IEEE CIS Task Force on
Evolutionary Deep Learning and Applications. She is also served as associate
editor of several international journals, such as IEEE Transactions on Al, IEEE
Computational Intelligence Magazine and IEEE Transactions on Evolutionary
Computation.
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Distinguished Lecturer. He is Professor of Computer Science at the School of
Engineering and Computer Science, Victoria University of Wellington, New Zealand.
His research is mainly focused on evolutionary computation, particularly genetic
programming, evolutionary deep and transfer learning, image analysis, feature
selection and reduction, and evolutionary scheduling and combinatorial optimisation.
He has published over 600 academic papers in refereed international journals and
conferences. He is currently an associate editor for over ten international journals (e.g.
IEEE TEVC, ECJ, ACM TELO, IEEE TCYB, and IEEE TETCI). He has been serving as
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international conferences. He is a reviewer of research grants for many
countries/regions (e.g. Canada, Portugal, Spain, Germany, UK, Netherland, Austria,
Mexico, Czech, Italy, HK, Australia, NZ).
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e Feature Selection and Feature Construction

e Evolutionary Computation (EC) for Feature

Selection and Feature Construction
e Evolutionary Feature Selection Methods
e Evolutionary Feature Construction Methods

e Issues and Challenges

Gecci \

Data set (Classification) — Example 1

GECC

Credit card application:

e 7 applicants (examples/instances/observations)

e 2 classes: Approve, Reject
o 3 features/variables/attributes

Job Saving Family
Applicant 1 true high single
Applicant 2 false high couple
Applicant 3 true low couple
Applicant 4 true low couple
Applicant 5 true high children
Applicant 6 false low single
Applicant 7  true high single

Class
Approve
Approve

Reject
Approve
Reject
Reject
Approve
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What is a good feature?

GGCCiS"

What is a good feature?

GGCCiS"

What is a good feature?

Feature Selection and Feature Construction "“;"L@

e Feature selection aims to
pick a subset of relevant
features to achieve similar
or better classification
performance than using all

features.

e Feature construction is to
construct new high-level
features using original
features to improve the
classification performance.

" Original |
| Features | " Selected |
Features
Feature 1
Feature2 Feature xi
Feature 3 )
) Feature Selection ' Feature xz
. Learning
Algorithm
Feature n-2 Feanire N
Feature n-1 "
Feature n
Original and
Original Constructed
Features Features
Feature 1 Feature 1
Feature 2 Feature 2
Feature 3 . Feature 3
Feature Construction
) . | Learning
| Algorithm
Feature n-1 Feature n-1
Feature n Feature n
Feature n+1

E.g. Feature n+1 = Feature 1 + Feature 2 *Feature 3 - Feature 4
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Increasingly Popular Topic

Popular Articles

A Fast And Elitist Multiobjective Genetic Algorithm: NSGA-II
K. Deb; A. Pratap; S. Agarwal; T. Meyarivan

Latest Published Articles

NSGAII

An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based

Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints NSGAIII
Kalyanmoy Deb; Himanshu Jain
MOEA/D: A Multiobjective Evolutionary Algorithm Based On Decomposition MOEA/D

Qingfu Zhang; Hui Li

A Survey On Evolutionary Computation Approaches To Feature Selection
Bing Xue; Mengjie Zhang; Will N. Browne; Xin Yao

A Coevolutionary Framework For Constrained Multiobjective Optimization Problems
Ye Tian; Tao Zhang; Jianhua Xiao; Xingyi Zhang; Yaochu Jin

Most Contributed Paper to
2018 IF of TEVC
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Feature Selectj \onary Computat
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Public Lecture
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' (2017) 34 Citations
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Why Feature Selection ?

“Curse of the dimensionality”

- Large number of features: 100s, 1000s, even
millions

Not all features are useful (relevant)

Redundant or irrelevant features may reduce the
performance (e.g. classification accuracy)

Costly: time, memory, and money

Feature selection

- to select a small subset of relevant features from
the original large set of features in order to
maintain or even improve the performance

Gecci \

Why Feature Construction?

e The quality of input features can drastically affect the learning
performance.

e Even if the quality of the original features is good,
transformations might be required to make them usable for
certain types of classifiers.

e Feature construction does not add to the cost of extracting
(measuring) original features; it only carries computational
cost.

e In some cases, feature construction can lead to
dimensionality reduction or implicit feature selection.
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What can FS/FC do ?

Gecci

Reduce the dimensionality (No. of features)
Improve the (classification) performance
Simplify the learnt model

Speed up the processing time

Help visualisation

Improve interpretability and explainablity

Reduce the cost, e.g. save memory

and ?

Challenges in FS and FC .ic

e Large search space: 2" possible feature subsets
- 1990: n< 20
- 1998: n<=50
- 2007: n = 100s
- Now: 1000s, 1 000 000s
e Feature interaction

- Relevant features may become redundant

- Weakly relevant or irrelevant features may
become highly useful

e Slow processing time, or even not possible

¢ Multi-objective Problems

General FS/FC System

Gecci

Training : Evolutionary Feature Constructed/Selec
Set 7 Selection/Construction > ted Feature(s)
I

A4

Unseen o Data
Test Set "| Transformation
___________ [ L
|\ -- - - ----"=-"=-""- |
: Transformed :
! Training Set I
Classification | _ Classification : i
Performance | Algorithm : i
I Transformed |
: Test Set !
|

Gecci

Feature FS/FC Process

¢ On training set:

N}

P Constructed/Selected Features
Initialization —
Feature(s)

evaluation

3

» Evaluate feature
subsets by an

evaluation criterion
(fitness function)

Ye
Selected
feature subset

* Responsible by a search
mechanism

* Generate promising

feature subset

candidates
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= ECC .
Feature Selection Approaches Feature Selection Approaches "«
e Based on Evaluation ——— learning algorithm . Generally:
- Three categories: Filter, Wrapper, Embedded
- Hybrid (Combined): commonly wrapper + filter
Filter
orgrna Evaluaton [y 2k
Features (Measure)
Wrapper
Fairs e = Foas
.. Learnt Classifier
Original Embedded Method
——{ st o
GECC{ \\ ECC

Feature Selection

Feature Selection Approaches 4

e Conventional approaches

- The Relief algorithm

- The FOCUS algorithm

- Sequential forward/backward floating selection
- Statistical feature selection methods

- Sparsity based feature selection methods

e Evolutionary Computation (EC) based approaches

Li, J., Guo, R, Liu, C., & Liu, H. (2019, July). Adaptive unsupervised feature selection on attributed networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 92-100).

Feng, Chao, Chao Qian, and Ke Tang. "Unsupervised feature selection by pareto optimization.” In Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 3534-3541. 2019.

Tang, Chang, Xinwang Liu, Xinzhong Zhu, Jian Xiong, Miaomiao Li, Jingyuan Xia, Xiangke Wang, and Lizhe Wang. "Feature selective
projection with low-rank embedding and dual Laplacian regularization.” IEEE Transactions on Knowledge and Data Engineering (2019).
Li, Yun, Tao Li, and Huan Liu. "Recent advances in feature selection and its applications.” Knowledge and Information Systems 53.3 (2017):
551-577.

Cheng, Kewei, Jundong Li, and Huan Liu. "FeatureMiner: a tool for interactive feature selection.” Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management. ACM, 2016.

Zhai, Yiteng, Yew-Soon Ong, and Ivor W. Tsang. "The Emerging" Big Dimensionality"." IEEE Computational Intelligence Magazine 9.3
(2014): 14-26.

Gui, J., Sun, Z.,Ji, S., Tao, D., & Tan, T. Feature selection based on structured sparsity: A comprehensive study. IEEE transactions on neural
networks and learning systems, 28(7), (2017): 1490-1507.

Zhai, Yiteng, Yew-Soon Ong, and Ivor W. Tsang. "Making trillion correlations feasible in feature grouping and selection." IEEE
transactions on pattern analysis and machine intelligence 38.12 (2016): 2472-2486.
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i Why Evolutionary Computation ? i‘

e Don't need domain knowledge
e Don’t make any assumption
- e.g. differentiable, linearity, separability, equality
e Easy to handle constraints
e EC can simultaneously build model structures
and optimise parameters

e Population based search is particularly suitable
for multi-objective optimisation

Gecci

EC for Feature Selection

e EC Paradigms
e Evaluation

¢ Number of Objectives

‘ Evolutionary Feature Selection ‘

Evaluation

EC Paradigms Number of Objectives

Swarm
Intelligence

Xue, Bing, Mengjie Zhang, Will N. Browne, and Xin Yao. "A survey on evolutionary computation approaches to feature
selection." IEEE Transactions on Evolutionary Computation20, no. 4 (2016): 606-626.

Gecci

e Particle swarm optimisation (PSO), ant colony optimisation(ACO)

EC for Feature Selection

e Genetic algorithms (GAs), Genetic programming (GP)

« Differential evolution (DE), memetic algorithms, learning
classifier systems (LCSs)

EC Paradigms

Evolutionary Swarm
Algorithms Intelligence Others
. | | LCSs, ES,
‘ GAs ‘ GP ‘ ‘ PSO ‘ ‘ ACO ‘ ‘ DE ‘ Memetic ABC, et al.

Xue, Bing, Mengjie Zhang, Will N. Browne, and Xin Yao. "A survey on evolutionary computation approaches to feature
selection."” IEEE Transactions on Evolutionary Computation20, no. 4 (2016): 606-626.

EC for Feature Selection

Gecci

Evaluation
A J
Filter Wrapper Combined
Approaches Approaches Approaches
Filter Approaches

Distance
Measure

Correlation
Measure

Fuzzy Set
Theory

Rough Set
Theory

Information
Measure

Consistency
Measure

Xue, Bing, Mengjie Zhang, Will N. Browne, and Xin Yao. "A survey on evolutionary computation approaches to feature
selection." IEEE Transactions on Evolutionary Computation20, no. 4 (2016): 606-626.
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A General Approach
[ Population | .
Initialisation Representation
Fitness/Objective :
. Evaluate fitness
function

No Generate new

Stop ? population

Yes|

Return the best
solution(s)

Search /updating

mechanism

GECC

GAs for Feature Selection

Over 25 years ago, first EC techniques

- Filter, Wrapper, Single Objective, Multi-objective
e Representation
- Binary string

DL oo [ [ ]

e Search mechanisms
- Genetic operators
Multi-objective feature selection

Scalability issue

R. Leardi, R. Boggia, and M. Terrile, “Genetic algorithms as a strategy for feature selection,” Journal of Chemometrics, vol. 6, no. 5, pp. 267—
281, 1992.

Ishibuchi, Hisao, and Tomoharu Nakashima. “Multi-objective pattern and feature selection by a genetic algorithm.” In GECCO, pp. 1069-
1076. 2000.

Z.Zhu, Y.-S. Ong, and M. Dash, “Markov blanket-embedded genetic algorithm for gene selection,” Pattern Recognition, vol. 40, no. 11,pp.
3236-3248, 2007.

W. Sheng, X. Liu, and M. Fairhurst, “A niching memetic algorithm for simultaneous clustering and feature selection,” IEEE Transactions on
Knowledge and Data Engineering, vol. 20, no. 7, pp. 868-879, 2008.

Xue, Bing, Mengjie Zhang, Will N. Browne, and Xin Yao. “A survey on evolutionary computation approaches to feature selection.” IEEE
Transactions on Evolutionary Computation, 20, no. 4 (2016): 606-626.

Tao, Zhou, Lu Huiling, Wang Wenwen, and Yong Xia. "GA-SVM based feature selection and parameter optimization in hospitalization
expense modeling." Applied Soft Computing 75 (2019): 323-332.

GECC

GP for Feature Selection

o Implicit feature selection
- Filter, Wrapper, Single Objective, Multi-obijective

¢ Embedded feature selection

e Feature construction

e Computationally expensive Feature 4 Feature 5

/

M. G. Smith and L. Bull, “Genetic programming with a genetic algorithm for feature construction and selection,” Genetic
Programming and Evolvable Machines, vol. 6, no. 3, pp. 265-281, 2005.

B. Tran, B. Xue, M. Zhang. "Class Dependent Multiple Feature Construction Using Genetic Programming for High-Dimensional
Data". Proceedings of the 30th A12017,LNCS. Vol. 10400. Springer. Melbourne, Australia, August 19-20th, 2017. pp. 182-194.
Viegas, Felipe, et al. "A Genetic Programming approach for feature selection in highly dimensional skewed

data." Neurocomputing 273 (2018): 554-569.

Nag, Kaustuv, and Nikhil R. Pal. “A multiobjective genetic programming-based ensemble for simultaneous feature selection and
classification.” IEEE transactions on cybernetics 46.2 (2016): 499-510.

Tran, Binh, Bing Xue, and Mengjie Zhang. "Genetic programming for multiple-feature construction on high-dimensional
classification." Pattern Recognition 93 (2019): 404-417.

Nag, Kaustuy, and Nikhil R. Pal. "Feature Extraction and Selection for Parsimonious Classifiers with Multiobjective Genetic
Programming." IEEE Transactions on Evolutionary Computation (2019).

GECC

PSO for Feature Selection

e Very popular in recent years
- Filter, Wrapper, Single Objective, Multi-objective
e Representation, continuous PSO vs Binary PSO

e Search mechanism
e Fitness function

‘ 0.7 ‘ 0.12 ‘ 0.84 ‘ 0.69 ‘ 0.25 ‘ 0.06 ‘ 0.92 ‘ 0.45 ‘ 0.36 ‘ 0.80 ‘ 0.67‘ 0.30 ‘ 0.41 ‘

e Scalability

Lo [l fofofefofofe]ofo]o]

E. K. Tang, P. Suganthan, and X. Yao, “Feature selection for microarray data using least squares SVM and particle swarm optimization,” in
IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1-8, 2005.

Zhang, Yong, Dun-wei Gong, and Jian Cheng. "Multi-objective particle swarm optimization approach for cost-based feature selection in
classification." IEEE/ ACM Transactions on Computational Biology and Bioinformatics (TCBB) 14.1 (2017): 64-75.

Gu, Shenkai, Ran Cheng, and Yaochu Jin. "Feature selection for high-dimensional classification using a competitive swarm optimizer." Soft
Computing 22.3 (2018): 811-822..

Hafiz, Faizal, et al. "A two-dimensional (2-D) learning framework for Particle Swarm based feature selection." Pattern Recognition. 76 (2018):
416-433.

Binh Tran and Bing Xue and Mengjie Zhang."A New Representation in PSO for Discretisation-Based Feature Selection”, IEEE Transactions on
Cybernetics, vol. 48, no. 6, pp.1733-1746, 2018

Xue, Y., Xue, B., & Zhang, M.. Self-adaptive particle swarm optimization for large-scale feature selection in classification. ACM Transactions
on Knowledge Discovery from Data (TKDD), 13(5), 1-27. 2019

Tran, Binh, Bing Xue, and Mengjie Zhang. "Adaptive multi-subswarm optimisation for feature selection on high-dimensional classification."
In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 481-489. 2019.

Bach Hoai Nguyen, Bing Xue, Mengjie Zhang, and FengyuZhou "A survey on swarm intelligence approaches to feature selection in data
mining", Swarm and Evolutionary Computation, vol. 54, num, pp 100663:1-30. , May 2020. (doi.org/10.1016/j.swev0.2020.100663)
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ACO for Feature Selection e
e Start from around 2003
- Filter, Wrapper, Single Objective, Multi-objective
—~
e Representation N\

e Search mechanism
o Filter approaches

-

{ Featured -
N/

S. Kashef and H. Nezamabadi-pour, “An advanced ACO algorithm for feature subset selection,” Neurocomputing, 2014.

C.-K. Zhang and H. Hu, “Feature selection using the hybrid of ant colony optimization and mutual information for the forecaster,” in International
Conference on Machine Learning and Cybernetics, vol. 3, pp. 1728-1732, 2005.

L. Ke, Z. Feng, and Z. Ren, “An efficient ant colony optimization approach to attribute reduction in rough set theory,” Pattern Recognition Letters,
vol. 29, no. 9, pp. 1351-1357, 2008.

Moradi, Parham, and Mehrdad Rostami. "Integration of graph clustering with ant colony optimization for feature selection.” Knowledge-Based
Systems 84 (2015): 144-161.

Tabakhi, Sina, and Parham Moradi. "Relevance-redundancy feature selection based on ant colony optimization." Pattern recognition 48, no. 9
(2015): 2798-2811.

Sara, V.]., S. Belina, and K. Kalaiselvi. "Ant colony optimization (ACO) based feature selection and extreme learning machine (ELM) for chronic
kidney disease detection.” International Journal of Advanced Studies of Scientific Research 4, no. 1 (2019).

Paniri, M., Dowlatshahi, M.B. and Nezamabadi-pour, H., 2020. MLACO: A multi-label feature selection algorithm based on ant colony
optimization. Knowledge-Based Systems, 192, p.105285.

Bach Hoai Nguyen, Bing Xue, Mengjie Zhang, and FengyuZhou "A survey on swarm intelligence approaches to feature selection in data mining",
Swarm and Evolutionary Computation, vol. 54, num , pp 100663:1-30., May 2020. (doi.org/10.1016/j.swev0.2020.100663)

e Scalability

GECC

’"Dulalmn esear™

DE, LCSs, and Memetic

e DE: since 2008
- potential for large-scale
e LCSs:

- implicit feature selection
- embedded feature selection

¢ memetic:

- population search + local search
- Wrapper + filter

Hancer, Emrah, Bing Xue, and Mengjie Zhang. "Differential evolution for filter feature selection based on information theory and feature

ranking." Knowledge-Based Systems 140 (2018): 103-119.

Z.Li, Z. Shang, B. Qu, and J. Liang, “Feature selection based on manifold-learning with dynamic constraint handling differential evolution,” in IEEE
Congress on Evolutionary Computation (CEC), pp. 332-337, 2014.

Hoai Bach Nguyen, Bing Xue, Hisao Ishibuchi, Peter Andreae, and Mengjie Zhang. "Multiple Reference Points MOEA /D for Feature Selection".
Proceedings of 2017 Genetic and Evolutionary Computation Conference (GECCO 2017) Companion. ACM Press. Berlin, German, 15 - 19 July
2017.pp 157-158.

1.-S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid genetic algorithms for feature selection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 11, pp. 1424 —1437, 2004.

Z.Zhu, S. Jia, and Z. Ji, “Towards a memetic feature selection paradigm [application notes],” IEEE Computational Intelligence Magazine, vol. 5, no.
2, pp. 41-53, 2010.

Y. Wen and H. Xu, “A cooperative coevolution-based pittsburgh learning classifier system embedded with memetic feature selection,” in IEEE
Congress on Evolutionary Computation, pp. 2415-2422, 2011.

Zhang, Yong, Dun-wei Gong, Xiao-zhi Gao, Tian Tian, and Xiao-yan Sun. "Binary differential evolution with self-learning for multi-objective feature
selection." Information Sciences 507 (2020): 67-85.

’"Dulalmn esear™
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Related Areas (Applications)

+ Biological and biomedical tasks
- gene analysis, biomarker detection, cancer classification, and disease
diagnosis
+ Image and signal processing

- image analysis, face recognition, human action recognition, EEG brain-
computer-interface, speaker recognition, handwritten digit recognition,
personal identification, and music instrument recognition.

¢ Network/web service

- Web service composition and development, network security, and email
spam detection.

e Business and financial problems

- Financial crisis, credit card issuing in bank systems, and customer churn
prediction.

e Others

- power system optimisation, weed recognition in agriculture, melting point
prediction in chemistry, and weather prediction.

Xue, Bing, Mengjie Zhang, Will N. Browne, and Xin Yao. "A survey on evolutionary computation approaches to feature
selection." IEEE Transactions on Evolutionary Computation20, no. 4 (2016): 606-626.
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Feature Selection
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A General Approach

Population

Initialisation Representation

Fitness/Objective
function

Evaluate fitness

No Generate new

Stop ? population

Yes|

Search /updating

mechanism

Return the best
solution(s)

Variable-length PSO for FS Y

e Comprehensive Learning PSO

Best
Before:  Max Length = 5000
Dimension: 1 2 3 4 5 1 2 3 . L efore: Max Lengf Division
ivision: 1 2 3 4 5
Position: | 08 [ 03[ 09 04 [ 0106 02]07] . [os] vision:
article’s | 1000 | 2000 4000 | 5000
Length:
Velocity: | 01 ‘ 02 ‘ 05 [ 04 ‘ 01 [ 02 ‘ 0.4 ‘ 03 ‘ [ 02 ‘
Particle's | o | 1200 1800 | 2400
bxempir: [5 [ 7[5 [ 6 [ 2[5 7[5~ 1] st
Learning Probability (Pc) =0.25 Renew Exemplar Count =3 After:  Max Length = 3000

Fig. 3. Example of length changing in a swarm with five divisions.
Fig. 1. Representation of a VLPSO particle with length L.

Feature: 1 1000 2000 3000 4000 5000 Feature Ranking
| . |
ParLen of Div.] el ! i ! i S [ IG(F|C) }
Div.2 wem—! | ! | H(F)+H(C)
Div.3 i ! IG(F|C) = H(F) — H(F|C)
|

Div4 e

Fig. 2. Example of population division for a problem with 5000 features
and the number of division is 5.

Binh Tran and Bing Xue and Mengjie Zhang. "Variable-Length Particle Swarm Optimisation for Feature Selection on High-
Dimensional Classification", [EEE Transactions on Evolutionary Computation, Vol. 23, pp 473-487, 2019. pp 473-487.

Variable-length PSO for FS Y

Stopping criterion

False

For each particle p in the population:

If (renewExmpl[p] is true)
Exemplar_Assignment(p); // Algorithm 1
renewExmpl[p] = false;

Update velocity and position using Egs. (4) & (2);

Update fitness and pbest;

If (pbest is not improved for a times)
renewExmpl[p] = true

’ Rearrange features in the descending order of SUc;

Div=1;

DivSize = PopSize / NbrDiv;
ParLen = MaxLen * Div / NbrDiv;

Initialise DivSize particles with length ParLen;
Update fitness and pbest for these particles;
Div ++;

Update gbest;
Calculate Pc for all particles using Eq. (5);
Assign exemplar for all particles; // Algorithm 1 gbest not improved for p times
Set renewExmpl for all particles to false; Trie

| LengthChanging(); // Algorithm 2 |

Stopping criterion e

enewExmpl of any particles is true

True
—| Calculate Pc for all particles using Eq. (5); |

Return gbest;

fitness = (y - accuracy + (1 — y) - distance).

Binh Tran and Bing Xue and Mengjie Zhang. "Variable-Length Particle Swarm Optimisation for Feature Selection on High-
Dimensional Classification", [EEE Transactions on Evolutionary Computation, Vol. 23, pp 473-487, 2019. pp 473-487.

GECC

) PSO for FS: initialisation and updating .

Initialise the position and velocity of
each particle

o Initialisation:

- Forward selection
- Backward selection
- Mixture of both

,EYQ‘@;,{OP} o U pdating :

I i - Consider the number of
Calculate the good; f the particle || f
| e e | features in the pest and
' gbest updating

‘ Collect the features selected by a particle ‘

Transform
training set

I
i
i
i
i
I
i
: ‘ Evaluate the classification performance
i
i
i
I
i
i
i

‘ Update pbest and gbest ‘

Update the velocity and position of
each particle

Yes

Return the best solution (Selected features)

Bing Xue, Mengjie Zhang, Will N. Browne."Particle Swarm Optimisation for Feature Selection in Classification: Novel Initialisation
and Updating Mechanisms". Applied Soft Computing. Vol 18, PP. 261--276, 2014
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Initialization in Multi-objective FS

e Segmented initialization mechanism respectively generates
three sub-populations whose solutions are randomly located
around the forward, middle and backward areas

- areas with a small, medium or large number of selected
features respectively. o

] Scgmerfed Initalization

f,: classification error ratio

o Offspring modification: ! : ‘
find out all the duplicated solutions B ";‘r. IM i
Modify duplicated solutions to become unique ones
by each flipping one or two dimensions (each dimension
corresponds to one original feature), according to the analysis of
common features in the first nondominated front
Hang Xu, Bing Xue, and Mengjie Zhang. "Segmented Initialization and Offspring Modification in Evolutionary Algorithms for Bi-

objective Feature Selection”. Proceedings of 2020 Genetic and Evolutionary Computation Conference (GECCO 2020). ACM Press.
Cancun, Mexico. July 8th-12th 2020, 9pp

GECC
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Initialization in Multi-objective FS

IGD and HV show that segmented initialization mechanism and offspring
modification mechanism each contributed positively to the success of the new
plug-in MOEAs, while combining them together contributed the most.
[SIOM-NSGAII|[MOEA/HD [SIOM-MOFARD||_TiypE_[SIOM-TiypE

o[ ~scam]
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10 | LSVT Voice | 310 126 2 10 |[F2075e-01] 92341601 8.4570-01 9.2429¢-01 8.2964¢-01|  8.9074e-01
11 | Madelon Train Validation | 500 2600 2 £308e02| sorietr || £osse0r| sooev ||+ 20tz +2ie0r
: . T Fmser]  sizseon [[57e0r  saieon[someor| 76ser
12 ISOLETS 617 1559 2 151e02] £ 338002 335002 295002
13 Multiple_Features 649 2000 10 1 || 6:9352¢-01 ] 8.0820e-01 8.0297¢-01
= - 15102] & L0002 £ 127002
u SRBCT 2308 83 4 13 7.8757e-01|  9.0081e-01 7.8274e-01 8.8876e-01 7 &ZAX: 01
15 Leukemial 5327 72 3 +113e-02|  + 1.02e-02 £ 11802 | & 118e-02 +112e-02| +121e-02
- : Toie01 |\ 56236601 [ Z55e8e01 | 86i7se01 || Z9155c01 | 5706901
16 DLBCL 5469 7 2 Y s 2rieos| 1o || 2zoves | esasete ||x2sse0s] +i70cor
17 Brainl 5920 90 5 15 ||5-3839-01 | 7:1387¢-01 5.2521e-01 6.9892e-01 5.2619¢-01 | 7.0910e-01
- et s157e0r || & rstenr | s aseoz 272002
18 Leukemia 7070 72 2 16 6.0251e-01|  7.9549¢-01 5.8483¢-01 7.8223¢-01
20902] s3sse0z || 4 150e02 | 2dse0z
lie] asssieon ([ aoisee0r | G260 sas6e01
228503 +820005 || 8950 | 72203 + 6.19¢:03
s TEoTenr| azeor ([ zmmeor - gazmeon[[swmeor| 2o
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Hang Xu, Bing Xue, and Mengjie Zhang. "Segmented Initialization and Offspring Modification in Evolutionary Algorithms for Bi-objective Feature
Selection”. Proceedings of 2020 Genetic and Evolutionary Computation Conference (GECCO 2020). ACM Press. Cancun, Mexico. July 8th-12th 2020, 9pp

S GECC

olutionar, 4
¥ Comy *
"Pltation - gsearc™

Duplication Analysis-Based MOFS

§=0.543 Diss

f>: Classification Error Rate

fi: Selected Feature Ratio

* The reproduction process is modified to improve the
quality of offspring;

* A duplication analysis method is proposed to filter out
the redundant solutions

+ A diversity-based selection method is adopted to further
select the reserved solutions

Hang Xu, Bing Xue, and Mengjie Zhang. "Segmented Initialization and Offspring Modification in Evolutionary Algorithms for Bi-objective Feature
Selection”. Proceedings of 2020 Genetic and Evolutionary Computation Conference (GECCO 2020). ACM Press. Cancun, Mexico. July 8th-12th 2020, 9pp
Xu, H.,, Xue, B., & Zhang, M. (2020). A duplication analysis based evolutionary algorithm for bi-objective feature selection. IEEE Transactions on
Evolutionary Computation.

Evolutionary Multimodal Optimisation for FS cfic

The goal is to find multiple optimal feature subsets

A Classification error

[

d }

2 3
# Selected features
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Evolutionary Multimodal Optimisation for FS Lc

The goal is to find multiple optimal feature subsets

A Classification error
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Evolutionary Multimodal Optimisation for FS Lc

The goal is to find multiple optimal feature subsets

A Classification error
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Evolutionary Multimodal Optimisation for FS Lc

The goal is to find multiple optimal feature subsets

A Classification error
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Evolutionary Multimodal Optimisation for FS Lc

The goal is to find multiple optimal feature subsets

A Classification error
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Evolutionary Multimodal Optimisation for FS ™

fi & || The selected feature | The unselected feature
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Why Multimodal Optimisation for FS? .ia

« In Breast Cancer Wisconsin (Original) Data Set, there are
699 instances, 9 features and 2 classes.

« Using subset [F1, F2, F7] or [F2, F3, F7] with KNN can
achieve the same 97.819% classification accuracy.

¢ F1 is 'Clump Thickness’ and F3 is ‘Uniformity of Cell
Shape’. Obviously, the first feature is easier to be collected

than the third one.

Peng Wang, Bing Xue, Jing Liang and Mengjie Zhang,.

"Improved Crowding Distance in Multi-objective

Optimization for Feature Selection in Classification". Proceeding of the 23th European Conference on
Applications of Evolutionary Computation (EvoApplications 2021). Lecture Notes in Computer Science.

Vol., Leipzig, Germany. Seville, Spain, 7-9 April 2021

Peng Wang, Bing Xue, Jing Liang and Mengjie Zhang.

" A Grid-dominance based Multi-objective

Algorithmfor Feature Selection in Classification." IEEE Congress on Evolutionary Computation (CEC 2021).

Krakow, Poland, 28 June - 1 July 2021, 8pp

PSO FS: with backward elimination 5‘&

¢ Filter measure based on mutual
information in backward
elimination:

I Collect features selected by ghest |

[ For the first cluster |

Qbest selected more
han Jm +1 features >

1
Is| -1

f's) = %(REI(SL) ~ Red(si))

Yes

Calculate fitness values of all
selected features

o x;: the position value in the ith dimension
o By adding ;, f'(s;) ensures that if two features has

i : R
Go to the No the same f(s) value, the one with a smaller position
next value (i.e. smaller probability) will be removed
cluster All values
rger than (.

o s; is removed only when f'(s;) < 0 and f'(s;) is the
smallest value

Accurate Wrapper, Global
+

Fast Filter, Local

Yes
v

| Update gbest |

Bach Hoai Nguyen, Bing Xue, Ivy Liu and Mengjie Zhang."Filter based Backward Elimination in Wrapper based PSO for Feature Selection in
Classification", Proceedings of 201 IEEE Congress on Evolutionary Computation. Beijing, China. 6-11 July, 2014. IEEE Press. PP.3111-- 3118. 2015

Multi-objective PSO for FS 5&

e Introduce and develop the
first multi-objective PSO
approach to feature selection
- Simultaneously minimise the

number of features and the
error rate
- >800 citations since 2013

Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm optimization for
feature selection in classification: A multi-objective approach, IEEE
Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013.

M. R. Sierra and C. A. C. Coello, "Improving PSO-based multi-objective
optimization using crowding, mutation and epsilon-dominance", Proc. EMO,
pp- 505-519, 2005

S1|
‘I.nitja].ise the swarm, Leader set and Archive

v
Calculate crowding distance of solutions in
Leader set

]

S3[ selecta gbest for each particle from Leader
set based on a binary tournament selection
and crowding distance

52

S4

If pbest is dominated by current position of a|
particle, update the pbest

S5/ Update the velocity and position of
each particle
;

i Apply mutation operators ’

l

S7[ Evaluate the two objective values of

S11 each particle
l
S8

Identify non-dominated solutions to

Yes update Leader set
Termination ? Update Archive ’

1152




Multi-objective PSO for FS "«

e Simultaneously minimise the number of features and the error

rate
Madelon (500, 29.10%) T-TEST ON HYPERVOLUME RATIOS ON TRAINING ACCURACY
55 . Dataset Wine | Australian 700 Vehicle | German | WBCD
NSTCMD [NSTCMD [NSTCMD |[NSTCMD|NS|CMD [NS[CMD
NSPSOFS + + ¥ ¥ T ¥
® CMDPSOFS| - - - - - -
g NSGA |- = -1 = [ - - - - -1 =1-1=
2 SPEA2 - = - = = - = - = - =
g % PAES T=1-1=1-T-T-T-"T1T-T-1-T=
2 Dataset Lung |Tonosphere | Hillvalley | Muskl Madelon | IsoletS
w 25 NS|CMD |NS| CMD |NS|CMD NS [CMD | NS |CMD | NS | CMD
NSPSOFS + + + + + +
CMDPSOFS | - - - - N B
15 — . NSGAN | - - | -1 - |- + |- + =] + |+] +
i 10 20 30 40 SPEA2 -l - T-T-T=T+1-1T+1=1+T1+]+
Number of features - - - - - - - .

Bing Xue, Mengjie Zhang, Will Browne. “Particle swarm optimization for feature selection in classification: A multi-objective
approach, IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013.

e Multiple Reference Points based Decomposition for Multi-objective FS

eRate

fRatio
Multiple reference points in MOEA/D.

TRate threshold TRalio {Ratio

(a) Weight vector for FS (b) Not always conflicting

Iteration
04

30

20

tRatio
Figure 5.4: Dynamic reference points example: fized points are green,
moving points are red, dashed line shows the interval that moving points
are located in the corresponding iterations.

Hoai Bach Nguyen, Bing Xue, Hisao Ishibuchi, Peter Andreae, and Mengjie Zhang. "Multiple Reference Points MOEA /D for Feature Selection". Proceedings
of 2017 Genetic and Evolutionary Computation Conference (GECCO 2017) Companion. ACM Press. Berlin, German, 15 - 19 July 2017.pp 157-158

Bach Hoai Nguyen, Bing Xue, Peter Andreae, Hisao Ishibuchi, Mengjie Zhang. "Multiple Reference Points based Decomposition for Multi-objective Feature
Selection in Classification: Static and Dynamic Mechanisms", IEEE Transactions on Evolutionary Computation, vol. 24, no. 1, pp.170 - 184, 2019

For each sub-problem

Initialize R enerate new Repair the new Update the Fix duplicated feature subsets
reference points 1| solutions using DE solutions if LIRS M by randomly adding more features
H operators necessary problems '
'

Re-allocate M moving reference points only if the two objectives
are still conficting in the previous interval

Initialize F fixed
reference points on /
intervals

Initialize M moving
reference points on
the first interval reference points on all

previous intervals

For each sub-problem

'
Fix duplicated feature subsets ! ienerate new Repair the new Update the :
by a random feature set 1| solutions using DE solutions if neighboring sub- |4

' operators necessary problems '

'

(b) Dynamic multiple reference points strategy (MOEA/D-DYN).

Hoai Bach Nguyen, Bing Xue, Hisao Ishibuchi, Peter Andreae, and Mengjie Zhang. "Multiple Reference Points MOEA /D for Feature Selection". Proceedings
of 2017 Genetic and Evolutionary Computation Conference (GECCO 2017) Companion. ACM Press. Berlin, German, 15 - 19 July 2017.pp 157-158

Bach Hoai Nguyen, Bing Xue, Peter Andreae, Hisao Ishibuchi, Mengjie Zhang. "Multiple Reference Points based Decomposition for Multi-objective Feature
Selection in Classification: Static and Dynamic Mechanisms", IEEE Transactions on Evolutionary Computation, vol. 24, no. 1, pp.170 - 184, 2019

ECC

Surrogate Training Set/ FS Processing Gi_;

Original fitness function (f,,;) vs Surrogate fitness function (f;,)

Surrogate FS/training process Surrogate rate: I/

Is iterations I-Isiterations

Estimate promising areas

| iterations

Hoai Bach Nguyen, Bing Xue, and Peter Andreae. "PSO with Surrogate Models for Feature Selection: Static and Dynamic Clustering-based
Methods", Memetic Computing, vol. 10, pp. 291-300, 2018
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Initialise Sopeg

Generate
P/2 feature subsets
Socan?

Evaluate S0y, using fifness,i

S0pes is better
than ghest ?

Return gbest as the
final feature subset

Select |gbest| features from
Spest to form So,.,, based on
feature scores in Eq. (4)

Evaluate So,,, using fitness,,

S0,qn is better
than Sopq, ?

SiNess ey = fitnessy,, | | Jiness yy = fitness,y; |

Evaluate all particles using
fitness,,,
Update ghest
Apply sampling local search
on ghest

Populate ghest to the swarm

Hoai Bach Nguyen, Bing Xue, and Peter Andreae. "PSO with Surrogate Models for Feature Selection: Static and Dynamic Clustering-based
Methods", Memetic Computing, vol. 10, pp. 291-300, 2018

GECC

Effect of the surrogate training set

Training Results Tost Results

Dataset NF AvoTram T Std_T AveTest £ Sed T L0 (ms)
Vehicle
7 180 80.44£0.00 - 83.07+0.00
0riPSO 48 9141+ 0.69 = 84664129 113187.6
SurPSO 51 9143 +0.69 85.23 + 0.82 312019
German
AT 200 83.14 + 000 65.33 + 0.00
0riPSO 5.6 7870 %052 67.63 —  220110.30
SurPSO 6.4 8133052 68.35 + 0.75 60600.90
Tonosphere
7 340 9024000 - 8667000 -
0riPSO 48 9527+ 081 4+ SS4S £ 212 — 3356440
SurPSO 10 9101+ 051 88.38 + 2.61 9903.90
Tung
T AT 560 S636+£000 - 80.004000 =
0riPSO 51 9989173 4+ 79504444 = 707 xxl
SurPSO 44 9920+ 173 79.50 + 5.45 45175
Sonar
7 60.0  SS.OTE000 - 8413£0.00 +
0riPSO 148 9555+ 178 4  SLOAE 332  —  23605.65
SurPSO 124 9355+ 178 82,58 + 3.1 729162
Movementlibras
7 900  9852+000 -  95.06%0.00 -
0riPSO 92  0854+016 = 95.33+041 = 105780.20)
SurPSO 9.4 9863+ 0.6 95.20 + 0.32 41165.3
Plant
AT 640 9955000 + 9910 £000 +
0riPSO 3.0 9924+ 004 = 9567 £003 = 175644218
SurPSO 31 9926 + 0.04 95.68 + 0.05 566479.7:
Hillvalley
1000 7983+£000 - 50.07 4 0.00
0riPSO 248  SL51+083 = 5885+ 188 1557361.75)
SurPSO 223 81116 + 053 59.92 + 1.46 1443232.00
ISVT
an 3100 79.55L£0.00 - 55.26+000 -
0riPSO 270 8545472 = 34153 =  18240.05
SurPSO 274 8501472 65.07 £ 4.80 4708.20
Muliiple Featurcs
L 619.0  90.49+£0.00 - 9857000 -
OriPSO 1182 99.66 005 = 900.04%0.10 = 7203332.90
SurPSO 1435 99.65 + 0.05 99.05 + 0.12 2068139.5:

On all datasets SurPSO maintains or improve the testing accuracy while
reducing 70% computation time than OriPSO

Information Theory Feature Selection .ic

Fitness = Rel — Red

where,
D10

xi€X

X is the selected feature subset
x;, x;: single feature in X

cis the class labels

Rel : relevance between X and ¢
Red : redundancy in X

Rel =

Red

1(x;; %)

xXixXjeX

* Relevance:
- Classification performance
- The relevance (mutual information) between each selected feature and the
class labels
* Redundancy:
- Number of features
- The relevance (mutual information) between the selected features
Liam Cervante, Bing Xue and Mengjie Zhang."Binary Particle Swarm Optimisation for Feature Selection: A Filter Based
Approach". Proceedings of 2012 IEEE World Congress on Computational Intelligence/ IEEE Congress on Evolutionary
Computation (WCCI/CEC 2012). Brisbane, Australian. 10-17 June, 2012. IEEE Press. pp. 881-888.

Peng, Hanchuan, Fuhui Long, and Chris Ding. "Feature selection based on mutual information criteria of max-dependency, max-
relevance, and min-redundancy." IEEE Transactions on pattern analysis and machine intelligence27.8 (2005): 1226-1238.

GECC

Filter FS based on Rough Set

Promote rough set theory for feature selection

Others’: mainly < 200 features
Ours: more than 600 features

Universe [

Objects ]

- g_(];:undary
/ m~— |
The lower (] R
approximation N
N
N
The upper
approximatio

{ ThF target set J
|
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Equivalence
relation

Equivalence

Atti
classes

utes

[ ] —
Rough set

DHEY Zxeitaciio]

i=1 |apTP Uj| x€{EqCljy|
|U] |EqC|

» U is the universe or the whole dataset

« U,is one class in the dataset

* EqC: equivalence classes

 aprP is the lower approximation in probabilistic
rough set theory

* A parameter a to relax the definition of aprP

Lower and upper
approximations

Fitness =

Bing Xue, Liam Cervante, Lin Shang, Will Browne and Mengjie Zhang."Binary PSO and rough set theory for feature selection: a multi-objective
filter based approach”. International Journal of Computational Intelligence and Applications (IJCIA), Vol. 13, No. 2 (2014). pp. 1450009(1-34)

Liam Cervante, Bing Xue, Lin Shang, Mengjie Zhang. "A Multi-Objective Feature Selection Approach Based on Binary PSO and Rough Set Theory".
Proceedings of the 13th European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2013). Lecture Notes in
Computer Science. Vol. 7832. Vienna, Austria. 3-5 April 2013. pp. 25-36

Liam Cervante, Bing Xue, Lin Shang and Mengjie Zhang. "A Dimension Reduction Approach to Classification Based on Particle Swarm
Optimisation and Rough Set Theory". Proceedings of the 25th Australasian Joint Conference on Artificial Intelligence. Lecture Notes in Artificial
Intelligence.Vol. 7691. Springer. Sydney, Australia, December 2012. pp. 313-325

Filter FS based on Rough Set 5‘:

Feature Subset Selection based on Ranking G“fic

¢ MRFS based on mutual information
- Relief
- Fisher Score

Fityry(5) = max | 5 NIGcy)  — B[ 3 NRelie forer () + NFisheronser ()

Xg€S

relevance X€S ranking
1(X: ] Fisher . gor (Xi)
NI(xi;y) = M(kiy) NFisheroger (X¢) = M 'order £ 2
V Xme1 [(xm; ¥)? P * Yomo1 Fisheryger (Xm)
T(xg; X, ;
NI(x; %)) = L)) Relie forger (%)

NRelieforder(xk) =

Yot jeme 1Cm: ;)2 px XM Reliefyrger (%)?

Hancer, Emrah, Bing Xue, and Mengjie Zhang. "Differential evolution for filter feature selection based on information theory and feature
ranking." Knowledge-Based Systems 140 (2018): 103-119.

Information Theory Feature Selection .ic

. Information theory in evolutionary feature selection
- Fast algorithm — mutual information
- New measures, evaluate multiple features
- Evolutionary multi-objective filter feature selection

F-MI 0.05 0.05 [0.05] 0.06 | 0.07 0.09 0.15 0.18
F-E 2.88 97.7 | 8.64 [ 27.95 | 9.85 [ 256.57 | 2.96 [ 236.42
F-RS 2.07 12485.61[ 821 | 553 | 14.81 | 1372.93 7 0.69 | 928.25
F-PRS 2.86 |2766.29 | 8.28 | 38.36 | 9.95 |1827.06| 0.68 911.3
W-SVM | 2441 |5143.18 [53.28 | 270.64 | 118.37 | 2441.21 | 5.4 |10937.87
W-5NN | 6.12 |9311.59 [ 18.89|264.51 | 72.72 |4095.07 | 1.68 | 1936.67
W-DT 5.19 | 189.43 [10.53 | 43.15 | 47.87 | 244.55 | 3.82 529.7
‘W-NB 13.46 | 304.08 | 15.89 | 150.37| 19.42 | 37724 | 4.13 | 706.23

Bing Xue, Liam Cervante, Lin Shang, Will Browne, Mengjie Zhang. “A Multi-Objective Particle Swarm Optimisation for Filter Based Feature
Selection in Classification Problems". Connection Science. Vol. 24, No. 2-3, pp. 91-116, 2012.

Bing Xue, Liam Cervante, Lin Shang, Will N. Browne, Mengjie Zhang. “Evolutionary Algorithms and Information Theory for Filter Based
Feature Selection in Classification". International Journal on Artificial Intelligence Tools. Vol. 22, Issue 04, August 2013. pp. 1350024 -- 1 - 31.
DOI: 10.1142/50218213013500243.

Bing Xue, Mengjie Zhang and Will Browne. "A Comprehensive Comparison on Feature Selection Approaches to Classification”. International
Journal of Computational Intelligence and Applications (IJCIA). Vol. 14, No. 2. 2015. pp. 1550008 (1-23).

4 Feature Selection Though Data Discretisation G“fic

Bare-Bone Particle Swarm Optimisation

Two-stage (PSO-FS) e One-stage (PSO-DFS)

C Training Set ( Test Set ) (Training Set) ( Test Set )
Data discretisation
Data discretization and
Cut-points for Transform feature selection
all features Data | (PSO_DFS)
Proposed
CDisc. Training) ( Disc. Test )
I
(PsO) Selected Dats
Features

Selected Transform
Feature Subset Data

(New Truining) ( New Test )

C New Training )

( New Test ) l l

—x l - Training a Test the trained
Training a Test the trained Classifier Classifier
Classifier Classifier
Binh Tran Ngan, Mengjie Zhang, Bing Xue. "Bare-Bone Particle Swarm Opti 1 for Simul ly Di and Selecting Features For High-Dimensional

Classification”. Proceedings of the 19th European Conference on the Applications of Evolutionary Computation (EvoApplications 2016, EvoIASP 2016). Lecture Notes
in Computer Science. Vol. 9597. Porto, Portugal, March 30 - April 1, 2016. pp. 701-718
Binh Tran and Bing Xue and Mengjie Zhang,"A New ion in PSO for D:

6, pp.1733-1746, 2018

ion-Based Feature Selection”, IEEE Transactions on Cybernetics, vol. 48, no.
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FS Th h Data Di tisati K FS T hOUgh Data Discretisation “
Table 3.2: Experimental results
TP f : - Table 3.3: Comparison with traditional methods
» Utilising information from MLDP L e R R e e P - -
90554155 Dataset | Method |  Size aining -
Potential cut-point tabl - . i " [Best [t 57, | Bost [ Mieon [5;
otential cut-point table Cut-point index S o 2a00 s w08
o lalalc !
1 2 3 4 icle’. o CF 09 10000 | = 10000 | =
Particle’s position morkan | - |+ pso-cis | a0 | 10000 | 10000 10000 | 9997
F,|2| 525 68 F F F F F pLBCL Tl 54690 s 300
3| 107] 249 502 B B e | 1S
L 1| 249 50. [2 o3 o [2] S O e el
B pso.cLs | ar4 | 10000 | 10000 ss7| 0o
Fs| 4 ]-045| 0.67| 52 20-5‘ l l l l otuner | PSORG - P 5720 i
Fy| 1]-325 | tuner
68 [><] 52 <[ .. [1:54] oo
o e | w67 | sras| ors w000
Candiate solution Leakemial | PSO-RG 50.63 £ 296 53270 0.7
3 | -372[1.54] 655 ; o I
94.84 + 116 voakemial | 56.0 10000 | =
psocts | aus | 10000 | 10000 952
msosres | - | -
T 59200 o7
Braint : E 00 o
H H H e CF 115.4 99.93 +
e Hybrid fitness function
- 2250 S
7 rgg — (~ « 0, CCUT (LCT —~) - dis e Leukemia2 = 00
fitness = (7y - balanced__accuracy + (1 — ) - distance) — a o R
b psocrs | a1 10000 | 10000 o5
where = Full 10,367.0 63.52
distance 1 o I I N
istance = —— Fonts B
stanc T PSOLS 6.4 10000 | +
1+ exp=5(Pr=Dw) s _ wsocrs | | v | w| | s
o - [ 105000 208
Prosate | PSO-RG - e | 15 1 st
min Dis(1;,1;) PsORLS s st o812 +
{ili#i.class(l;)#class(I;)} PSO-CLS Pso-cLs | 26103 | w02 | osed a1t
m 7 CTRN P e
Tumor | PSO-RG N g LFs 122 95.12
" rsonis R P ¥ “
max Dis(I;, I;) rocrs psocts | st | s | s wis
{jliiclass(I;)=class(L;)} |12 o
i=1 . - 0T LFS 143 79.96
ung, et CFs NA NA
Pso nLs
Binh Tran and Bing Xue and Mengjie Zhang."A New Rep in PSO for Dis -Based Feature Selection’, IEEE Transactions on Cybernetics, vol. 48, no. Feo 1 psocis | a0s | 10000 | 10000 w2
6, pp.1733-1746, 2018
GECC GECC

GP for Embedded Feature Selection

Feature Selection

Classification

<0
Class +

>=
Class -

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue. "Genetic Programming for Measuring Peptide Detectability". Proceedings of the 10th International
Conference on Simulated Evolution and Learning (SEAL 2014). Lecture Notes in Computer Science. Vol. 8886. Dunedin, New Zealand. December 15-18,

2014. pp. 593-604

GP for Embeded Feature Selection

 Existing feature selection metrics have some biases class

imbalance problems

e Each terminal node (leaf) consists of a (“basic”) feature
selection metric, which returns a set of features considered
highly discriminative by such metric

e The set operations may be union (uU), intersection (n), set

difference (), and so on

) @ ®

Fig. 2. Hypothetical individual
\f3fa)) = (fivf)n(fs\ fa).

under

our modeling

strategy: (N (U f1 f2)

Viegas, Felipe, Leonardo Rocha, Marcos Gongalves, Fernando Mourao, Giovanni Sé, Thiago Salles, Guilherme Andrade, and Isac Sandin.
"A genetic programming approach for feature selection in highly dimensional skewed data." Neurocomputing 273 (2018): 554-569.
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GP for Embeded Feature Selection < Bt Feature Selection for Symbolic Regression
General information about the datasets. . GP run for Permutation Feature Importance Calculating Permutation Feature Importance
Dataset Size # Features  Density  Class distribution [ i
# Classes ~ Minor class  1°quartile  Median Mean 3°quartile  Major class TrSmmg : |
ata | |
4UNI 8277 40195 139275 7 137 343 930 182 1382 3759 i i
REUT 8184 24,985 42230 8 13 254.75 442 1023 946.5 3930 i |Collectall the distinct features| |
20NG 18,805 61,050 129511 20 628 955 979 94,025 990 999 Randomly Split i (X, X, ., XiJin I i
ACL-BIN 27677 1110351 181509 2 13,795 1381675 138385 138385 13,860 13,882 i i
i . -
i ish calculating !
Table 8 ) ) Table 10 Sub-training Sub-test i importance of !
A, comparison hetween the feature SEIECFIOH o A comparison between the feature selection metrics con- Data Data i X, X, ..., X !
sidering the Top-4466 features of collection REUT. sidering the Top-16,280 features of collection 20NG. i g !
= i
Mac.Fy(%) Std. dev.  Mic.F(%)  Std. dev. MacF(%)  Std. dev, MicF (%)  Std. dev. i
- i - i : For feature X; in !
GP 8525 0.89 93.10 035 GP 8239 041 83.06 040 ! X, Xo, oy X} em;ute the | !
Gl 7618 068 8820 034 Gl 8019 040 80.84 040 ! s S - 24, DOTTL i
OR 7112 250 8337 257 OR 8024 047 8098 047 Best GP | values of X;within the i
x* 6758 117 7458 129 X2 7992 0.38 80.70 0.34 - i sub-test set i
cc 7626 0.98 88.27 047 cc 8028 044 80.94 043 Model I i i
Yes| Obtain the generalisation i
Table 9 — Obtain the test error ! error E”;"’; ofll:tovter tthe i
A comparison between the feature selection metrics con- A comparison between the feature selection metrics con- Errog of In ! permuted sub-test se |
sidering the Top-42,096 features of collection ACL-BIN. sidering the Top-2824 features of collection 4UNI. ! !
- | “alcula raw featur
MacFi(%)  Std. dev. MicFi(%)  Std. dev. MacFi(%) Std dev. MicR(%)  Std. dev. Calculate Permutation | -——="\ Caleulate the raw feanure '
Feature Importance *777// ! importance Flxj of Xj |
GP 8622 021 86.22 021 GP 5546 0.68 62.85 094 ! Flyj=(Ertom - Errus) i
Gl 8523 049 8532 047 Gl 4827 175 55.00 136 ! - i
OR 8529 0.89 8537 0.84 OR 4835 128 55.64 169 Raw feature 1 i
x? 7856 6.87 7951 595 x* 5095 0.86 59.20 113 importances i “ i
CC 8565 064 85.71 061 4768 144 54.40 153 i i
) _ o ) _ ) ) Qi. Chen, Mengjie. Zhang, and Bing. Xue. "Feature Selection to Improve Generalisation of Genetic
Y/iegas, fellpe, Leonar.do Rocha, Mhafrco? Gonga?vles, .Fen.ml;c?ohl\l/[o;.rao, GAloValn‘rl\(l Sé, g};lago”Salles, Gullhermez;znczir?de‘, :n4d Isac Sandin. PI‘OQ ramming for High-DimensionaI Symbolic Regression", 1EEE Transaction on Evolutionary
genetic programming approach for feature selection in highly dimensional skewed data." Neurocomputing 273 (2018): 554-569. Computation, vol. 21, no. 5, pp. 792-806, 2017.
Feature Selection for Symbolic Regression °% Feature Selection for Symbolic Regression °%
. . Significance
» Permutation feature importance: T
o enchmar ¢ (Medain+MAD) | (Medain+MAD) | (with GP-GPPI)
g
1. Randomly split the training data into a sub-training set and a sub- - — (raining lesh)__
e LASSO 017 0.22 (= =)
test set. = " RE 0.05540.0013 (-9
GP 0.0120.016 (+-)
GP-GPPI | 0.03740.043 0.049+0.064
. P g LASSO 0.11 0.09 (=-)
2. Carry out a standard GP run and get the best-of-run individual 7, : N o 0oi0sa20E4 | 0omsiseiEd | o)
. L. L. " = 2 GP 0.002+2.97E-3 (==
which has the lowest training error over the sub-training set. H . crcrn | orrrsny | oorisemma
3 H LASSO 0.04 0.68 (+,-)
. . . . = - RF 0.097+7.61E-4 0.23+0.0013 (+, -)
3. Compute the generalisation error of /, over the sub-test set, which is LDS0 o 01940.009 02540026 w5
GP-GPPI | 0.21:+4.45E-3 0.214+4.45E-3
referred to Errog(1y). [ASSO | 018 022 (o)
DLBCL RF 0.058+7.77E-4 0.13+0.0014 (+, -)
PET . . . . GP 0.088+0.012 (= =)
4. For each distinct feature X in I, permute its values within the sub- « 47 GP-GPPt | 008120012
< w|d LASSO | 013 0.15 (= —)
test set, and get the test error of I, on the permuted sub-test set, 85 N ccun RF 00301.18F-4 (=
g 8] & GP 0.073+1.48E-3 (=)
shown as Ervpm(1,). e B GP-GPPI | 0.0764148E-3
_ § 4 LASSO | 021 (= =)
1 H s Y 3 RF 0.054+1.77E-4 0.141+344E4 (+,-)
5. Calculate the distance between Erry,4(1,) and Erry,,(1,), and use it O nermton O nermton O nermton N et 013BL297E3 | 014322973 | (4, )
. . GP-GPPI | 0.139+2.22E-3 0.139+2.97E-3
to measure the raw feature importance of the feature F'I,,,(X;), i.e.
FlLaw(X;) = Errpmie(Ip) — Errorg (1) (3.3) H g Qi. Chen, Mengjie. Zhang, and Bing. Xue. "Feature
£ 5] Selection to Improve Generalisation of Genetic
. . } : I ) . h ° Programming for High-Dimensional Symbolic
Dick, G., Rimoni, A. P., And Whigham, P. A re-examination of the use of genetic programming on the oral 2 | Re gram " 9 9 ; ym
8 2 ; ; 3 3 gression”, IEEE Transaction on Evolutionary
bioavailability prob- lem. In Proceedings of the 17th Annual Conference on Genetic and Evolutionary N R R Computation. vol. 21. no. 5 292806, 2017
Computation Conference (GECCO) (2015), ACM, pp. 1015- 1022. P i .21, no. 5, pp. , .
Figure 3.6: The Testing Error Evolution Plots.
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Multi-tree GP for FS: Wrapper and Embedded:

e Multi-tree GP for FS: Wrapper and Embedded

r Images converted
E Zatutr'e to feature vectors Evolved
xtraction —_— Model
Image Dataset — e
——— LBP, o — 34 116 59 48
T = 'D'ainingDia | & 9
‘ ﬂ fy fis P o = éob éob ® o
A7E &
LBPyg, e
EEE==E —— Data
—’ fo f126 W Transformation
. Lesion ;. 0 !
[ E A— ; ;
3 fo By [ TR Classification
ﬁ Lesiong,,. Y| Performance
S (Accuracy)
f fio Bz
OLBP @LBP,,, @®Lesion,, ® Lesionsmpe

Q. Ul Ain, H. Al-Sahaf, B. Xue, and M. Zhang, “A multi-tree genetic 1153 programming representation for melanoma detection using local and 1154
global features,” in Proc. 31st Australas. Joint Conf. Artif. Intell., 2018, 1155 pp. 111-123.

Qurrat Ul Ain, Harith Al-Sahaf, Bing Xue, Mengjie Zhang. "Generating Knowledge-guided Discriminative Features Using Genetic Programming for
Melanoma Detection", IEEE Transactions on Emerging Topics in Computational Intelligence, vol., Issue. , pp. , Online 2020 (DOI:

10.1109/ TETCI.2020.2983426). 14pp

GP for FS: Wrapper and Embedded °

e Multi-tree GP for FS: Wrapper and Embedded

PH? Dermofit
training test training test
NB 92.21 + 0.60 8570 + 2.65 89.40 + 0.70 8045 + 2.18
. SVM 89.51 + 0.79 81.52 + 358 88.64 + 0.74 8033 + 271
Multi-tree GP Wrapper k- NN 9391 + 0.5 6126 + 405 9168 + 0,60 69.27 + 2.89
J48 99.71 % 0.15 85.18 + 3.72 9833 + 025 8418 + 4.11
Multitree GP Embedded - 79.60 + 135 78.87 + 292 + 75.63 + 0.99 7457 + 1.86 +
NB 93.85 + 111 77.81 + 08.44 + 8642 + 0.70 7226 + 11.62 +
SVM 89.62 + 137 70.00 + 10.29 + 95.16 + 0.84 70.02 + 1034 +
Non-GP Methods k— NN 100.0 + 0.00 75.63 + 1471 + 100.0 + 0.00 72.08 + 09.52 +
J48 97.05 + 271 7125 + 11.08 + 97.09 + 131 73.98 £ 10.65 +
RF 100.0 + 0.00 76.56 + 09.81 + 99.93 + 022 7130 + 09.80 +
MLP 78.92 + 123 78.44 + 10.96 + 7983 + 195 73.00 + 0851 +
LBPgray 88.32 + 078 60.19 + 473 + 7444 + 139 53.88 + 344 +
: LBP,y, 91.03 + 0.94 6570 + 625 + 76.62 + 1.56 53.80 + 336 +
Single tree GP Wrapper Lesioncotor 87.54 £ 1.09 61.81 + 4.56 + 87.55 £ 0.96 65.79 £ 5.90 +
Lesionshape 8427 + 167 61.65 + 428 + 85.89 + 075 64.88 + 3.69 +
LBPgray 82.84 + 135 65.96 + 3.96 + 7341 + 1.87 50.91 + 357 +
) LBPrgs 84.42 + 143 73.87 £ 2.34 + 7552 + 1.62 6326 £ 3.19 +
Single tree GP Embedded Lesioncoior 81.59 + 2.31 6570 £ 3.61 + 81.06 + 1.31 7413 £ 2.67 +
Lesionshape 78.06 + 197 49.89 + 5.34 + 7474 + 2.67 6174 + 7.06 +

Q. Ul Ain, H. Al-Sahaf, B. Xue, and M. Zhang, “A multi-tree genetic 1153 programming representation for melanoma detection using local and 1154
global features,” in Proc. 31st Australas. Joint Conf. Artif. Intell., 2018, 1155 pp. 111-123.

Qurrat Ul Ain, Harith Al-Sahaf, Bing Xue, Mengjie Zhang. "Generating Knowledge-guided Discriminative Features Using Genetic Programming for
Melanoma Detection", IEEE Transactions on Emerging Topics in Computational Intelligence, vol. , Issue. , pp. , Online 2020 (DOI:

10.1109/ TETCI.2020.2983426). 14pp

Evolutionary Multitasking-Based ...

Feature Selection Method

U'Step 1: Generating two related tasks q i AFE
: 'nammgdam/—>| Calculalefeaturewelgh(sbyusngaIie/I"l| * ReliefF:
| : - Feature
B . Rearrange features accordin; . . .
: | ranking/weighting
|
l ! - Based on h nearest
(I ——— — ____ | neighbors of the same
category as the
selected sample R , H;.
02 - Find h nearest

Cosp TS neighbors different

= ~

5, ~ . from category R;

z ~

o ~

é’ 0.05 Knee point S~ ~

2 ! ~

Oke--> —
Promising features
-0.05 . s -
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Index of features

K. Chen, B. Xue, M. Zhang and F. Zhou, "An Evolutionary Multitasking-Based Feature Selection Method for High-Dimensional Classification,"
in IEEE Transactions on Cybernetics, doi: 10.1109/ TCYB.2020.3042243.

Evolutionary Multitasking-Based ...

Feature Selection Method
Te Fitness function:

S
fitness = a * yr(D) + (1 — a) * %

_'{ SubpopulalmnlforTasklwllh| ‘ Subpopulation 2 for Task 2 |

e Knowledge transfer
- Multipopulation framework
- Assortative mating - crossover
- Vertical cultural transmission

the promising feature subset with the whole feature set

—>| Update velocity based on assortative mating ‘

|

|

|

|

|

|

|

|

|

|

|

Update position using Eq. (3): |
Evaluate particles on Task 1 and Task 2 based on vertical

cultural transmission; |

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
| Update fimess, pbest and gbest for Task 1 and Task 2;
|
|
|
|
|
|
|
|
|
|
|
|

~ assign the skill factor for each
generated individual

 Variable-Range Strategy

False .
- linearly reduced from [0, 1] to
[0, 8]

e Subset Updating Mechanism:

- Update candidate features in
Task 1, size unchanged

Update the promising subset based on
subset updating mechanism
Generate optimal feature subset

K. Chen, B. Xue, M. Zhang and F. Zhou, "An Evolutionary Multitasking-Based Feature Selection Method for High-Dimensional Classification,"

in IEEE Transactions on Cybernetics, doi: 10.1109/ TCYB.2020.3042243.

L. Feng et al., “An empirical study of multifactorial PSO and muli-tifactorial DE,” in Proc. IEEE Congr. Evol. Comput., San Sebastian, Spain, 2017, pp.
921-928.
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Evolutionary Multitasking-Based

T GECC GECCH
F Selection Method
[ Dataset_| Method | [ Best [ Mean £ Std [ W | [ Dataset | Method | Time (m) | Size | Best | Mean & Std [ W |
FULT 7137 ¥ ) .
PSO 41854 | 620500 | 7559 | 7181 % 175 | + With VS without knowledge transfer
| Tumor | €SO 627854 | 589.36 | 87.45 | 8350 + 1.70 | + e i _ .
umor 1 AMso 91.22 31900 | 85.06 | 83.10 & 131 | + — Task T 154145 86015 £ 145
VLPSO 67.41 24930 | 8521 | 80.92+£239 | + PSO-EMT Task 2 | 10653 | 499910 | 84.15 + 1.48
PSO-EMT | 106.53 54145 | 89.09 | 86.15 + 1.45 11 Tumor e | Task 1] 2504 59971 | 8651 + 174 | ~
Ut P B I3 I I PSO-EMT™™ | Task 2 | 213.05 | 5673.12 | 8401 & 1.76 | ~
> 4. 234, s g - + Task 1 ~ | 617.61 | 91.09 £ 094
Lung cso 541971 | 23041 | 9347 | 8894+ 175 | + PSO-EMT Tak2 | 13459 | 247530 | 8923 £ 134
AMSO 25532 19347 | 92.64 | 89.97 + 180 | + Lung ) oo | Task 1| 3691 | 72531 | 9067 £ 160 | ~
VLPSO 78.00 17600 | 9286 | 89.55 + 1.68 | + PSO-EMT Task 2 | 26534 | 356124 | 8674 + 135 | +
PSO-EMT | 13459 | 61761 | 9355 | 91.09 & 0.94 =
Traditional methods With VS without subset updating F e a I l I I e
CFS 768140 | 37900 | 8391 ¥ tumor | PSOEMT = | 12109 | 53525 | 89.06 | 8620 & 153 | ~
FCBE 2506 | 39400 | 8294 + °" | PSO-EMT 106.53 | 54145 | 89.09 | 86.15 + 1.45
1Tumor | Relief® 1554 1 111400 | 84.91 + L PSO-EMT™~ | 16936 | 64128 | 9303 | 90.02 + 137 | +
SBMLR 13.87 1500 | 70.13 + ung PSO-EMT 13459 | 617.61 | 93.55 | 91.09 + 0.94 =
SPEC 228 | 615800 | 8330 +
PSO-EMT | 639156 | 54145 | 89.09 | 8615 + 145
CFS T0029.00 | 550.00 | 9331 =
FCBF 3795 | 453.00 | 92.06 -
ReliefF 1669 | 1440.00 | 90.17 + . . .
Lung SEMLR %13 | 3000 | 9262 i With VS without the variable-range strategy
SPEC 301 | 237800 | 8129 + - . . S
PSO-EMT | 807517 | 617.61 | 93.55 | 91.09 + 0.94 | PSOEMT | 1278 | 27236 | 9434 | 8891 £ 249 | +
Leu PSO-EMT 1219 | 22444 | 9446 | 9007 + 2.47
a2 | PSO-EMT 1201 | 52626 | 78.00 | 7221 £3.63 | ~
PSO-EMT 1151 | 499.69 | 80.00 | 7227 + 4.09
Loaks | PSO-EMT™= | 1891 | 41450 | 9607 | 9349 £ 198 | +
<uk3 | PsO-EMT 1472 | 26808 | 97.32 | 9451 + 1.50
1 Tumor | PSOEMT 10574 | 53922 | 9085 | 8633 = 160 | ~
u PSO-EMT 106,53 | 54145 | 89.09 | 8615 & 1.45
Lung PSO-EMT"~ 145.45 676.74 94.04 9116 + 1.19 | =
ung PSO-EMT 13459 | 617.61 | 9355 | 91.09 & 0.94
K. Chen, B. Xue, M. Zhang and F. Zhou, "An Evolutionary Multitasking-Based Feature Selection Method for High-Dimensional Classification,"
in IEEE Transactions on Cybernetics, doi: 10.1109/ TCYB.2020.3042243.
GECC

GECC
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Why use GP for Feature Construction?

e GP is flexible in making mathematical and logical functions

e There isn't much structural (topological) information in the
search space of possible functions, so using a meta-heuristic
approach (such as evolutionary computation) seems

reasonable.
Constructed .
Features Z:> o

Selected
Features

GP for Feature Construction

e The interval of class ¢ could be formulated as follows if the
class distributions were normal, measuring the purity, purity

of each class
Ic - [,uc - 3067 He + 30c]

* Overlapping intervals, bad

<3 =
<3-- =
X
* Non-overlapping intervals, good
- R AR ELE LR R TEERERY i
- AR =
X

Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using Genetic
" IEEE Tr ions on Evolutionary Computation , vol.16, no.5, pp.645-661, Oct. 2012

Progr
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GP for FC Measure: Original VS Constructed Geffic’

¢ 4 features, 3 classes

= = constructed feature
E — PRI | ‘
20 = B
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Neshatian, K.; Mengjie Zhang; Andreae, P., "A Filter Approach to Multiple Feature Construction for Symbolic Learning Classifiers Using Genetic
Programming,” in Evolutionary C: ion, IEEE Transactions on , vol.16, no.5, pp.645-661, Oct. 2012

Gecci

Multi-tree GP for FC

1. Constructed feature set (CF): CFi, CF2, CF3
e CF; = Min ((F7 + Fo), (F4 * Fg))
o CFz = (Fo - Fq) + (Fs * Fg)
e CF3 = (F¢ + F3) - Max (Fs , Fo))
2. Selected feature set (Ter): F2, F3, F4, Fs, Fe, F7, Fg, Fo
3. Combination set (CFTer): CFi, CF2, CF3, F2, F3, Fa4, Fs5, Fe, F7, Fg, Fo

Binh Ngan Tran, Bing Xue, Mengjie Zhang. "Class Dependent Multiple Feature Construction Using Genetic Programming for High-
Dimensional Data". Proceedings of the 30th Australasian Joint Conference on Artificial Intelligence (A12017) Lecture Notes in Computer
Science. Vol. 10400. Springer. Melbourne, Australia, August 19-20th, 2017. pp. 182-194.

Binh Tran and Bing Xue and Mengjie Zhang. "Genetic programming for multiple-feature construction on high-dimensional
classification”, Pattern Recognition, vol. 93, pp. 404-417, 2019

Class-Dependent Terminal Sets .ic

e A constructed feature aims at discriminating instances of a
class (c) from other classes => It is constructed based on
features that are relevant to class c.

e Class-relevant measure:

if p-value > 0.05
otherwise

Relﬁc =

)
[t-value(ferass=c:felass#e)]
p-value ’

e Half of the top-ranked features will be used to form the
terminal set of class c.

- => eliminate irrelevant features
- => narrow the search space

* Fitness = - Accuracy + (1 — «) - Distance

GPFor Class | | Constructed
Dependent & Selected
Feature Features
Construction | |
_____________ a
o
- - Transformed

151 MIKNN @ENB [JDT

£
B A =
- - g0
. 21 o
- &, g
g . z - - 58 3
- vy Bt 4] 2
T M (e 35
. : W g
o ot <
. [iin}

cL Bl K OV K1 SR

CN PR
(a) 1TTGPFC on Leukemial (b) CDFC on Leukemial Dataset

Figure 6.10: Constructed features on Leukemial. (d) Accuracy Improvement

Binh Ngan Tran, Bing Xue, Mengjie Zhang. "Class Dependent Multiple Feature Construction Using Genetic Programming for High-
Dimensional Data". Proceedings of the 30th Australasian Joint Conference on Artificial Intelligence (A12017) Lecture Notes in Computer
Science. Vol. 10400. Springer. Melbourne, Australia, August 19-20th, 2017. pp. 182-194.

Binh Ngan Tran, Evolutionary Computation for Feature Manipulation in Classification on High-dimensional Data, PhD thesis, Victoria
University of Wellington, New Zealand, http:/ / researcharchive.vuw.ac.nz/xmlui/handle/10063/7078
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Biology: PSO with local search on pbest and
resetting gbest

Swarm random | )
L Evaluate fitness of each particle
initialization 1

articles found
better pbest ?
No

Update pbest Yes|
Local search for better pbest

Update gbest

Update particle’s velocity and
position
A

est not improved for
m iterations  ?

|
Use a filter measure to identify: L
— Relevant features: correlated to the class label.
— Redundant features: correlated with each other.
Symmetric uncertainty (SU) is a normalised version of information gain (IG).

Reset gbest to 0 I

Binh Tran, Mengjie Zhang and Bing Xue, "A PSO Based Hybrid Feature Selection Algorithm For High-Dimensional Classification". Proceedings of 2016 IEEE World
Congress on Computational Intelligence,/ TEEE Congress on Evolutionary Computation (WCCI/ CEC 2016). Vancouver, Canada. 24-29 July, 2016. pp.3801-3808.

Gecci \

Biology: PSO with local search on pbest and
resetting gbest

Gecci \

e A PSO based hybrid FS algorithm for high-
dimensional classification.

DLBCL

e PSO-LSSU combines wrapper and filter
measures:

40 0
Leukemia1

- The fitness function.
- The local search.

e PSO-LSSU achieved much smaller feature
subsets with significantly better classification
performance than the compared methods in
most cases.

50 100 150 200

0
L

= PSOLSRG === PSO-LSSU

o
2]
E 7 :
£ g g 5 - 6 times faster
(SR L
o
g than PSO
s 8
’ H
. s ima i
LK1 LK2
L] PSO = PSO-S © PSO- LSRG = PSO- LSSU
Binh Tran, Mengjie Zhang and Bing Xue, "A PSO Based Hybrid Feature Selection Algorithm For High-Di ional Classifi dings of 2016 IEEE World

Congress on Computational Intelligence / [EEE Congress on Evolutionary Computation (WCCI/CEC 2016). Vancouver, Canada. 24-29 July, 2016, pp.3801-3508.

Gecci \

Figure 1: Leukemia constructed feature

GP for FS and FC in Biology
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Binh Tran, Bing Xue and Mengjie Zhang. "Genetic Programming for Feature Construction and Selection in
Classification on High-dimensional Data", Memetic Computing, vol 8, Issue 1, pp3-15. 2016

Gecci \

GP for FS and FC

e Feature distribution

Leukemia four selected features Leukemia feature
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Binh Tran, Bing Xue and Mengjie Zhang. "Genetic Programming for Feature Construction and Selection in
Classification on High-dimensional Data", Memetic Computing, vol 8, Issue 1, pp3-15. 2016
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Feature Clustering for
GP-Based FC on High-Dimensional Data

Eliminating redundant features may improve GP performance in FC

[ s

Redundancy-based Feature
Clustering Method

Gcaturc Cluster CD @aturc Cluster C}

The best
eature of C;

Gecci

Feature Cluster C,,

The best
feature of C,,

The best
feature of C;

GP For
Single Feature
Construction

Constructed & Selected Features
from the best individual

Binh Ngan Tran, Bing Xue, Mengjie Zhang. "Using Feature Clustering for GP-Based Feature Construction on High-Dimensional Data". Proceedings
of the 20th European Conference on Genetic Programming (EuroGP 2017). Lecture Notes in Computer Science. Vol. 10196. Amsterdam. 18-21 April
2017. pp.210--226.

Feature Clustering for
GP-Based FC on High-Dimensional Data

Gecci

» Results of cluster analysis

%Dimensionality Leukemia M19507_at Leukemia U09087_s_at
Dataset  #Features #Clusters . ASC
reduction
Colon 2000 104.10 0.95 0.80
DLBCL 5469 819.20 0.85 0.96
Leukemia 7129 901.30 0.87 0.98 " »
CNS 7129 79.30 0.99 1.00 é é
Prostate 10509 1634.80 0.84 0.85
Ovarian 15154 601.20 0.96 0.31
Alizadeh 1095 93.60 0.91 0.94
Yeoh 2526 97.60 0.96 1.00 10 00 05 1.0 10 00 05 1.0
Feature values Feature values
Leukemia CF Leukemia X61587_at Leukemia U82759_at
o 2 2
£ phaq LR s 4 RS
s s S
4 = of =
(o)) (o) 2PN S L S L
T T T T T T T T T T T T
4 2 0 2 4 -1.0 00 05 1.0 -1.0 00 05 1.0
Feature values Feature values Feature values
Figure 5.5: Leukemia constructed feature. Figure 5.6: Leukemia original features.

| Hybrid GAs-GP Representation for FS and FC™&

A combination of the vector and
tree-based representations.

One individual
The high-level feature and selected

()
[ Tolo]] e
l ° @ original features are evaluated as

o ° one feature set, which ensures to

F8 consider the interactions between
two kinds of features.
P1 ° o1
[LLLT <
o o ; Parent . Offspring ‘
[ o == < ?
OO, OO,

P2 .
nnnn S §
Pt
T BV W

Hoai Bach Nguyen, Bing Xue, and Peter Andreae. "A Hybrid GA-GP Method for Feature Reduction in Classification".
Proceedings of the 11th International Conference on Simulated Evolution and Learning (SEAL 2017). Lecture Notes
in Computer Science. Vol. 10593. Shenzhen, China. November 10-13, 2017. pp. 591-604.

Multi-objective GP for FC and FS

iecci

e c-class problem into c binary classification problems

e evolve c sets of binary classifiers employing a steady-
state multi-objective GP with three minimizing
objectives.

- (i) false positives (FPs),
- (ii) false negatives (FNs),

- (iii) the number of leaf nodes of the corresponding
encoding tree.

« Each binary classifier is composed of a binary tree and
a linear support vector machine (SVM)

e During crossover and mutation, the SVM-weights are
used to determine the usefulness of the corresponding
nodes

Nag, Kaustuv, and Nikhil R. Pal. "Feature Extraction and Selection for Parsimonious Classifiers with Multiobjective Genetic
Programming." IEEE Transactions on Evolutionary Computation (2019).




Multi-objective GP for FC and FS

L[]
Dataset %TA® FS® Ts¢ (F/T)¢ %F° (%F/T)T
Colon 81.10 3.01) 1884 524  3.09 9.42 0.15
TOX-171 79.06 (1.34) 4942 6.50  3.71 8.60 0.06
Leukemial 9233 (1.71) 2112 3.00 198 296 0.03
Leukemia2 93.17 (1.37) 354.8 3.00 199 4.98 0.03
CLL-SUB-111 77.30 (3.26) 5868 545 3.8 517 0.03
7 | L o ool T e
! i T ‘ - [o G Of o ovemmen fu sy wn
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(a) Feature z3631-Vs.-Z228s of Leukemial. (b) Feature x2g37-vs.-Zg930 of CLL-SUB-111. (c) Feature xgg76-Vs.-Z5396 of GCM.

Fig. 4: Linearly separable feature pairs for one class vs. other classes of (a) Leukemial, (b) CLL-SUB-111, and (c) GCM.
“Test Accuracy (standard deviation is provided within parent.hesm),
bNumber of Features Selected per Classifier, “Tree Size, dNumber of
Features per Tree, ©Percentage of Features Selected,  Percentage of
Features Selected per Tree.

Nag, Kaustuv, and Nikhil R. Pal. "Feature Extraction and Selection for Parsimonious Classitiers with Multiobjective Genetic
Programming." IEEE Transactions on Evolutionary Computation (2019).

GP for FC in Clustering: Multi-Tree

o Each tree creates a single constructed feature.

« Each individual contains t trees, to give t constructed features.

B Soodboo b

) The evolved multi-tree GP individual with 7 trees.

min(Fs + [0.97 = Fal, Fa), (0.86 + Fu), Fs, (0.3 + Fy), F, Fo, min((F + F), @{jﬁ)]
o

(b) Constructed feature set generated by the programs.

Andrew Lensen, Bing Xue, and Mengjie Zhang. "New Representations in Genetic Programming for Feature
Construction in k-means Clustering”. Proceedings of the 11th International Conference on Simulated Evolution
and Learning (SEAL 2017). Lecture Notes in Computer Science. Vol. 10593. Shenzhen, China. November 10-
13, 2017. pp. 543--555.

GP Representation — Vector

e Having to set t is annoying. Can we use a single tree?

e Introduce a new concat operator which can create vectors of
CFs.
- Automatically build up a suitable length vector.
- Extend the function set to work on vectors.

Example output gives 4 features:
[min(0.63,F23), F37/0.59, F86, F85]

e However, each tree must be larger.

Andrew Lensen, Bing Xue, and Mengjie Zhang. "New Representations in Genetic Programming for Feature
Construction in k-means Clustering”. Proceedings of the 11th International Conference on Simulated Evolution
and Learning (SEAL 2017). Lecture Notes in Computer Science. Vol. 10593. Shenzhen, China. November 10-
13, 2017. pp. 543--555.

Image Recognition/Classification

e GP for image ananlysis: evolve image descriptors

» Keypoints identification, feature extraction, feature
construction/selection

)

Feature
Detection

Feature
Extraction

Feature
Selection
Construction

The steps for generating a
feature vector

L
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Image Recognition/Classification j%

e The traditional way
e Domain-specific pre-extracted features approach (DS-GP)

( R

The input is raw image pixel values

. J
The feature areas need to be designed byN
domain-experts

Design

(4

Transform the pixel values of the

Feature selected areas to a different domain

s

Extraction J | J
\// Select a subset out of the extracted | A

Feature features (optional)

Selection J L J
v [ Feed the extracted features (with or )

Classification| | Without selection) to GP-based classifier
| J

Geci ’

GP for Image Classification

Output Layer Class Labels: Y_predict
Ensemble| Combination Layer
Learning

Classification Layer

{ Concatenation Layer

Feature
Learning

Feature Extraction Layer

Input Layer

Fig. 8.2 The new program structure of FELGP and an example solution/program that can be
evolved by FELGP

Y. Bi, B. Xue and M. Zhang, "Genetic Programming With a New Representation to Automatically Learn Features
and Evolve Ensembles for Image Classification," in IEEE Transactions on Cybernetics, vol. 51, no. 4, pp. 1769-1783,
April 2021, doi: 10.1109/ TCYB.2020.2964566.

Biological Datasets

Geci ’

6771 181 2
15154 253 2
15000 216 2
15000 322 4
7105 115 4
10,000 200 2

773 40 4

365 40 4

Geci ’

Biomarker Identification

m/z values in Apple-plus datal  New Method (9 v/ Method 2 (3v)
set (12 biomarkers) )
331.21 X v
471.09 v v
107.05, 169.05, 238.05, 275.09, 45 v X
6.11, 459.13
456.62, 475.10 X X
449.11 v v
229.09 v X
Apple minus m/z (5 New Method (5 V') Method 2 (2V)
biomarkers)
463.0 v X
447.09 v v
273.03 v v
435.13 v X
227.07 v X

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker Identification and Classification
using Genetic Programming". Proceedings of 2014 Genetic and Evolutionary Computation Conference (GECCO 2014). ACM Press. 2014.pp.249—256
Soha Ahmed, Genetic Programming for Biomarker Detection in Classification of Mass Spectrometry Data, PhD thesis, 2015, School of Engineering
and Computer Science, Victoria University of Wellington, New Zealand
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GP for FS/FC for Visualisations

(FS) Cost: 3.2854 C ity: 2

(Sample 1) Cost: 2.0650 C: ity: 3¢

e Multi-objective:
- visualizations quality;
- visualizations complexity;

. . . d
o Based on t-distributed Stochasti  swmess s ©

Neighbor Embedding (t-SNE)

(t-SNE) Cost: 0.6502

L = *
» ‘ai
* %
(€3]

Fig. 6. Isolet.

Andrew Lensen, Mengjie Zhang, and Bing Xue. "Genetic Programming for Evolving a Front of Interpretable Models for Data
Visualization", IEEE Transactions on Cybernetics, vol., Issue., pp. . Online 21 Feb 2020

GP for FS/FC for Visualisations

Cost: 1.2580 Complexity: 13

- eees 3z -3

Fig. 11. Complexity of 13. Fig. 14. Complexity of 33. Fig. 16 Complexity of 104.

&

Andrew Lensen, Mengjie Zhang, and Bing Xue. "Genetic Programming for Evolving a Front of Interpretable Models for Data
Visualization", IEEE Transactions on Cybernetics, vol. , Issue., pp. . Online 21 Feb 2020

Feature Selection for Explainable ML

... Evolutionary Process .

Population N
Updating

Decode to CS.:OP. Evohied
Explainable Population Explainable reria +ocel
SUC | — Features ! Initialisation Features Met? Explanations
Fitness Evaluation J
J 2.
Deep CNN Model ————————> cT;:: 'Lm::al

Bin Wang, Wenbin Pei, Bing Xue, and Mengjie Zhang. "Evolving Local Interpretable
Model-agnostic Explanations for Deep Neural Networks in Image Classification".
Proceedings of 2021 Genetic and Evolutionary Computation Conference (GECCO 2021
Companion)

Feature Selection for Explainable ML

©

Figure 4: Explainable features vs unexplainable feature
maps. (a). The original image. (b). Superpixels, i.e. segments
obtained by SLIC. (c). A sample unexplainable feature map
of ResNet. (d). Evolved explainable features.

Figure 6: Evolved local interpretable explanations based on
ResNet. From the top to the bottom, a samoyed, a Persian
cat, a bald eagle and a tiger shark are presented.
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Gecci \

Issues and Challenges

Gecci \

Any problem ?

Training

Data
(a) (Feature)
Subset

Training

Training (Feature)

Subset

/ Training / | |Feature
Set : > Selection Selected Features
! )
Unseen ! Data
Test Set | Transformation
,,,,,,, l —oimimimy
Transformed ;
Classifi Classifi Training Set 1
assification assification 1
Performance Algorithm !
_ Transformed |
Test Set i

o If the whole dataset is used during FS/FC process, the
experiments(or evaluation) have FS/FC Bias

e What if only a small number of instances available ?

- In classification, use k-fold cross validation

- How to use k-fold cross validation in FS/FC to evaluate a FS/FC
system ?

Gecci \

Feature Selection Bias

* Many works on bio-data containing feature selection
- which leads to biased results
- conclusion might change

(@) With bias

Feature Selection
Whole dataset *10-CV or LOOCV in each evaluation

(b) Without bias |

’ﬂiwhole datasetﬂ
[Trainin Feature Selection Selected Classification
gset| |1 - Test set
[ Test set on Training Set Features Accura
Feature Selection Selected Classification
2 8
[EITTITTTT] on Training Set *| Features [ 1¢S5 " Accuracy

Feature Selecti Selected Classificati
[LITTTT T g o Dot || o | TSt

Classification
Accuracy

Classification
Accuracy

Binh Tran, Bing Xue and Mengjie Zhang. "Genetic Programming for Feature Construction and Selection in
Classification on High-dimensional Data", Memetic Computing, vol 8, Issue 1, pp3-15. 2016
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I K-CV in Each Evaluation — Inner Loop .ic

e 3-CV as an inner loop to evaluate each feature subset

e In each evaluation to get &4

_—
Training Test
1 Learning Alg.

[ :

@[]

fl=)] -

s ; Learning Alg. 1 Acc —
£ [ A

i= |

: o e

Learning Alg. Classifier

Kohavi, Ron, and George H. John. "Wrappers for feature subset selection." Artificial intelligence 97.1-2 (1997): 273-324.

Weakness and Issues

Gecsi
e Large Search space:
- Large search space: bit-string/vector with a length equal to the
total number of features

- Classification accuracy or existing filter measures in the fitness
function, which often cannot lead to a smooth fitness landscape
or with low locality

e Long computational time
- A large number of evaluations

- Wrapper: each evaluation involves a learning process of a
machine learning or data mining algorithm

- Filters are computationally cheaper than wrappers

e Poor scalability

- the dimensionality of the search space often equals to the total
number of features, thousands, or even millions

- the number of instances is large

Weakness and Issues

e Feature selection or construction bias issue

* Generalisation issue
- especially wrappers: selected or constructed features can
easily overfit the wrapped learning algorithm and the
training data, leading to poor performance on unseen test
data

- Feature construction

Gecci

Future Directions

« Fitness function:
- reduce the computational cost,
- smooth the landscape of the search space,
- improve the learning and generalisation performance, and
- efficient and effective filter measure
- hybridise wrapper and filter measures
- Surrogate models

e Representation

- Reduce the search space

- Incorporate more information of about the features, e.g.
relative importance of features, feature interactions or feature
similarity

- Embedded feature selection or construction
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Future Directions “fii‘

e Search mechanism
- Combinatorial optimisation
- Memetic computing
- Large-scale optimisation
- Adaptive parameter control techniques

e Multi-objective feature selection or feature construction
- How to keep non-dominated solutions
- Objective space, solution space and search space
- Distance measure, e.g. crowding distance
- How to maintain archive set

Future Directions “fii‘

Explainable machine learning:

- increase the interpretability/understandability of the obtained
feature set

- Simple models via feature selection/construction

e Feature construction

- Construct multiple features
- both feature selection and feature construction

« Transfer learning/Multi-tasking via or for feature selection
and/or construction

« Instance selection and construction
e Combining EC with machine learning approaches

o Feature selection and feature construction for other machine
learning tasks: clustering, regression, text mining, etc.

Gecci

Thank you
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