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« Evolutionary deep learning for image classification

¢ (Part Il) From the EC attic... Re-using (and renovating)
forgotten tools

s Summary

Introduction
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Computer Vision

“ The “art” of making computers see (and understand what
they see)
« Computer vision vs image processing
++ Sub-topics:
+ Image acquisition
* Image enhancement
* Image segmentation
» 3D-information recovery/feature extraction
» Image understanding

Computer and Human

Vision
HUMAN COMPUTER
Perception Image acquisition
Selective information Feature enhancement
extraction (signal/image processing)

Segmentation
3D-information Recovery

Grouping by ‘similarity’
Extraction of spatial
relationships

Object recognition and

Image Understanding
semantic interpretation

Computer and Human
Vision

COMPUTER

Extraction of spatial 3D-information Recovery

relationships

Object recognition and
semantic inte i

Image Understanding

Computer and Human Vision

H
Perception

Selective information
extraction

Feature enhancement
(signal/image processing)
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Application Taxonomy

% EC techniques
* GA, GP, ES, EP, PSO, DE, LCS, EMO, EDA, etc.

+ Solution types
» Optimisation of parameters of specific solutions (using GA, ES,
PSO...)
Related with a well-defined task or for a whole system

» Generation of solutions from scratch (GP, ...)
Performance optimization based on specific objective functions
It is difficult to choose a model with reasonable assumptions

“ Role of EC techniques
» Interactive qualitative comparisons between solutions

» Generation of emergent collective solutions

Achievement of higher-level and complex tasks from collective use of trivial,
local, hard-wired behaviours: generation of full EC-based solutions, NOT
parameter optimization tasks

Applications

s+EC techniques: GP, PSO, LCS, EMO
**Image Analysis

Object tracking

Edge detection
Segmentation

Motion detection
Object/digit recognition

“*English stress detection(signal processing)

“»Pattern Recognition: feature selection and
biomarker detection

Evolutionary Deep Learning for
Image Classification (Part I)

.0

o

o

Evolutionary Deep Learning

» Deep Learning — personal view
Definition
NN-based deep learning
Non-NN type deep learning
« Evolutionary Deep Learning — personal view
evolving NNs/neuro-evolution - evolutionary deep learning
GAs/PSO/GP for evolving NNs
GP for deep learning
» Examples of EvoDL for Image Classification
GAs for evolving auto-encoders for image classification
GAs for evolving CNNs for image classification
PSO for evolving CNNs for image classification
Surrogate based method for EvoDL acceleration
GP for evolving deep structures for image classification

» Summary
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Deep Learning -- Overview

®

« It aims at learning hierarchical/meaningful representations through a
deep and non-linear transformation

SPEECH : Lower the error rate by 30%, which is a most
big breakthrough

VISION : Error rate from 26% to 15% in ImageNet
NATURE LANGUAGE PROCESSING : Deep auto-encoders

¢

Google voice assistant

IMAGENET Stanford emotion analysis Google Translate

|(<ecoomn)|(orm--]

= =) warpeJd region

facroplanc? no.

Al =ML =DL =DNNs = CNNs ?

Deep Learning -- Definition

« What is “Deep Learning”? Deep Learning = Deep Neural Networks?

Traditional, single or double hidden layers Many layers

e.g, ImageNet winners:
2012: 8 layer

2015: 152 layer

2016: 1207 layer

deep

Trained by

inputfromthe > neuron Backpropagation (BP)
/ i-th neuron / .
. or variant
Ty /
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Deep Learning — Definition [Zhou]

To be able to
“eat the data”

My current view

layer-by-layer
processing; feature
transformation Sufficient model

\ / complexity

Deep model

easy to )
overfit Computationally

expensive

difficult to
train

D
Big training™, Training  Powerful comp.
data tricks  facilities (e.g., GPU)
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Deep Learning — My View

% Layer-by-layer processing
% Feature transformation
+ Feature extraction
+ Feature construction
+ Feature learning
% Sufficient model complexity
+  Complexity # the number (#) of nodes, layers
* Including function complexity
* Not necessarily symmetrical
» #examples?
» Interpretation?

o

o
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Deep Learning Methods

Deep
Learning
(Example
Algc‘)rithms)
Non-NN NN-based
Methods Methods
\ ‘ \ y—‘—\
D Deep
Deep eep Genetic Feed- I Recurrent
Forest PCA Program forward
ming

| _ L

. Deep u
ComE ey Deep Belief Stacked Long-short Highway
al Neural Network Aut Term Network
Network el Undo» Memory

encoders

Convolutional Neural Networks

X3

R

Supervised Deep Learning method, dominant DL algorithm
and PDP Group’s T-C Problem of weight Sharing [Chap 8,1986]
Yan LeCun’s SWNNs [1989, 90, ...]

A CNN is composed of multiple convolutional layers, pooling layers and fully-
connected layers [19987]

State-of-the-art CNNs: VGG (2015), ResNet (2015), DenseNet [2016]

X3

o

X3

RS

X3

R

X3

R

Input Feature maps Feature maps Feature maps Feature maps Output
24x24 4@20x20 4@10x10 8@8x8 8@4x4 20@1x1
P—
Convolution St C | C

Architecture of LeNet-5

ViCToRA

Deep Belief Networks, Deep (Stacked) Auto-
encoders, and LSTMs

«» Pioneering work on Deep Learnin
» P konD L

A Fast Learning Algorithm for Deep Belief Nets
Published in Neural Computing, 2006, Hinton and etc.,

« Unsupervised Deep Learning method (DRBMs)

af

Geoffrey Hinton

output

hidden

input
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LSTM
Encoder Decoder

Non-NN Deep Learning

++ Deep Convex Net [2011]

« PCA Net [2014/15]

+» Deep FisherNet [2016]

++ Deep Forest learning [2017]

% Genetic Programming based Deep
Structures/Learning
+ 2012: GP is doing (evolutionary) deep learning
+ 2018: EC is deep learning

1173




Disadvantages of NN-based DL methods

0’0

» Too many hyper-parameters
» Currently, gradient-based algorithms are used to train the weights
» Model complexity fixed once structure decided; usually, more than
sufficient
» Big training data required
» Theoretical analysis difficult
Blackbox and interpretation hard
» Architectures of state-of-the-art NN DL methods are manually designed
« ResNet, DensNet, VGG, Maxout, Highway, GPT, All CNN
Issues:
« Increasingly deep and complex
« Require expertise in both DNNs and the problem domain
« Computationally expensive
« EC) methods work well in addressing non-convex/no-differentiable
problems, and do not require domain knowledge

0’0

0’0

0’0

0’0

’0

%

0’0

Automated Design of Deep Neural Networks using EC!!!

Evolutionary Deep Learning

+ Three stages:
+ evolving NNs >
* neuro-evolution >
+ evolutionary deep learning

% GAs/PSO/DE/GP for evolving DNNs

 GP for deep learning

Evolutionary Deep Learning — EC for Evolving NNs

« EC methods have been successfully used to optimize the architecture
and even the weights of neural networks over 20 years ago (Yao 1999)
« Neuro-genetic evolution (Ronald 1994), Cellular Encoding (Gruau 1994)
+  GNARL (Angeline 1994), EPNet (Yao 1997), NEAT (Stanley and Miikkulainen
2002)
+ HyperNEAT (Stanley 2008), ES-HyperNEAT (Risi, Stanley 2012)
«  EANT/EANT2 (Kassahun and Sommer 2005), (Siebel and Sommer 2007)
» ICONE (Rempis 2012), DXNN (Sher 2012), SUNA (Vargas 2016), MABE (Bohm
2016)
+ CMA-HAGA (Rostami 2016/17), ...
« Neural networks were typically shallow and have a small number of
parameters
« NEAT and its variants are capable of address the problem regarding
median-scale neural networks

« Recently, a number of EC-based new methods have been proposed to
automatically evolve/learn DNNs

Evolving Unsupervised DNN

+ One method using GA to automatically evolve unsupervised DNN
« The goal is achieved by two stages:

» Architecture and initialized weights are evolved for building blocks

« Stacked building blocks stacked are trained by Stochastic Gradient Descent

Encode Crossover Mutation Evaluation Selection

EEE Stagel

R ! e ‘ Stage2

Pl ‘
AR
g. —P%—» LY ] —>’

‘Yanan Sun, Gary G. Yen, Zhang Yi, "Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations'. IEEE Transactions
on Evolutionary Computation. DOI:10.1109/TEVC.2018.2808689.

Classifier
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Evolving Unsupervised DNN

®

« Evolved building blocks are stacked with the architecture and weight
initialization values

« Using SGD to achieve the best performance of the deep model

w, w. w Predict True

e 4 P Label Label

. m*-‘:cr 7 cossrier o |

{}I.' o “‘---T.---"

back-propagation m

EUDNN

k AE RBM DAE CAE SAE DBN
MNIST 0.9878(0.00751) | 0.9885(0.00255) | 0.9820(0.00506)(+) | 0.9843(0.00699)(+) | 0.9832(0.00891)(+) | 0.9771(0.00959)(+)
MNIST-basic 0.9674(0.00616) | 0.9633(0.00473) | 0.9580(0.00352)(+) | 0.9635(0.00831)(+) | 0.9776(0.00585)(-) | 0.9658(0.00550)(+)
MNIST-rot 0.7952(0.00917) | 0.7549(0.00286) | 0.7274(0.00757)(+) [ 0.7706(0.00754)(+) [ 0.7852(0.00380)(+) [ 0.7639(0.00568)(+)
MNIST-b: nd 0.8843(0.00076) | 0.8386(0.00054) | 0.7725(0.00531)(+) | 0.5741(0.00779)(+) | 0.8851(0.00934)(=) | 0.8221(0.00130)(+)
MNIST-back-image 0.4325(0.00569) | 0.4830(0.00469) | 0.4022(0.00012)(+) | 0.4010(0.00337(+) | 0.4638(0.00162)(+) | 0.4587(0.00794)(+)

MNIST-rot-back-image | 0.8925(0.00906) | 0.8879(0.00815) | 0.8691(0.00127)(+) | 0.6574(0.00913)(+) [ 0.8733(0.00632)(+) | 0.8830(0.00098)(=)

0.9627(0.00311) | 0.9681(0.00829) | 0.9232(0.00166)(+) | 0.6275(0.00602)(+) | 0.9408(0.00263)(+) | 0.9622(0.00154)(=)

Rectangles-image 0.7521(0.00689) | 0.7716(0.00048) | 0.7598(0.00451)(+) | 0.7810(0.00784)(=) | 0.7725(0.00002)(-) | 0.7628(0.00913)(+)

Convex 0.8113(0.00052) | 0.8085(0.00826) | 0.7930(0.00538(+) | 0.8016(0.00996)(+) | 0.8053(0.00878)(+) | 0.7895(0.00443)(+)
Cifar10-bw 0.4798(0.00107) | 0.4331(0.00962) | 0.4309(0.00005)(+) | 0.4860(0.00775)(+) | 0.4423(0.00817)(+) | 0.4598(0.00869)(+)
+-I= 10/0/0 9/0/1 7721 8/0/2

EvoCNN

+ One method using GA to evolve the architectures and the weight
initialization of CNNs

« Designed a variable-length individual method encoding CNNs with
unequal depths

« Proposed a crossover operator for individuals with different lengths

« Train the individual with a small number of epochs to find the potentially
better one

++ Find the best one when the evolutionary process terminates, and then
fully trained it for the best performance

+ Representation:

Cel» [fe]e] » | [= ]« ]
[c[<1-1 - [#]
[c[r1<1-[<] - [l

Convolutional Poo]ingEl Full connection _

Sun, Yanan, Bing Xue, and Mengjie Zhang. "Evolving deep convolutional neural networks for image classification.”. IEEE Transactions on Evolutionary
Computation. 2019. DOI: 10.1109/TEVC.2019.2916183

EvoCNN

« Crossover operation is composed of three phases: UC, UAC and UR

Chromosome #1 Chromosome #2
C1 P1 {64 c3 P2 €l P1 c2 P2 P3

Convolutional Pooling Full connection Convolutional Pooling
unit list unit list unit list unit list unit list

| E
- =

]

Full connection
unit list

(a) Unit Collection

crossover crossover e

ko Eml | ke S | -
crossover N crossover

I I n ................... I -

o P3 /..

(b) Unit Aligh and Crossover

Offspring #1 Offspring #2
[a[a[al=]=]s= 2] [elafala]n] z [ & [

(¢) Unit Restore

EvoCNN

« Comparisons on the FASHION dataset

classifier | error(%) I # parameters | # epochs
2C1P2F+Drouout 8.40(+) 3.27TM 300
2C1P 7.50(+) 100K 30
3C2F 9.30(+) — —
3C1P2F+Dropout 7.40(+) 7.14M 150
GRU+SVM-+Dropout 10.30(+) — 100
GoogleNet [41] 6.30(+) 101M —
AlexNet [3] 10.10(+) 60M —
SqueezeNet-200 [51] 10.00(+) 500K 200
MLP 256-128-64 10.00(+) 41K 25
VGGI16 [52] 6.50(+) 26M 200
EvoCNN (best) 5.47 6.68M 100
EvoCNN (mean) 7.28 6.52M 100
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EvoCNN AE-CNN

« Comparisons on the MNIST variants « An automation method for CNN architecture design based on blocks
% The blocks are the build blocks of state-of-the-art CNNs (ResNet and

DenseNet)
classifier [ MB | MRD [ MRB | MBI | MRDBI | Rectangle [ RI | Convex == __mag mmg e
CAE-2 [53] 248(+) | 9.66(+) | 10.90+) | 1550(+) | 45.23(+) | 121(+) | 21.54(+) —
TIRBM [54] - 4.20(-) — - 35.50(+) — — = input. [conva Hd comvz |13 conva Jokp{ conva | output
PGBM+DN-1 [55] — — 6.08(+) | 12.25(+) | 36.76(+) - - -
ScatNet-2 [56] 127(+) | 7.48(+) | 1230(+) | 18.40(+) | 50.48(+) | 0.01(=) | 8.02(+) | 6.50(+)
RandNet-2 [57) 1.25(5) | 847(1) | 1347(x) | 11.65(+) | 43.69(+) | 0.09(+) | 17.00(+) | 545 « Each gene denotes one type of block and its associated parameters, the
PCANet-2 (softmax) [57] | 1.40(+) | 8.52(+) | 6.85(+) | 11.55(+) | 35.86(+) | 049(H) | 1339+ | 4.190) fully-connect layer is not used, using variable-length encoding strategy
LDANet-2 [57] 105(-) | 7.520) | 681(+) | 12.42(+) | 38.54(+) | 0.14(+) | 1620(+) | 7.22(+)
SVM+RBF [50] 3.03(+) | 1L11(+) | 14.58(+) | 22.61(+) | 55.18(%) | 2.15(+) | 24.04(+) | 19.13(+)
SVM+Poly [50] 3.69(+) | 15.42(+) | 16.62(+) | 24.01(+) | 56.41(+) | 2.15®) | 24.05(+) | 19.82(+) e I pm = | P = I = o I prmT
NNet [50] 4.69(+) | 18.11(+) | 20.04+) | 27.41(+) | 62.16(+) | 7.16(+) | 33.20(+) | 32.25(+) > IS -»> >.. >
SAA-3 [50] 3.46(+) | 10.30+) | 11.28() | 23.00) | 51.93+) | 241(+) [ 24.05+) | 18.41(+) amount, in, out, k max pooling amount, in, out mean pooling
DBN-3 [50] 311(H) | 1030 | 6.73(+) | 1631(H) | 47.39(%) | 2.61(1) | 22.50(+) | 18.63()
EvoCNN (best) 1.18 522 2.80 4.53 35.03 0.01 5.03 4.82
EvoCNN (mean) 1.28 5.46 3.59 4.62 37.38 0.01 597 5.39

Yanan Sun, Bing Xue, Mengjie Zhang, Gary G. Yen. Completely automated CNN architecture design based on blocks. IEEE Transactions on Neural
Networks and Learning Systems, DOI: 10.1109/TNNLS.2019.2919608

AE-CNN Genetic CNN

« Fully training each individual and using the classification accuracy as the « One method using GA evolving CNNs
fitness, compared with state-of-the art CNNs, semi-auto NAS, and Auto < The encoding process is composed of multiple stages
NAS : : :
« The maximum number of stages must be predefined, which reflects the
CIFARI0 _CIFARI00 ¥ of Parameter _ GPU Days depth of the evolved CNN
DenseNet (k=12) 524 24.42 1.0M - hand-crafted architecture . s . .
ResNet (depth=101) 643 25.16 1M = hand-crafted architecture % Each individual is directed trained from scratch
ResNet (depth=1,202) 793 27.82 102M N hand-crafted architecture oo IndiVidUaIS haVe the equal Iengths
Maxout 93 38.6 - - hand-crafted architecture
VGG 6.66 28.05 20.04M - hand-crafted architecture Stage 1 Encoding Area
Network in Network 8.81 35.68 - - hand-crafted architecture
Highway Network 172 32.39 - - hand-crafted architecture
T INPUT [convesz l POOL1 | nextst
AIL-CNN 7.25 3371 = = hand-crafted architecture —— =® ikl s
FractalNet 522 223 38.6M - hand-crafted architecture | b1 T TR
Genetic CNN 71 29.05 = 17 semi-automatic algorithm
Hierarchical Evolution 3.63 - - 300 semi-automatic algorithm 32x32x3 Code: 1-00-111 16 X 16 x 32
EAS 423 - 23.4M 10 semi-automatic algorithm Stage 2 Encoding Area
Block-QNN-S 438 20.65 6.1M 90 semi-automatic algorithm
Large-scale Evolution 54 - 5.4M 2,750 completely automatic algorithm prev. stage [T| | POOL korvess pooling [| | POOL2
Large-scale Evolution = 23 40.4M 2,750 completely automatic algorithm | | T ) _"'_ (62363~ @
CGP-CNN 5.98 - 2.64M 27 completely automatic algorithm @
NAS 6.01 - 25M 22400  completely automatic algorithm cos IR
MetaQNN 692 27.14 = 100 completely automatic algorithm 16ixi16xi32 ode: 0-00-100- Bix.8ixion
AE-CNN 43 - 2.0M 27 completely automatic algorithm
AE-CNN N 20.85 5.4M 36 completely automatic algorithm

Lingxi Xie and Alan Yuille, “Genetic CNN,” in Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017, pp.1388-
1397.
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Large-scale Evolution

+“+ One method using GA to evolve architectures of
CNNs

+ Individuals are with unequal lengths

+«+ Only mutation operation, no crossover operation

+ During mutation, the setting of one convolutional operation
could be changed, removing or adding new connections

+ Large-scale Evolution defined 12 operations for mutation
+ Fitness is the classification accuracy in terms of image
classification tasks
“ Weights are inherited from the parent individual
+» A set of predefined convolutional operations are
provided

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc Le and Alex Kurakin, “Large-scale
evolution of image classifiers,” in Proceedings of Machine Learning Research, Sydney, Australia, 2017, pp. 2902-2911.

Large-scale Evolution

< Evolutionary process

test accuracy (%)

0.9 28.1 70.2 wall time (hours) 256.2

Hierarchical Evolution

++ One method using GA to evolve architectures of
CNNs

+ The whole architecture is evolved by several steps

+* In each step, only a small architecture is evolved

+ Multiple small architectures are stacked to form a
big/deep architecture

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando and Koray Kavukcuoglu, “Hierarchical representations for efficient
architecture search,” in Proceedings of 2018 Machine Learning Research (ICML), Stockholm, Sweden, 2018.

Hierarchical Evolution

% In the first step, a set of primitive operations is provided
+ 1x1 convolution of C channels
3x3 depth-wise convolution
3x3 separable convolution of C channels
3x3 max-pooling
+ 3x3 average-pooling
* Identify
« Randomly select several primitive operations, and then use a
Directed Acyclic Graph to denote the connection between selected
operations

23 = merge(o{") (x2), 08" (z1))

[
o x1
1
02) 1x1 conv  3x3 conv  3x3 max-pooling assemble 3x3

1 1 1
Ogl) 1 0(1 ) 0:(2 ) O;(; ) pooling

()(12)
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Hierarchical Evolution

®

+ In the second step, the best one found in the previous step is as a new
primitive operation, and do the same evolutionary process

1x1 3x3 3
3x3 assemble \Q o
= ?
> x1 3x3  3x3 R Y
pooling \ ‘/0,\&3
. . lod
(2) (2)
02 03

1x1
(2)
o ]
1 0(]*)
T3 = IH(‘V'.('II‘((’(]”(.I'-_))AU[Jl7(J’]))
oM
1 (1) 1x1
x2 = o) (21) 03" 1Mxlconv 3x3conv 3x3 max-pooling (13863:’"1}1)16 3x3
| 1 (1) i
Ogl) Ea 0(1 : oé ) 03 pooling
(2) (2)
Gy 01

CGP-CNN

« One genetic programming approach evolving architectures of CNNs

0

« By providing a set of primitive operations, the Cartesian genetic
programming is used to evolve different connections between the
primitive operations

Initialization

Calculate classification '
accuracy (fitness) with
validation data

— L

CNN training by = \
backpropagation with ’l
training data

Reproduction

Masanori Suganuma, Shinichi Shirakawa and Tomoharu Nagao, “A genetic programming approach to designing convolutional neural network
architectures,” in Proceedings of the Genetic and Evolutionary Computation Conference. ACM, 2017: 497-504. Extended version in ECJ

CGP-CNN

+ In encoding process, each operation is encoded by
three unit, the first is the index, the second and the
third refers to the indices of its input

«+ Each one is converted to the CNN for fitness
evaluation on image classification task, the fitness is
the corresponding classification accuracy

1 3 5 & N H
° Summation
pool

conv conv
(32, 3) (64, 5) (max)

7 i .—.I Max Pooling E
2 4 6 output i '
pool F‘ conv e e R e i 4

(max) 64, 3) Convolution 4 /7 Convolution
- 64 output channels .' 64 output channels
5x5 receptive field 3x3 receptive field
(Node no)

1 2 3 4 5 6 7
Genotype [C0|0 [2|[P1[0 : ca|1|2]|ic2|2|1|P1|2[2][s |3]4| 0|6 1 -I S 2(77] Max Pocing

32 output channels 2x2 receptive field
3x3receptive filed || |) Stride 2

{ Function ID | Tst input node no. | 2nd input node no. § [] : not expressed in the phenotype

RB (128,3)

CB (32, 5) CB (64, 3) CB (128, 3)
1 A

CB (128, 3) CB (128, 3)

[cB @25 | [ sum < w ]
2
5 A R
~I— 7 e
5] o]
Z

RB (128, 3)
RB (128, 3)

RB (128,3)

(a) CGP-CNN (ConvSet) (b) CGP-CNN (ResSet)
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PSOAO

+» A PSO method to evolve architectures of the Flexible
Convolutional Auto-encoder
A traditional convolutional auto-encoder has one encoder and one
decoder
— one encoder is composed of on convolutional layer and on pooling layer
— one decoder contains only one de-convolutional layer
— State-of-the-art CNNs do not have such architectures
In the flexible convolutional auto-encoder
— its encoder has multiple convolutional layers and pooling layers
— It can form the state-of-the-art CNNs
— but its architecture is not easy to manually tune
« Particles with different lengths to represent different flexible
convolutional auto-encoders

% In PSOAQO, a x-reference velocity updating strategy is proposed

Yanan Sun, Bing Xue and Mengjie Zhang, “A particle swarm optimization-based flexible convolutional auto-encoder for image classification,” IEEE
Transactions on Neural Networks and Learning Systems. Volume 30, Issue 8, 2019. pp. 2295 - 2309. DOI: 10.1109/TNNLS.2018.2881143

PSOAO

« In x-reference, gBest and

pBest adopt the length of -

% oo [ooiaen] [ e {‘ R A )
the current particle
« If the lengths of gBest

(a)

and pBest exceed that of

the current patrticle,

truncation is performed,

otherwise zeros are £

padded

e e et o O e P e I B |

©

R

@

PSOAO

+ The performance of flexible convolutional auto-encoder outperforms state-
of-the-art auto-encoders and convolutional auto-encoders

Algorithm CIFAR-10 MNIST STL-10 Caltech-101
SSAE 74.0(0.9) 96.29(0.12) 55.5(1.2) 66.2 (1.2)
SDAE 70.1(1.0)  99.06 [25] 53.5(1.5) 59.5 (0.3)
SCAE 78.2 [16] 99.29 [16]  40.0 (3.1) 58.0 (2.0)

SCRBM 78.9 [63] 99.18 [19] 43.5(2.3) 65.4(0.5)[19]
SCDAE-1  75.0(1.2) 99.17(0.10) 56.6(0.8) 71.5 (1.6)
SCDAE-2  80.4(1.1) 99.38(0.05) 60.5(0.9) 78.6 (1.2)
SFCAE-1 78.9(0.3) 99.30(0.03) 61.2(1.2) 79.8 (0.0)
SFCAE-2  83.5(0.5) 99.51(0.09) 56.8(0.2) 79.6 (0.0)

IPPSO

’0

*

A PSO to effectively evolve the architectures of CNNs
The encoding strategy is based on IP protocol

» Binary string is used to encode the architecture

» Masks are used to disable/enable the corresponding unit

’0

6

0’0

0’0

Decimal binary to byte

to binary
2
= &1

:

Bin Wang, Yanan Sun, Bing Xue, Mengjie Zhang, “Evolving deep convolutional neural networks by variable-length particle swarm optimization for image
classification,” Proceedings of 2018 [EEE Congress on Evolutionary Computation. Rio de Janeiro, Brazil. 8-13 July 2018. pp. 1514-1521.

]
Conv Conv connected
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2
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IPPSO E2EPP
Aassier MB MDRBI cs « Almost all state-of-the-art NAS methods train the new architecture from
— scratch
. CAE-2 2.48(+) | 45.23(+) - o )
* Beston MDRBI T — 35.50(5) — < Training even one architecture on modern dataset consumes hours to
3 nd Best on ME - days on GPU servers
S_eco dBesto PGBM+DN-1 - 36.76(+) - . y X i i
«» Fifth on Convex ScatNet-2 127 | 50480 6500 «+ This is computationally expensive problem
RandN [_2 1'25 4"4.69 5'45 + EC researchers have developed a number of promising algorithms
ancet 25() 3.69(+) 450) + The random forest technique is used to predict the performance of each newly
PCANet-2 (softmax) 1.40(+) 35.86(+) 4.19(-) generated architecture
LDANet-2 1.05(-) 38.54(+) 7.22(-)
SVM+RBF 3.03(+) | 55.18(+) | 19.13(+)
SVM+Poly 3.69(+) | 56.41(+) | 19.82(+)
NNet 4.69(+) 62.16(+) 32.25(+)
SAA-3 3.46(+) | 51.93(+) | 18.41(+)
DBN-3 3.11(+) | 47.39(+) | 18.63(+)
IPPSO(mean) 121 | 3450 | 1206 ot v, o e, B Yoo, Yoot s oy . Yor, e 2, St i Bk s Laaing U en EncoEnd
IPPSO(besI) l 13 33 8 48 DOI:10.1109/TEVC.2019.2924461 ' ' '
IPPSO(standard deviation) 0.103 2.96 2.25
E2EPP E2EPP
« This is an off-line surrogate-assisted method « Integrated into AE-CNN, the performance of E2EPP is investigated

35 SN AE-CNN+E2EPP 33
B AE-CNN

E . f 4
: {esal § 30
2 25
H I ZEPP It 1 L ) %
S nlalaly " =S 2
|
x 2
=Ny S, oo 15
g
ol 10
mant [0 [0 fisicil o, et 7
i Decision variables: CNN 11 5
i i} Training |i Objectve { 4 Predictorpool
i
optimum CIFAR10 CIFAR100

Architecture Predictor Predictor Fitness
discovering selection combination prediction
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E2EPP

« The overall performance compared with state-of-the-art CNNs and NAS
methods

Graph-based Approach

v Encoding

Peer Competitors CIFARI0O CIFAR100 GPU Days —
DenseNet 94.76 75.58 - -
ResNet (depth=101) 93.57 74.84 - Conet
ResNet (depth=1,202) 92.07 72.18 - L
Maxout 90.70 61.40 -
state-of-the-a S Conv 3x3 Conv 3x3 Conv 1x1
sy : S N —
IS Network in Network 91.19 64.32 - N N e
Highway Network 92.28 67.61 - = o ROl e
All-CNN 92.75 66.29 -
FractalNet 94.78 77.70 - [ sep3a | [ com3xz | [ cowdaa Tnput
NAS 93.91 - 22,400 [
CNN architecture design algorithms MetaQNN 93.08 27.14 100 Input
based on non-evolutionary methods EAS 95.77 - 10
Block-QNN-S 95.62 79.35 90 Code, ([i{'z‘ - 13; ((SA f zlz, 7““1’))((36‘2 %ﬁg;
Genetic CNN 92.90 70.95 17 (7,7,0,2,6), (8, 8,0, 7, 4)]
. AC T . Large-scale Evolution 94.60 77.00 2,750
AN anchitecture design algorhins | yierarchical Evolution 96.37 - 300
; y ; CGP-CNN 94.02 - 27
AE-CNN + E2EPP 94.70 7798 8.5
Gonglin Yuan, Bing Xue, and Mengjie Zhang. " A Graph-Based Approach to onvolutional Neural Network Construction forimage
Classification ". Proceedings of 2020 the 35th International Conference on Image and Vision Computing New Zealand (IVCNZ 2019). IEEE
Press. Wellington, New Zealand, 25-27 December, 2020
Results MOPSO for Evolving Deep CNN

COMPARISONS ON THE FASHION DATASET. RESULTS OF DIFFERENT METHODS.

Methods MB MRD MRDBI Convex
classifier error(%)  # parameters

CAE-2 248(+)  9.66(+)  45.23(+) —

2C1P2F+Drouout 8.40(+) 3.27M TIRBM . 4.20(+)  35.50(+) —
2C1P 7.50(+) 100K PGSBMJDI‘ZI'] 127 y 7£ 5 :ngEJr; 653 3

3C2F 9.30(+) . ScatNet- 27(+ A8(+ 50.48(+ .50(+
RandNet-2  125(+) 847(+) 43.69(+)  5.45(+)
3C1P2F+Dropout 7.40(+) 7.14M PCANet-2  140(+) 8.52(+) 3586(+)  4.19(+)
GRU+SVM+Dropout  10.30(+) — LDANet-2  1.05(+)  7.52(+)  38.54(+)  7.22(+)
GoogLeNet 6.30(-) 101M SVM+RBF  3.03(+) 1L11(+) 55.18(+) 19.13(+)
AlexNet 10.10(+) 60M SVM+Poly  3.69(+) 1542(+) 5641(+)  19.82(+)
SqueezeNet-200 10.00(+) 500K NNet 4.69(+) 18.11(+)  62.16(+)  32.25(+)
MLP 256-128-64 10.00(+) 41K ;’;ﬁ’i ;-ﬁ“; }g-;g“i i ; -2;“; }g-g“i
3 A1+ 30(+ 39+ 63(+
Fj/ G((:}I\l& 76';?(’) 6256%]/1 EvoCNN 1.28(+)  546(+)  37.38(+H)  5.39(+)
Vo 28(+) - FGP 1.30(+)  8.44(+) — 1.84(+)
DAGCNN(ConvOnly) 672 251M HGAPSO 0840  — 12230 1240
DAGCNN 6.94 1.33M DAGCNN 1.00 4.13 15.88 1.68

v Representation/Encoding

Block 1 Block 2 Block 3

number of | growth | number of | growth [ number of | growth
conv layer | rate conv layer | rate | convlayer | rate

v Objectives:

- Classification accuracy
- Number of FLOPs (floating point operations) --- reflect the computational cost of both
training and inference

v OMOPSO (M. R. Sierra and C.Coello Coello, 2005)
v Speedup the training
- Stop training if accuracy does not increase for 10 epochs

- prevent the same CNN from the duplicate training
- Infrastructure

Wang, Bin, Yanan Sun, Bing Xue, and Mengjie Zhang. "Evolving deep neural networks by multi-objective particle swarm optimization for
image classification." In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 490-498. 2019.
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MOPSO for Evolving Deep CNN

Pareto front (20 inds 20 gens) Pareto front (50 inds 10 gens)

ME-SD-BDC

« Look for skip-connections for more dynamic structures
+ ME-SD-BDC - Adjacency Matrix Encoding

« Improves DenseNet-BC performance on CIFAR100 and CIFAR10 by refining skip-
connection structure, with modest complexity increase

Analysed networks for insight into novel skip-connection structures

08s - Each individual encoded as a 3xNxN Boolean adjacency
08s - el oI, matrix, where n=%242
1 & 084 - 23
0382 "'4. ) “s
Ry 755 A -
IS A 082 o[1][1] o]0 image |—{c, ok
0.80 . 4%1‘. AT, o[o[1]1]0
z \te z Y ofofo]1]1
So7s H 5 080 i ADBDE \‘
g " g 2 ARNND A TN NN\
076 . ’, T e e e (=
078 . o[1]1[1]1 )
oi74 o ool sts L .
| sl RGN )
074 of1{ofo]1
-7 -6 -5 -3 -2 -1 0 -7 -6 -5 -4 -3 -2 -1 0
FLOPs 1e8 FLOPs 1le8 : : ; : :
ojfojofo|1
ojfojofo|o
(a) 3% 5 x 5 Representation (b) Interpretation
A full ple individual and inter
Damien O'Neill, Bing Xue, and Mengjie Zhang. "Neural architecture search for sparse Di with dynamic ion." In P
of the 2020 Genetic and Evolutionary Computation Conference, pp. 386-394. 2020.
ME-SD-BDC: Results
PSO for Evolving and Stacking Transferable Blocks
- Minimise the search space: the vector only consists of two dimensions, which are
the growth rate and the number of layers
Increase CIFARI0 CIFAR100 g v
Network/s in weights Test Error Test Error
over baseline | Improvement | Improvement 1
DenseNet-B ( )
A Small PSO Stack
= = * | >
Clk=24,¢= 14.5M 0.73% 4.51% ( Subset Evolution DenseBlock
250,¢ = 0.5) Dense Block *
ME-SD-BDC p=021M p=0.29% p=0.72% A‘! _

g

Q Training
Sat

I ] Select the best l I

Evaluate

Final CNN

Wang, Bin, Bing Xue, and Mengjie Zhang. "Particle swarm optimisation for evolving deep neural networks for image classification by evolving

and stacking transferable blocks." In 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1-8. IEEE, 2020.
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Results

Method CIFAR-10 Number of | Computational | Method CIFAR-100 SVHN
(Error rate%) Parameters Cost
kc«Ncmokl.n ?.43 1|7.7:\|‘ - Network in 35.68 235
DenseNet(k = 374 27.2M
0) 4] Network [29]
EAS [20] 4.23 23.4M <10 GPU-days Deeply 34.57 1.92
NASNet-A (7 2 27.6M 2,000 Supervised Net
@ 2304) [6] GPU-days 28]
NASH 440 88M 4 GPU-days
(ensemble FractalNet [27] 23.30 2.01
across runs)
21] Wide ResNet 22.07 1.85
NAS v3 max 447 7.IM 22,400 [30]
pooling [5] GPU-days e 5795 201
AmoebaNet-B 298 349M 3150 esNet [33] i i
(6.128) [16] GEU-days DenseNet(k=12) 20.20 1.67
Hier. repr-n, 375 = 300 GPU-days 14]
evolution
(7000 samples)
2 EPSOCNN 18.56 1.84
CGP- 5.98 1.68M 29.8 GPU-days (Best)
CNN(ResSet)
[10] EPSOCNN 19.05+0.1874 1.89+0.0387
DENSER [23] 587 10.81M = (10 runs)
GeNet from 539 - 100 GPU-days
WRN (9]
CoDeapNEAT 73 = =
124]
LS-Evolution 44 40.4M >2.730
125] GPU-days
EPSOCNN 358 6.74M <4 GPU-days |
(Best
classification
accuracy)
EPSOCNN 374200154 | 479M£15363M <4 GPU-days
(10 runs)

GP-based Evolutionary Deep Learning

o,
L4

3-Tier/2-Tier GP for image classification [2012, 2013]
GP-HoG [2015-16]

MLGP [2017]

ConvGP [2017]

GP-Criptor — (Deep) Transfer Learning [2014-16]

0,
*

DS

o
AR

"

GECC N\
,)?:\g(\;

3-Tier/2-Tier GP

GP for Image Recognition/Classification
The traditional way
Domain-specific pre-extracted features approach

g iy

The inputis raw image pixel values

- J .
£ i)
The feature areas need to be designed by domain- ..
= il
- J
@ &) —
Transform the pixel values of the selected areas to e
Feature a different domain —_—
Extraction J \ J ——

<

Select a subset out of the extracted features

Feature (optional)
Selection

N £
7\

<

Feed the extracted features (with or without ;
selection) to a GP-based classifier :

Classification|

<

+135

3-Tier/2-Tier GP

Function

gl

(ﬁandoﬁ‘
@

\ggregation
Function

ggregatin:
Function

Filtering
‘ | Function ‘

( Filtering 1 Filtering |
Function Function
Filtering
Function Raulinads
Raw Image Raw Image

Daniel Atkins, Kourosh Neshatian and Mengjie Zhang. "A Domain it Genetic Pi Approach to Automatic Feature Extraction for
Image Classification”. Proceeding of the 2011 IEEE Congress on Evolutionary Computation. IEEE Press. New Orleans, USA. June 5-8, 2011. pp. 238-
245,

Function

Classification
Function

Raw Image

Harith Al-Sahaf, Andy Song, Kourosh Neshatian, Mengjie Zhang. "Two-Tier Genetic Programming Towards Raw Pixel Based Image Classification”.
Expert Systems With Applications. Vol. 39, Issue 16. 2012. pp. 12291-12301
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2-Tier GP (2012)

Chsamess>
) O @ e ®

D,
C o

s (375 (&) ) V) Come =0

AggStDev

Gt G G (&) () Dwsen e
gt (w8 () () D Ve D )

GP-HoG [2015-16]

e GP-HoG uses strongly typed GP to perform three tasks in
the same tree structure.

e All layers are trained simultaneously and coherently.
e Output of the tree is thresholded.

Feature Construction:

Region
Detection:

Andrew Lensen, Harith Al-Sahal, Mengjie Zhang, Bing Xue. "Genetic Programming for Region Detection, Feature Extraction, Feature Construction and
Classification in Image Data". Proceedings of the 19th European C on Genetic P\ (EuroGP 2016). Lecture Notes in Computer Science. Vol
9594. Porto. Portuaal. March 30 - Aoril 1. 2016. bp. 51-67

GP-HoG

e The below tree has 98% training e The below tree has 95% training

and 95% test performance on
the Jaffe dataset despite being
very simple.

and 100% test performance on
the Jaffe dataset.

MLGP: An Automatic Feature Extraction Approaci
to Image Classification Using Genetic Progra

Feature Construction (FC)

[Gosojenco | -0 [Gin1] Five layers:

Input layer

Region detection layer

Feature extraction layer

i T A
o .

Original (0.2355) Hist Eq(03010) Gaul (02246) Gaull (0.0137) GauXY (0.0488) Lap (0.1428) Ying Bi, Bing Xue, Mengjie Zhang. An Automatic Feature

- . Extraction Approach to Image Classification Using Genetic
+/

Progmmmlng Prooeedlng of the 21th Europen Conference on
Sobel X (0.2669) Sobel Y (0.4822) LoG1(0.0414) LoG2(0.0143)  LBP(0.2982)  HoG (0.0114)

Feature construction
layer

Classification layer

ppl s of ppl
2018). Lecture Notes in Computer Sclence Parma Italy. 4 6
April 2018. pp. 421-438.
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Example Solutions

® An example solution on
object images

Happy

An example solution on face

images

[ oo | o i

0.2500 02701 = - 0.0201

etected regions

0.2914-0.2202 = 0.0712

ith detected regions

COGP: An Evolutionary Deep Learning Approac

Genetic Programming with Convolution OpePe
for Image Classification

Convolutional neural network

C3: 1. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5
INPLY 6@28x28
32432 S2:1. maps
6@14x14

¢ Convolution ‘

Nodes of GP trees
*  Subsampling/Pooling

Ying Bi, Bing Xue, Mengjie Zhang. An Evolutionary Deep Learning Approach Using Genetic Programming with Convolution Operators for Image

Classification. Proceedings of 2019 IEEE Congress on Evolutionary Computation (CEC), IEEE Precess. Wellington, New Zealand, 10-13 June, 2019, pp.
3197-3204.

The COGP Method

73 Flexible Layer

Output

Input layer
Convolution layer
Pooling layer
Concatenationg layer
Output layer

1.
2.
3.
4.
5.

Example Program |

Example Program 2

Example Solution on Face Data Set

Output Features [ Output Features
=

raod
L]

4

MaxP §

Con
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FGP: Genetic Programming with A Flexible
Program Structure and Image-Related Oper&
for Feature Learnign to Image Classification

!
! v
G GD 1 .
E> = B
@ |

|
Learnt features

Linear SVM

An image An FGP program

® The complexity of the FGP solutions for different tasks can be various

The FGP method can learn various types and numbers of effective features from raw images
® FGP can be easily applied to different types of image classification tasks to achieve good
classification performance

® The evolved solutions of FGP can be easily visualised, which provide more insights on the tasks

Ying Bi, Bing Xue, Mengjie Zhang. Genetic Programming with A Flexible Program Structure and Image-Related Operators for Feature Learning to Image
Classification, Submitted to IEEE Transactions on Evolutionary Computation. 2020.

The FGP Method

Representation

S

—
{ Filtering/Pooling ‘Feature ‘ g z
[ Pooling | [ Filtering/Pooling | - @

Filtering Pooling
I Input | Fitering |

Outline

| Training data |

Example Program 2

Example Program 3

|
|

] Transformed data set
| GP process |

|
Best
individual

Classification accuracy

Linear SVM

Test

Experimental Results

O Classification error rates of the proposed FGP method

FEI_1 FEI 2 ORL
Methods Min Mean+St.dev | Min Mean+ St.dev | Min Mean+ St.dev
SVM 10.00  10.00£0.00+ | 12.00  12.00+0.00+ 5.62 5.62+0.00+
KNN 68.00  68.00+0.00+ | 92.00  92.00+0.00+ 5.62 5.62+0.00+
LR 8.00 8.00+0.00+ 12.00  12.0040.00+ 6.25 6.25+0.00+
RF 2.00 2.93+1.01- 10.00  10.80+1.13+ 6.88 7.67+0.63+
AdaBoost 20.00 21.33£1.32+ | 20.00 24.00+3.44+ 40.62  47.73+4.00+
ERF 6.00 6.73+0.98+ 8.00 9.404+0.93+ 2.50 3.2940.59+
LBP+SVM | 34.00 43.2743.66+ | 32.00 37.47+3.52+ 12.50  12.58+0.21+
HOG+SVM | 4.00 4.0040.00— 18.00  18.00+0.00+ 8.75 8.754-0.00+
SIFT+SVM | 4400 44.00+0.00+ | 38.00  38.00+0.00+ 6.25 6.25+0.00+
CNN-5 2.00 4.60+1.30= 2.00 4.73+1.62— 3.12 4.714+1.06+
CNN-8 2.00 4.67+1.32= 4.00 9.07£1.87= 5.00 6.96+1.09+
FGP 2.00 5.53£2.67 4.00 8.6743.36 0.00 1.374+1.04
Overall T+, 2=, 2— 9+, 1=, 1- 11+ |

KTH FS

Methods Min Mean+ St.dev | Min Mean+ St.dev
SVM 53.03  55.4142.83+ 79.37  79.71+0.15+
KNN 65.76  65.76+0.00+ 75.65  75.654+0.00+
LR 5121  51.2140.00+ 76.51  76.5140.00+
RF 40.00  42.194+0.83+ 62.64  63.47+0.49+
AdaBoost 62.12  66.56+1.37+ 82.53  86.96+1.47+
ERF 3848  40.1740.86+ 62.06  62.851+0.36+
LBP+SVM 2121 26.71+4.18+ 50.21  66.731+8.90+
HOG+SVM | 4273  44.04+0.64+ 87.89  92.0942.47+
SIFT+SVM 3424  34.2440.00+ 39.08  39.08+0.00+
CNN-5 1424  17.44+1.87+ 49.86  51.97+1.16+
CNN-8 2364 28.3743.18+ 50.84  53.21+1.01+
FGP 1.21 3.93+1.13 25.52 29.41+1.74
Overall 11+ | 11+ |

Experimental Results

[ Classification.error.rates.of the proposed.FGP.method

Methods MB MRD MBR MBI Rectangle | RI Convex
SVM+RBEF [30] 3.03(+) | 11.11(+) | 14.58(+) | 22.61(+) | 2.15 (+) 24.04(+) | 19.13(+)
SVM+Poly [30] 3.69(+) | 15.42(+) | 16.62(+) | 24.01(+) | 2.15(+) 24.05(+) | 19.82(+)
SAE-3 [29] 3.46(+) | 10.30(+) | 11.28(+) | 23.00(+) | 2.14(+) 24.05(+) | —
DAE-b-3 [29] 2.84(+) | 9.53(+) 10.30(+) | 16.68(+) | 1.99(+) 21.59(+) | —
CAE-2 [29] 2.48(+) | 9.66(+) 10.90(+) | 15.50(+) | 1.21(+) 21.54(+) | -

SPAE [44] 3.32(+) | 10.26(+) | 9.01(+) 13.24(+) | - - -
RBM-3 [29] 3.11(+) | 10.30(+) | 6.73(+) 16.31(+) | 2.60(+) 22.50(+) | —
ScatNet-2 [27, 28] 1.27(+) | 7.48(+) 12.30(+) | 18.40(+) | 0.01(+) 8.02(+) 6.50(+)
RandNet-2 [28] 1.25(+) | 8.47(+) 13.47(+) | 11.65(+) | 0.09(+) 17.00(+) | 5.45(+)
PCANet-2(softmax) [28] | 1.40(+) | 8.52(+) 6.85(+) 11.55(+) | 0.49(+) 13.39(+) | 4.19(+)
LDANet-2 [28] 1.05 7.52(+) 6.81(+) 12.42(+) | 0.14(+) 16.20(+) | 7.22(+)
NNet [30] 4.69(+) | 18.11(+) | 20.04(+) | 27.41(+) | 7.16(+) 33.20(+) | 32.25(+)
SAA-3 [30] 3.46(+) | 10.30(+) | 11.28(+) | 23.00(+) | 2.41(+) 24.05(+) | 18.41(+)
DBN-3 [30] 3.11(+) | 10.30(+) | 6.73(+) 16.31(+) | 2.60(+) 22.50(+) | 18.63(+)
FCCNN [25] 243(+) | 891(+) 6.45 13.23(+) | - - -
FCCNN (with BT) [25] | 2.68(+) | 9.59(+) 6.97(+) 10.80(+) | - - -

SPCN [26] 1.82(+) | 9.81(+) 5.84 9.55(+) 0.19(+) 10.60(+) | —
FGP(best) 1.18 7.37 6.54 7.48 0.00 6.10 1.54
FGP(mean) 1.30 8.44 7.34 10.35 0.12 7.34 1.84
FGP(std) 0.06 0.6 0.42 1.41 0.11 0.61 0.19
Rank 2/18 1/18 3/18 1/18 1/15 1/15 1/10
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Data Visualisation Using the Learnt Fe

* t-distributed Stochastic Neighbor Embedding (t-SNE)

T -
o .:‘-'.v
10 classes » ( Q
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s “2 &%
B . —
Transformed Data by FGP
%
-
2 classes =

of rectangles

100 -50 o 50 100 80 6 -0 -20 ©0 20 4 60 80

Rectangle Original Data Transformed Data by FGP

IEGP: Genetic Programming with A New
Representation to Automatically Learn
and Evolve Ensembles for Image Classification

Traditional Ensemble Methods for Image Classification
’ Raw Images }—>| Feature Extraction}—>|Base ClassifiersH Class labels ‘
The New Approach for Image Classification

‘ Raw Images HAnIEGPsqution}—>| Class labels |

® A new multi-layer individual representation is developed in IEGP to allow it to
automatically and simultaneously learn features and evolve ensembles for image

classification

® |EGP can learn high-level features through multiple transformations

® |EGP can automatically select and optimise the parameters for the classification algorithms
in the evolved ensemble

® |EGP can automatically address the diversity issue when building the ensembles

Ying Bi, Bing Xue, Mengjie Zhang. "Genetic P with A New to i Leam Features and Evolve Ensembles for Image
Classification". IEEE Transactions on Cybnertics. DOI:10.1109/TCYB.2020.2964566. 15pp. First Online on 30 January 2020

Multi-Layer Representation of IEGP

Output Layer

Ensemble Learning

{ Combination Layer

Feature Learning

Generate new
solutions/individuals
using GP operators

Training

Experimental Results
O Classification accuracy of the proposed IEGP method

Method FEI_1 FEI_ 2 JAFFE

Max  Mean£Stdev | Max  MeantStdev | Max  MeantSt.dev
SVM 90.00  90.00+0.00+ | 88.00  88.00+0.00+ | 93.94  91.06+0.73—
KNN 32.00  32.00+0.00+ 8.00  8.00+0.00+ 7121  71.2140.00+
LR 92.00 92.0040.00+ | 88.00 88.00+0.00+ | 89.39  89.39+0.00—
RF 98.00 97.07+1.01= | 90.00 89.20+1.13+ | 75.76  72.48+1.99+
AdaBoost 80.00 78.67+1.32+ | 80.00 76.00+£3.44+ | 53.03 47.93+2.68+
ERF 94.00 93.2740.98+ | 92.00 90.60+0.93+ | 77.27 73.89+1.72+

uLBP+SVM | 66.00 56.73+3.66+ | 68.00 62.5313.52+ | 31.82  26.87+3.30+
LBP+SVM 68.00 64.60+1.83+ | 7400 69.8040.00+ | 33.33  28.8442.05+
HOG+SVM | 96.00 96.00£0.00= | 82.00 82.00+£0.00+ | 81.82  80.3040.40+
SIFT+SVM | 56.00  56.00+0.00+ | 62.00  62.00+0.00+ | 33.33  33.33+0.00+

CNN-5 98.00 95.40+1.30+ | 98.00 9527+1.62+ | 9545 90.96+2.68—
CNN-8 98.00 9533+1.32+ | 96.00 90.93+£1.87+ | 9091 84.54+4.33=
EGP 100.0  96.2042.06= 100.0  98.07+£1.70= | 9242 84.24+4.28=
IEGP 100.0  96.67+2.55 100.0  96.20+3.66 9242 82174542
Overall 10+, 3= 124, 1= 8+, 2=, 3—
ORL KTH FS

Method Max  MeantStdev | Max  MeantStdev | Max  MeantSt.dev
SVM 94.38  94.38+0.00+ | 46.97 44.59+2.83+ | 20.63  20.30+0.15+
KNN 9438  94.3840.00+ | 34.24 34.24+0.00+ | 2435 24.35+0.00+
LR 93.75  93.75+0.00+ | 48.79  48.794+0.00+ | 23.49  23.491+0.00+
RF 93.12  92.33+0.63+ | 60.00 57.81+0.83+ | 37.36 36.53+0.49+
AdaBoost 59.38  52.2744.00+ | 37.88 33.44+£1.37+ 1747 13.04£147+
ERF 97.50  96.71£0.59+ | 61.52 59.83+0.86+ | 37.94 37.15+0.36+

uLBP+SVM |87.50  87.42+0.21+ | 7879 73.29+4.18+ | 49.79  33.2748.90+
LBP+SVM [88.12  87.52+0.20+ | 83.64 827140.51+ | 53.50 50.4541.80+
HOG+SVM |91.25  91.25+0.00+ | 5727 55.96+0.64+ | 12.11 7.91+£2.47+

SIFT+SVM  |93.75  93.75+0.00+ | 65.76  65.76£0.00+ | 60.92  60.92+0.00+

CNN-5 96.88 9529+1.06+ | 8576 82.56+1.87+ | 50.14 48.03+1.16+
CNN-8 9500 93.04+1.09+ | 7636 71.63+3.18+ | 4916 46.79+101+
EGP 9938 97.44+1.26+ 77534517+ | 6717 61.07+2.91+
IEGP 100.0__98.29+0.97 9254 89.63£147

Overall 3+ | | 13+ |
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Experimental Results

O Classification accuracy of the proposed IEGP method

Example Solutions

Method MB MRD MBR MBI Rectangle RI Convex
SVM+RBF [51] 96.97(+) 88.89(+) 85.42(+) 77.39(5) 97.85(+) 75.96(+) 80.87(+)
SVM:+Poly [51] 96.31(+) 84.58(+) 83.38(+) 75.99(+) 97.85(+) 75.95(+) 80.18(+)
SAE-3 [36] 96.54(+) 89.70(+) 88.72(+) 77.00(+) 97.86(+) 75.95(+) -
DAE-b-3 [36] 97.16(+) 90.47(+) 89.70(+) 83.32(+) 98.01(+) 78.41(+) -
CAE-2 [36] 97.52(+) 90.34(+) 89.10(+) 84.50(+) 98.79(+) 78.46(+) .
SPAE [52] 96.68(+) 89.74(+) 90.99(+) 86.76(+) = - =
RBM-3 [36] 96.89(+) 89.70(+) 93.27(+) 83.69(+) 97.40(+) 77.50(+) . e
ScatNet-2 [33) 34] 98.73(+) 92.52(+) 87.70(+) 81.60(+) 99.99(+) 91.98(+) 93.50(+)
RandNet-2 [34] 98.75(+) 91.53(+) 86.53(+) 88.35(+) 99.91(+) 83.00(+) 94.55(+)
PCANet-2 (softmax) [34] | 98.60(+) 91.48(+) 93.15(+) 88.45(+) 99.51(+) 86.61(+) 95.81(+) Ensemble of different
LDANet-2 [34] 98.95 92.48(+) 93.19(+) 87.58(+) 99.86(+) 83.80(+) 92.78(+) .
NNet [51] 95.31(+) 81.89(+) 79.96(+) 72.59(+) 92.84(+) 66.80(+) 67.75(+) classifiers Branch 2
SAA-3 [51] 96.54(+) 89.70(+) 88.72(+) 77.00(+) 97.59(+) 75.95(+) 81.59(+)
DBN-3 [51] 96.89(+) 89.70(+) 93.27(+) 83.69(+) 97.40(+) 77.50(+) 81.37(+)
FCCNN [35] 97.57(+) 91.09(+) 93.55(+) 86.77(+) - - -
FCCNN (with BT) [35] 97.32(+) 90.41(+) 93.03(+) 89.20(+) - - -
SPCN [32] 98.18(+) 90.19(+) 94.16 90.45 99.81(+) 89.40(+) -
EvoCNN (best) [53] 98.82 94.78 97.20 95.47 99.99(+) 94.97 95.18(+)
EGP (best) [26] 97.19(+) = = = 99.91(+) - 93.97(+)
IEGP (best) 98.82 9428 93.59 89.41 100 | 94.88 9826
IEGP (mean) 98.69 93.78 92.65 88.42 99.94 89.02 97.76 @ Ensemble of
IEGP (std) 0.08 024 035 0.64 0.05 2.1 0.26
Rank 2120 219 3719 3719 117 2716 112 ensembles
Branch 3
] Ll . |
didlid e 2dd HIIN RS0 D
0 4 1 6 9 7 8 Rectangle Convex e
Summary Acknowledgement

+“ NN-based evolutionary deep learning has started to
demonstrate great potential to outperform the
manually designed state-of-the-art deep networks in
image classification and analysis

“ GP based evolutionary deep learning has also started,
and is expected to demonstrate the advantages in
effectiveness, efficiency and interpretability in image
analysis

+ Evolutionary deep learning is still in an early stage, but
is expected to show the great accuracy, efficiency,
small training set, and good interpretability of the deep
models.
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1. Marsden Fund of New Zealand award number(s): VUW
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« 2. University Research Fund at Victoria University of
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Genetic Programming for Image Classification: An
Automated Approach to Feature Learning --New Book

Provide a throughout background of evolutionary

Ying Bi computation, computer vision and machine learning
Bing Xi

MengieZhang . Introduces a series of typical GP-based approaches to
Gen etic feature learning in image classification

Provides broad perceptive insights on what and how GP

Programming
for Image
Classification

An Automated Approach to Feature . . .
Learning improve the generalization performance and/or

can offer and shows a comprehensive and systematic
research route in this field
Discusses the use of different techniques in GP to

T computational efficiency for image classification

® The first book on GP for image classfication

® Prof. Wolfgang Banzhaf wrote the foreword

® All the codes are released at: https://github.com/YingBi92/BookCode

Ying Bi, Bing Xue, and Mengjie Zhang. “Genetic Programming for Image Classification: An Automated Approach to

Feature Learning” , Springer International Publishing 2021, XXVIII, 258pages, DOI: https:doi.org10.1007978-3-030-
65927-1.
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From the EC attic...
Re-using (and renovating)
forgotten tools

SUB-MACHINE CODE GENETIC PROGRAMMING
(Poli, Langdon 1998)

Inputs: Unsigned long (32 or 64 bit words) that encode
arrays of binary inputs. The bit string may encode
consecutive samples of a temporal sequence, a row or a
window within an image, etc.

Function set: bitwise logical operators + circular shifts

A whole block of data is affected by a single bit-wise
Boolean operation (SIMD paradigm).

Output: a 32/64 bit string, it may represent 32/64 possible
outputs of a binary classifier.

So, 32/64 (not independent) solutions are evaluated for each
individual.
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SUB-MACHINE CODE GENETIC PROGRAMMING
(Poli, Langdon 1998)

Advantages

» Several solutions computed at the same time

» Possible multiple-bit outputs representing different classes
+ 1-to-1 translation of instructions into machine code

» Extremely fast execution speed

» Possible direct translation into hardware

Basic SmcGP: an example
License-plate Recognition System (adorni et al., 2000)

Main task: car license-
plate recognition

Data: 130 images of
running cars

Sub-tasks:
plate extraction and
character recognition

Traditional Plate Extraction

Y ° b " J
i Weamee] " i I
L

e

AC 546 KP

Compute and binarize the image horizontal gradient.
The plate region is the one where the density of vertical
edges (peaks of the horizontal gradient) is highest

SmcGP-based Plate Detection

Input data: 4 unsigned long words encoding a window, of

size 32x4 pixels, from the binarized gradient image

Desired output: 1 if the window belongs to the plate

(left uppermost pixel) 0 otherwise

Convolving the input window of the GP tree with the whole
image the license plate should become a black rectangle.

LS 156 o)
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Training Set

80/130 images

Input data: binarized
horizontal gradient image

366 negative + 4824
positive = 5190 training
samples

GECCg N

A

Empty samples (that can
be found both inside and
outside the plate) have
been purged.

Function Set + ERCs

+ Binary bitwise operators: AND OR NOT XOR

+¢ Circular shift operators: SHR, SHR2, SHR4,
SHL, SHL2, SHL4

+ Ephemeral Random Constants (ERC):
32-bit unsigned long

Typical Results

The same algorithm that our reference (manually-designed)
plate detection system directly applies to the gradient image
can be applied to this image to improve plate localization

Success case

Increased plate-detection rate: the original system could not
locate the plate. It does using the SmcGP -processed image

nnnnnnnnnn




Question:
Why should we unbury this
paradigm more than 20 years later?
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SUB-MACHINE CODE GENETIC PROGRAMMING
(Poli, Langdon 1998)

Q: Why should we unbury this paradigm more than 20 years
later?

Answer

Consider what happened with Deep Learning: when neural
nets became en vogue once again in the late ‘80s, defining
most of the principles on which modern DL relies, technology
would not be able to support as complex networks and as
many data as DL requires. But, nowadays, ...

Similarly, 25 years ago, a set of basic classifiers as described
before (one per class) was probably the most we could afford
to train. But, nowadays, ..., perhaps...

SUB-MACHINE CODE GENETIC PROGRAMMING
(Poli, Langdon 1998)

Consider that:

«» The full output of such a tree/module is itself a complex binary
feature that such a module extracts from the input

*» Such features have local properties, since usually the value of
one bit depends on the values of input bits located in its
neighborhood (shift operations are limited to 4 bits)

% As usual in GP, a tree may have a single output and multiple
inputs

% The full outputs of several trees can be ‘summarized’ bitwise by
some ‘pooling’ operators

+ Single bits from different outputs can be selected and ‘re-
ordered’ into a new feature

Thinking about deep learning,

doesn’t this ring a bell?

Are we heading towards Sub-machine
Code Deep Genetic Programming?
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Character Recognition

Recognition of digits represented by binary two-dimensional
patterns: 10 specialized binary classifiers have the pattern
as input and produce as output:

1 if the input pattern belongs to the class corresponding
to the classifier

SmcGP-based digit recognition (cagnoni et al., 2005)

Pattern 32/64 bit output

4 32-bit words
or =
2 64-bit words

»0010010010...100101010101001

Best bit when used as binary
classifier output, i.e., lowest

. GP — evolved tree fitness bit.
0 if the pattern belongs to another class (binary digit i classifier) Desired output:
1:input is digit i
O:inputis noti
Dataset

Real-world dataset collected by Societa Autostrade SpA
at highway toll booths

+“+ 11034 binary patterns representing the ten digits from
Oto9

6024 in the training set
5010 in the test set (exactly 501 per class)

++ Size: 13x8 pixels - strings of 104 binary features

ROW1 —»
ROW 2 >

8 pixels 8 pixels 8 pixels

Y
104 pixels

ROW 13 —»

Input EnCOding (Cagnoni et al., 2005)

Input Pattern: binary digits of size 13x8
104 bits may be represented using 4 32-bit words (e.g., 4
unsigned long variables in C).

72 bits of the pattern are packed into the 24 least significant
bits of the first 3 unsigned long variables
The remaining 32 are packed into the fourth one

000000000 10000100010010000011000

00000000 10000100100001001000010

m 1100000100 1000100001001000010

WSE LSB

13x 8 pixel pattern WMSB

1194




Fitness Function (Cagnoni et al., 2005)

F=

FP?2 + FN?2 4+ Kg * size
NZ+ N2

(FP = False Positives, FN = False Negatives, K= constant
N, = Positive cases, N, = Negative cases, size= tree size)

NB If training data are uniformly distributed, then the negative
cases shown to each classifier are 9 times as many as the
positive ones

=> F strongly favors specificity
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Evolution Parameters (cagnoni et al., 2005)

Population : 1000
Survival rate : 17 %
Crossover rate: 80%
Mutation rate : 3%

Tournament selection with tournament size =7

300 to 2000 iterations

CIaSSifierS (Cagnoni et al., 2005)

Set of 10 binary classifiers (one for each class)

For each classifier:
Input : unsigned long pattern[4]
Output : unsigned long out

Each individual (classifier) actually produces 32 binary
outputs (32 distinct fitness cases): the highest-fitness bit,
and the corresponding fitness, are taken as the individual’s
output and fitness.

New architecture: SmcGP + Embedding
(a tiny step towards Deep GP)

Pattern 8

32/64-bit word 32/64-bit word
0010010010...10110111101 0010010010...100101010101001
Input data embedding
" Lowest-fitness bit

|
S

GP-evolved digit i

GP-evolved input
classifier
e, & )

transformation
\\&r
AN

»\\'Q
’
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Co-evolutionary algorithm

Generate a random initial embedding (P1Best)

Repeat

1. Compute the training set transformed by P1best
2. (process P2) Evolve the classifier
3. P2best < best classifier

INPUT DATA EMBEDDING |

TRANSFORMED
DATASET

[ ARGO

O/mewow — TS

ARGO

64 BITS OUTPUT WORD

—={1|of1]| .. [o]1

4. (process P1) Evolve the input data transformation using P2best as a classifier
5. P1best € best transformation

RAW DATASET

ARGO| ARG1

()INDIVIDUAL — ]

N

ARGO
ARG1

. I [0 |1

() P2Best— TR

& B
/ 7

o 1 — SRR —— 1|0 | 1 o1
64 BITS OUTPUT WORD 64 BITS OUTPUT WORD

Until the termination condition is reached

Parameters

Evolution of an embedding/classifier pair for one digit:
+ Population: 1000

+«» Max number of generations: 1000
(20 generations for each GP x 25 iterations)

+« Termination condition/ overfitting control: 40
consecutive generations without fitness
improvement on the validation set (if selected)

5 runs

++ Evolution parameters same as in the original paper
+ Training set: 4218 patterns (almost balanced)

+«+ Validation set: 1806 patterns (almost balanced)

+ Test set: 5010 patterns (501 per digit)

Configurations

+ Original SmcGP implementation

+ Original SmcGP + overfitting control (validation set)
% SmcGP + Embedding

+» SmcGP + Embedding + overfitting control

The method has been implemented in Python using
DEAP (Distributed Evolutionary Algorithms in Python)

A
rd

DISTRIBUTED
EVOLUTIONARY
ALGORITHMS IN
PYTHON

Results
0 5 6 7

TNR(%) TPR(%) TNR(%) TPR(%) TNR(%) TPR(%) TNR(%) TPR(%) TNR(%) TPR(%)
Standalone Mean | 9945 9330 99.62 8866 99.13 86.83 99.65 93.25 9930 89.62
St.Dev. | 041 477 013 107 057 510 008 039 029 164
Best | 9978 97.01 99.76 89.42 9951 9561 9967 9401 99.45 91.62
Worst | 9876 8543 9938 86.63 9823 80.64 9949 9301 9938 86.63
Standalone + Mean | 99.25 88.70 99.29 87.90 9864 83.91 99.60 93.90 99.41 86.35
Overfitting Control ~ St.Dev. | 045 898 021 132 038 448 014 043 014  0.96
Best | 9971 9741 9927 9002 9871 9222 9967 9441 9960 88.02
Worst | 9878 8802 99.07 8603 97.98 79.04 9931 93.21 9933 8563
Embedding Mean | 99.26 91.89 99.61 8930 9897 8575 9961 93.61 99.34 89.14
St.Dev. | 037 411 0.09 162 034 300 007 142 009  1.18
Best | 99.76 96.21 99.56 91.82 99.47  90.62 99.67 9521 9951 91.02
Worst | 9905 8603 99.49 87.62 9854 8263 9953 9162 99.38 87.62
Embedding + Mean | 99.82 96.41 99.65 90.86 99.40 92.41 99.66 94.61 99.57 89.74
Overfitting Control  St. Dev. | 0.07 1.06 0.22 0.94 0.15 0.43 0.15 1.15 0.08 1.07
Best | 99.93 9721 99.84 92.02 99.69 93.01 99.89 9621 99.65 9122
Worst | 99.87 95.81 99.20 89.62 9945 91.82 99.60 9261 99.58 88.02
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Remarks

Although results are preliminary and obtained on only a few
runs, some clear indications are:

+ Introducing only the embedding has apparently a
negative effect: most probably, since it simplifies the input
representation, it favors overfitting.

% Adding embedding + overfitting control produces results
that are generally better than all other configurations

«» Without embedding, introducing overfitting control slightly
worsens accuracy (termination threshold may need to be
changed), which reinforces the above hypothesis about
embedding and overfitting

Concluding remarks

++ Although we are still far from Deep (and even from fully
Multi-layer) GP, it seems possible to create hierarchical
architectures using SmcGP modules as the building
blocks.

+» Similar ideas could be applied to more traditional GP
trees with continuous inputs and outputs

“ In this latter case, if all the GP functions in the function set
were differentiable, it would be possible to associate
weights to the connections between GP-evolved modules
and use backpropagation or other gradient-based
algorithms at some point.

Future Work

+» Completing the classifier by adding a full ‘layer’ with 10
embeddings, one per digit

++ Considering adding other elements between the
embedding layer and the classification layer, having all 10
embeddings as inputs
+ A feature selector/pooler layer ?
+ A further embedding layer ?
% Something else ?...

* In a sequential layer-by-layer co-evolution as described,
but with n>2 layers, is it better to propagate evolution
forward? Backwards? alternating forward and backward
steps?

Credits

+» The work described has been developed as their B.Eng.
theses by Fabrizio De Santis and Dario Cavalli

% Many thanks also to Federico Sello, B.Eng., Andrea
Bettati, M.Eng, and Marco Carraglia, M.Eng, for
contributing to the development of SmcGP in DEAP.
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Summary
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+» Evolutionary computer vision and image analysis is still a
big and hot topic

«+ Evolutionary deep learning will play a significant role
% GP-based deep learning will have more developments
+ Interpretability and expandability will be a major focus
++ EC techniques will be more popular in pattern recognition
+ Classification, Clustering
% GP, GAs, PSO, DE,
+» EC will be in more main stream conferences and
journals
+ GPU will be a popular tool
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« CEC Special Session on Evolutionary Deep Learning and
Applications, IEEE CEC 2021

« Organisers: Yanan Sun, Bing Xue, Chuan-Kang Ting, Mengjie Zhang
» 28th June - 1st July, 2021, Krakow (POLAND)
< Websites: https://cec2021.mini.pw.edu.pl/en/program/special-sessions

++» CEC Special Session on Evolutionary Computer Vision and Image
Processing, Pablo Mesejo, Harith Al-Sahaf

< 28th June - 1st July, 2021, Krakow (POLAND)
% Websites: https://cec2021.mini.pw.edu.pl/en/program/special-sessions
« |EEE SSCI 2021 Symposia:

< Clin Feature Analysis, Selection and Learning in Image and
Pattern Recognition (IEEE FASLIP))

< CI for Multimedia Signal and Vision Processing (IEEE CIMSIVP)
% Paper Submissions: 06 August 2021
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