
Optimizing a GPU-Accelerated Genetic Algorithm for the
Vehicle Routing Problem

Marwan Abdelatti
Department of Industrial Engineering

University of Rhode Island
Kingston, Rhode Island
mabdelrazik@uri.edu

Abdeltawab Hendawi
Department of Computer Science

University of Rhode Island
Kingston, Rhode Island

hendawi@uri.edu

Manbir Sodhi
Department of Industrial Engineering

University of Rhode Island
Kingston, Rhode Island

sodhi@uri.edu

ABSTRACT
The capacitated vehicle routing problem (CVRP) is an NP-hard
optimization problem with many applications. Genetic algorithms
(GAs) are often used to solve CVRPs but require many parameters
and operators to tune. Incorrect settings can result in poor solutions.
In this work, a design of experiments (DOE) approach is used to
determine the best settings for GA parameters. The GA runs entirely
on an NVIDIA RTX 3090 GPU. The GPU execution for a 200-node
benchmark shows a speed by a factor of 1700 compared to that on
an octa-core i7 CPU with 64 GB RAM. The tuned GA achieved a
solution for a 400-node benchmark that is 72% better than that of an
arbitrarily tuned GA after only 263 generations. New best-known
values for several benchmarks are also obtained. A comparison
between the performance of the algorithm with different hardware
and tuning sets is also reported.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
• Applied computing → Operations research; •Mathematics
of computing→Combinatorics; Solvers;Multivariate statistics;

KEYWORDS
Vehicle routing problem, genetic algorithms, design of experiment,
factorial design, local search, GPU, parallel computation
ACM Reference Format:
Marwan Abdelatti, Abdeltawab Hendawi, and Manbir Sodhi. 2021. Op-
timizing a GPU-Accelerated Genetic Algorithm for the Vehicle Routing
Problem. In 2021 Genetic and Evolutionary Computation Conference Com-
panion (GECCO ’21 Companion), July 10–14, 2021, Lille, France. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3449726.3459458

1 INTRODUCTION
Genetic algorithms (GAs) are commonly used for the capacitated
vehicle routing problems (CVRP) to find near-optimal delivery/pick-
up routes through a set of locations [2, 4, 8]. Because of the large
number of parameters and operators used in the GA, and the limited
knowledge about the effect of parameter interactions [7], a two-
level 2𝑘 factorial design of experiment (DOE) is used to determine

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8351-6/21/07.
https://doi.org/10.1145/3449726.3459458

the best settings for the GA parameters. Pilot runs are performed
on a small problem settings for the parameters are determined.
The tuned parameters are then applied to larger problems. The de-
veloped GA (GPU-GA) runs entirely on graphics processing units
(GPUs) to capitalize their parallel execution capabilities [1]. The
tuned algorithm obtained an 8.89% gap from the best-known solu-
tion for a 200-node benchmark problemM-n200-k17 [3] after 50,000
generations, A 72% improvement in the gap for a 400-node bench-
mark compared to arbitrary parameter sets within 263 generations
only, and new best-known values for other problems. Compared to
sequential executions on CPUs, GPUs achieved an improvement
factor of 1700 in the execution speed.

2 GPU-ACCELERATED GA FOR CVRP
GPU-GA is a GA algorithm with a 2-opt local search. A clone-
restricting procedure preserves the diversity of population through-
out the evolution process. The GPU grid is arranged with a total
of (𝐵 ∗𝑇 )2 threads running in parallel where 𝐵 × 𝐵 is the 2D array
arrangement of the GPU blocks and 𝑇 ×𝑇 are the thread/block ar-
rangement, 𝐵 and 𝑇 are integers. A block diagram of the algorithm
is shown in Figure 1 [1]. The algorithm starts by using the CPU
for reading problem data, and then creates and copies an array of
nodes to the GPU. The GPU creates the cost table array between
nodes. Evolutionary processes like random initialization, selection,
crossover, and mutation as well as the 2-opt local search run on the

Figure 1: Algorithm implementation on GPU.

117

https://doi.org/10.1145/3449726.3459458
https://doi.org/10.1145/3449726.3459458


GECCO ’21 Companion, July 10–14, 2021, Lille, France Marwan Abdelatti, Abdeltawab Hendawi, and Manbir Sodhi

Table 1: Results of running the tuned GPU-GA

on 2080 Ti on 3090 on CPU

Problem Best %Gap Speed %Gap Speed %Gap Speed.
ID Known (s/loop) (s/loop) (s/loop)

P-n16-k8 450 0.0000 0.1006 0.0000 0.0397 0.0000 0.7936
P-n20-k2 216 0.0000 0.2392 0.0000 0.0837 18.042 9.23
P-n22-k8 603 0.0000 0.1205 -2.1559 0.0479 3.0182 4.08
P-n23-k8 529 0.0000 0.178 0.0000 0.0524 3.4801 12.62
B-n31-k5 672 0.0000 0.2145 0.0000 0.0905 12.0074 20.86
P-n40-k5 458 3.0568 0.1878 0.2183 0.0831 40.0436 27.39
B-n50-k8 1312 1.6768 0.1992 1.1433 0.0827 34.0114 21.54
P-n55-k15 989 -2.9323 0.4489 -3.4378 0.1598 21.0141 36
P-n65-k10 792 1.7677 0.4566 5.0505 0.1823 52.1022 25.34
P-n70-k10 827 7.7388 0.4655 4.4740 0.1885 56.0785 42.03
A-n80-k10 1763 8.9052 1.5229 7.2603 0.1848 80.1497 63.67
E-n101-k14 1071 20.168 1.8299 7.5630 0.2386 100.1699 85.51
M-n200-k17 1373 99.4901 2.8063 8.3029 0.9387 201.9876 1592.14

Golden_3 (400 nodes) 11063.22 36.6774 12.3702 13.8616 4.7246 401.4459 9240

GPU until reaching a stopping criteria: either stagnating at a cost
value for a certain number of generations, or, reaching a limit on
the number of generations (in case of performance analysis). The
final solution is sent back to the CPU for output. Interested readers
can clone the GPU-GA from the GitHub repository1.

3 DESIGN OF EXPERIMENT
To obtain high-quality solutions from the proposed algorithm, mul-
tiple GA parameters with different values have been collected from
various studies [5, 6, 9]. A 2𝑘 factorial design of experiment (DOE)
is utilized on a 70-node (P-n70-k10) benchmark to analyze different
parameter combinations and their interactions. Each combination
is independently run five times. The parameters considered are:
crossover operator: 1-point or 2-point crossover;mutation op-
erator: either inversion mutation where a random range of genes
is inverted, or swap mutation that switches two random genes;
population size: 10× or 20× the number of nodes 𝑛. elitism rate:
the percentage of parents transferred to the new generation along
with the offspring; and crossover and mutation rates: the occur-
rence probabilities of crossover and mutation during the evolution
process respectively.

It was found from the experiment that the elitism rate has no
significant effect on the GA behavior.

4 EXECUTION RESULTS AND CONCLUSIONS
The tuned GPU-GA is used to solve a number of benchmark prob-
lems. The %Gap between the obtained and the best-known solution
is the measure of solution quality where
%𝐺𝑎𝑝 = (𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑠𝑜𝑙𝑛 − 𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛) /𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛.
The stopping criteria is reaching or exceeding the best-known value
or solution stagnation. The CPU is an Intel Octa-core i7 CPU @
2.4 GHz and 64 GB RAM, and an NVIDIA RTX 3090 GPU with 24
GB of memory. The GA executes on 35 × 35 blocks with 20 × 20

1https://github.com/MarwanAbdelatti/GA_VRP_mod

threads per block. The obtained solution quality is compared with
solutions obtained with random parameter settings. The optimal
parameters for the GA were: 1-point crossover, inversion mutation,
a 10×𝑛 population size, a crossover rate of 0.8, and a mutation rate
of 0.1.

Numerical results show that the tuned parameter set results in
faster convergence and no prmature termination. The optimized
algorithm is run on different hardware (e.g., CPU, NVIDIA RTX
3090 GPU with 10,496 cores and 24 GB memory, and RTX 2080Ti
with 4,352 cores and 11 GBmemory). The results are shown in Table
1. It is found that the number of CUDA cores has a great impact on
the GA performance - more than double the speed is achieved on
the 3090 GPU compared to the 2080Ti. Worth mentioning is that
for a 200-node problem, the algorithm executes at a speed of 26
min/generation on the CPU compared with 0.9 sec/generation on
the RTX 3090 GPU, reducing the execution time from 2.4 years on
the CPU to 12 hours on GPU for a similar result quality.

REFERENCES
[1] Marwan F Abdelatti and Manbir S Sodhi. 2020. An improved GPU-accelerated

heuristic technique applied to the capacitated vehicle routing problem. In Proceed-
ings of the 2020 Genetic and Evolutionary Computation Conference. 663–671.

[2] Barrie M Baker and MA Ayechew. 2003. A genetic algorithm for the vehicle
routing problem. Computers & Operations Research 30, 5 (2003), 787–800.

[3] Nicos Christofides and Samuel Eilon. 1969. An algorithm for the vehicle-
dispatching problem. Journal of the Operational Research Society 20, 3 (1969),
309–318.

[4] Paul C Chu and John E Beasley. 1997. A genetic algorithm for the generalised
assignment problem. Computers & Operations Research 24, 1 (1997), 17–23.

[5] Agoston Endre Eiben and Selmar K Smit. 2011. Evolutionary algorithm parameters
and methods to tune them. In Autonomous search. Springer, 15–36.

[6] Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E Eiben. 2014. Parameter
control in evolutionary algorithms: Trends and challenges. IEEE Transactions on
Evolutionary Computation 19, 2 (2014), 167–187.

[7] Mohsen Mosayebi and Manbir Sodhi. 2020. Tuning genetic algorithm parameters
using design of experiments. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion. 1937–1944.

[8] Christian Prins. 2004. A simple and effective evolutionary algorithm for the vehicle
routing problem. Computers & Operations Research 31, 12 (2004), 1985–2002.

[9] Selmar Kagiso Smit. 2012. Parameter tuning and scientific testing in evolutionary
algorithms. Vrije Universiteit.

118

https://github.com/MarwanAbdelatti/GA_VRP_mod

	Abstract
	1 Introduction
	2 GPU-Accelerated GA for CVRP
	3 Design of Experiment
	4 Execution Results and Conclusions
	References

