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ABSTRACT
Constraint handling is one of the most influential aspects of apply-
ing metaheuristics to real-world applications, which can hamper
the search progress if treated improperly. In this work, we focus on a
particular case - the box constraints, for which many boundary con-
straint handling methods (BCHMs) have been proposed. We call for
the necessity of studying the impact of BCHMs on metaheuristics’
performance and behavior, which receives seemingly little attention
in the field. We target quantifying such impacts through systematic
benchmarking by investigating 28 major variants of Differential
Evolution (DE) taken from the modular DE framework (by combin-
ing different mutation and crossover operators) and 13 commonly
applied BCHMs, resulting in 28×13 = 364 algorithm instances after
pairing DE variants with BCHMs. After executing the algorithm
instances on the well-known BBOB/COCO problem set, we analyze
the best-reached objective function value (performance-wise) and
the percentage of repaired solutions (behavioral) using statistical
ranking methods for each combination of mutation, crossover, and
BBOB function group. Our results clearly show that the choice of
BCHMs substantially affects the empirical performance as well as
the number of generated infeasible solutions, which allows us to
provide general guidelines for selecting an appropriate BCHM for
a given scenario.
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• General and reference → Empirical studies; • Computing
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1 INTRODUCTION
Since its debut in 1995 [32], Differential Evolution (DE) has been
developed into one of the well-known optimization algorithms for
solving non-linear continuous optimization problems [26, 28]. Due
to its simplicity and robustness, DE has been applied to various
real-world applications, e.g., data mining [1], neural network train-
ing [21], and hyper-parameter tuning [3]. As its most distinguishing
feature, the mutation operator of DE is designed to take as input
the difference between some randomly chosen individuals (called a
differential vector) in the population. Despite the elegance of this
mutation operator, it might become problematic when solving a
constrained problem (e.g., objective functions with box constraints).
When the constraints are violated by some individuals (whichmight
happen due to randomness), it is likely to produce a huge differen-
tial vector, which will yield more violations when used to create
new individuals. Our arguments are seconded in [22], which shows
that during an optimization run of DE, a large number of infeasi-
ble solutions can be generated, where the percentage of generated
infeasible solutions increases for problems with higher dimension-
ality. We therefore call for the importance of careful treatment and
consideration of constraints when applying a DE algorithm. Partic-
ularly, in this paper, we initiate our study of the impact of boundary
constraint handling methods (BCHMs) by investigating closely into
a special case - the box constraints.

Notably, in [22], it has been shown that on the noisy landscape
𝑓0, where ∀𝒙 ∈ R𝑛 : 𝑓0 (𝒙) ∼ U(0, 1), most DE configurations
(e.g., DE/rand/1/bin) with commonly used settings for the hyper-
parameters (e.g., 𝐹 and 𝐶𝑟 ) yield infeasible solutions almost exclu-
sively (with a probability of nearly 100%), when coupled with some
boundary constraint handling methods. Despite its simplicity, 𝑓0
can serve as an ideal testbed for justifying a BCHM for DEs, since
it is scalable, and more importantly, imposes no selection pressure
over the search, on which DE will violate the constraints quite often
and break each constraint boundary with the same probability. We
found it worrisome that 1) the choice of BCHM is rarely given the
appropriate amount of attention [5, 8] and 2) BCHMs can signifi-
cantly impact the overall performance of the algorithm [2] and the
degree of structural bias [8].

To address this issue, we have contrived an empirical approach,
which incorporates 13 well-known BCHMs (e.g., resampling, wrap-
ping, and boundary transformation) and then tested each BCHM
with a wide range of DE variants [6], e.g., combinations of mutation
and crossover strategies, on the well-known BBOB/COCO problem
set [19], for answering the research question of whether a certain
combination of a DE variant and a BCHM behaves very differently
compared to other combinations, on (a subset of) the BBOB prob-
lem set. We will analyze the behavioral impact of BCHMs in terms
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of empirical performance and the proportion of infeasible solutions
created during the run.

This paper is organized as follows: Section 2 covers the basic
structure of DE, variants of its mutation and crossover operators,
and the employed parameter adaptation scheme; Section 3 describes
a wide selection of BCHMs which can be applied to DE; Section 4
discusses our experiments; in Section 5, we analyze the experiment
results; finally, in Section 6 we summarize the main findings of this
paper and give directions for future work.

2 DIFFERENTIAL EVOLUTION
Formally, in this work, we deal with a single-objective function
supported on a closed subset of R𝑛 , i.e., 𝑓 : 𝐷 ⊂ R𝑛 → R, where
𝐷 = [𝑥min

1 , 𝑥max
1 ]×· · ·×[𝑥min

𝑛 , 𝑥max
𝑛 ].We start with delineatingDE’s

working mechanism (see Alg. 1 for the pseudo-code). DE initializes
the population of individuals {x1, x2, . . . , x𝑀 } ⊂ R𝑛 (with𝑀 being
its size) by sampling each individual uniformly at random (u.a.r.)
in 𝐷 . Also, in the following discussions, we shall represent the 𝑗th
component of vector 𝒙𝑖 by 𝑥𝑖, 𝑗 .

For each individual 𝒙𝑖 , a donor vector 𝒗𝑖 (a.k.a. mutant) is gener-
ated through mutation, a process where scaled difference vectors
are added to a base vector. Please see Section 2.1 for an overview of
some commonly used mutation strategies. Subsequently, for each
donor vector 𝒗𝑖 , a trial vector 𝒙 ′𝑖 is created by means of crossover,
where components are exchanged between the parent vector and
the donor vector. Two crossover methods are most prominent in
DE literature, both of which are described in Section 2.2. Elitist
selection is applied between 𝒙𝑖 and 𝒙 ′𝑖 , where the better one is kept
for the next iteration.

Algorithm 1 Rand/1/bin Differential Evolution

1: 𝒙𝑖 ←U (𝒙min, 𝒙max), 𝑖 = 1, . . . , 𝑀. ⊲ Initialize
2: while termination criteria are not met do
3: for 𝑖 = 1→ 𝑀 do
4: Choose 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 ∈ [1..𝑀] u.a.r.
5: 𝒗𝑖 ← 𝒙𝑟1 + 𝐹 · (𝒙𝑟2 − 𝒙𝑟3 ) ⊲ Mutate
6: Choose 𝑗rand ∈ [1..𝑛] u.a.r.
7: for 𝑗 = 1→ 𝑛 do
8: if U(0, 1) ≤ 𝐶𝑟 or 𝑗 = 𝑗rand then
9: 𝑥 ′

𝑖, 𝑗
← 𝑣𝑖, 𝑗 ⊲ Crossover

10: else
11: 𝑥 ′

𝑖, 𝑗
← 𝑥𝑖, 𝑗

12: end if
13: end for
14: end for
15: for 𝑖 = 1→ 𝑀 do
16: if 𝑓 (𝒙 ′

𝑖
) < 𝑓 (𝒙𝑖 ) then

17: 𝒙𝑖 ← 𝒙 ′
𝑖

⊲ Select
18: end if
19: end for
20: end while

2.1 Mutation
Here, we discuss the 14 mutation schemes considered in our ex-
periments. Typically, vectors with indices 𝑟1, 𝑟2, . . . , 𝑟 𝑗 are selected

uniformly at random without replacement, where ∀𝑗 : 𝑟 𝑗 ≠ 𝑖 . De-
pending on the chosen mutation scheme, these randomly selected
vectors can appear both in the difference vectors and as the base
vector. The difference vectors are scaled by the so-called mutation
rate 𝐹 > 0, which controls the strength of the mutation opera-
tor. Although there is no upper limit, 𝐹 > 1 is rarely considered
effective [29].

In addition to the five well-known mutation operators from
the original DE ‘family’ by Storn and Price: rand/1, best/1, target-
to-best/1, best/2, and rand/2, we consider nine other prominent
variants proposed in literature in an attempt to enhance DE perfor-
mance:
• Target-to-best/2 [15]

𝒗𝑖 ← 𝒙𝑖 + 𝐹 · (𝒙best − 𝒙𝑖 ) + 𝐹 · (𝒙𝑟1 − 𝒙𝑟2 )
+𝐹 · (𝒙𝑟3 − 𝒙𝑟4 ),

(1)

where 𝒙best is the best member of the population.
• Target-to-𝑝best/1 [36]

𝒗𝑖 ← 𝒙𝑖 + 𝐹 · (𝒙𝑝best − 𝒙𝑖 ) + 𝐹 · (𝒙𝑟1 − 𝒙𝑟2 ), (2)

where 𝒙𝑝
𝑏𝑒𝑠𝑡

is selected uniformly at random from the best
𝑝 · 100% members of the population, 𝑝 ∈ (0, 1]. We set 𝑝 =

max(0.05, 3/𝑀), as recommended in [36].
• Rand/2/dir [25]

𝒗𝑖 ← 𝒙𝑟1 +
𝐹

2 · (𝒙𝑟1 − 𝒙𝑟2 + 𝒙𝑟3 − 𝒙𝑟4 ),
(3)

where 𝑓 (𝒙𝑟1 ) < 𝑓 (𝒙𝑟2 ) and 𝑓 (𝒙𝑟3 ) < 𝑓 (𝒙𝑟4 ).
• NSDE [35]

𝒗𝑖 ← 𝒙𝑟1 + (𝒙𝑟2 − 𝒙𝑟3 ) ·


N(0.5, 0.5)

ifU(0, 1) < 0.5
C(0, 1)

otherwise

, (4)

where N is a normal distribution, C a Cauchy distribution,
andU a uniform distribution.
• Trigonometric [13]

𝒗𝑖 ← (𝒙𝑟1 + 𝒙𝑟2 + 𝒙𝑟3 )/3 + (𝑝2 − 𝑝1) · (𝒙𝑟1 − 𝒙𝑟2 )+
(𝑝3 − 𝑝2) · (𝒙𝑟2 − 𝒙𝑟3 ) + (𝑝1 − 𝑝3) · (𝒙𝑟3 − 𝒙𝑟1 ),

(5)

where 𝑝1 = |𝑓 (𝒙𝑟1 ) |/𝑝 ′, 𝑝2 = |𝑓 (𝒙𝑟2 ) |/𝑝 ′, 𝑝3 = |𝑓 (𝒙𝑟3 ) |/𝑝 ′
and 𝑝 ′ = |𝑓 (𝒙𝑟1 ) |+|𝑓 (𝒙𝑟2 ) |+|𝑓 (𝒙𝑟3 ) |. This mutation scheme
is applied with probability Γ = 0.05, otherwise rand/1 muta-
tion is applied.
• 2-Opt/1 [9]

𝒗𝑖 ←
{
𝒙𝑟1 + 𝐹 · (𝒙𝑟2 − 𝒙𝑟3 ) if 𝑓 (𝒙𝑟1 ) < 𝑓 (𝒙𝑟2 )
𝒙𝑟2 + 𝐹 · (𝒙𝑟1 − 𝒙𝑟3 ) otherwise

(6)

• 2-Opt/2 [9]

𝒗𝑖 ←


𝒙𝑟1 + 𝐹 · (𝒙𝑟2 − 𝒙𝑟3 ) + 𝐹 · (𝒙𝑟4 − 𝒙𝑟5 )

if 𝑓 (𝒙𝑟1 ) < 𝑓 (𝒙𝑟2 )
𝒙𝑟2 + 𝐹 · (𝒙𝑟1 − 𝒙𝑟3 ) + 𝐹 · (𝒙𝑟4 − 𝒙𝑟5 )

otherwise

(7)
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• Proximity-based rand/1 [12] Here, the indices 𝑟 𝑗 are cho-
sen by a roulette wheel without replacement, where the
selection probability of each index is proportional to the Eu-
clidean distance from the target vector to the corresponding
individual. The authors [12] reported the most significant
performance improvement in conjunction with exploratory
mutation schemes. Therefore, we choose rand/1 mutation
for our experiments with the proximity-based approach.
• Ranking-based target-to-𝑝best/1 [15] Target-to-𝑝best/1
(Eq. 2) is used, and the index 𝑟1 is selected using the roulette
wheel method. The selection probability of an individual is
proportional to its rank in the population w.r.t. the fitness
values.

2.2 Crossover
The crossover step in DE exchanges elements between the target
vector and the donor vector (resulting from the mutation step).
The resulting vector is called the trial vector. We consider the two
most commonly used crossover schemes: binomial and exponential
crossover.

Binomial Crossover [32]. One component, which is selected u.a.r.
in [1, 𝑛], is always inherited from the donor vector. Each remaining
component is inherited from the donor vector with probability
𝐶𝑟 ∈ [0, 1], and copied from the target vector otherwise.

Exponential Crossover [32]. A starting index in [1, 𝑛] is selected
u.a.r., and consecutive components (using wrapping) are inherited
from the donor vector until the conditionU(0, 1) < 𝐶𝑟 is violated
(or all components are already inherited), and the exchange of
components stops. The remaining values are copied from the target
vector.

2.3 Adaptation of Control Parameters
An ongoing problem in the field of evolutionary algorithms is the
sensitivity to control parameters. Differential Evolution has rela-
tively few parameters, namely the mutation rate 𝐹 , crossover rate
𝐶𝑟 , and population size 𝑀 . Still, as the optimal settings of con-
trol parameters is problem-dependent [16, 25, 31, 32], tuning these
parameters is essential in order to obtain the desired result.

For this reason, much effort has gone toward adapting the pa-
rameter values during the optimization process, for example in
jDE [7], JADE [36], and SaDE [30]. In our experiments, we use the
state-of-the-art scheme for adaptation of 𝐹 and𝐶𝑟 proposed as part
of SHADE [33].

3 BOUNDARY CONSTRAINT HANDLING
METHODS

In this work, we consider 13 BCHMswhich, unless stated otherwise,
are applied directly after the mutation step. The reason for this is
that, when dealing with box constraints, the crossover operator
in DE is feasibility preserving, i.e., the crossover product of two
feasible solution vectors is always another feasible solution vector.
Moreover, such setup allows easier tracking of percentage of re-
paired solutions (see Section 5.1). The repair methods considered in
this work all follow the Lamarckian evolution model: an infeasible

individual is replaced by its repaired version, where each compo-
nent with index 𝑗 is positioned between the corresponding lower
bound 𝑥min

𝑗
, and upper bound 𝑥max

𝑗
of the feasible space. In the

Darwinian evolution model, the position of an infeasible individual
is not altered by the BCHM, but it is assigned the fitness value of
its repaired version, thereby maintaining infeasible solutions in the
population. We do not consider BCHMs of the latter type.

Resampling. In the resampling method [2], when an infeasible
solution is generated, the mutation operator is re-applied to the
entire solution vector until a feasible solution is obtained. Phrased
differently, the selection of the random indices 𝑟𝑖 is repeated until
the result of the mutation is feasible. We set the maximum number
of resamples to 100, after which the solution is repaired by means
of projection (discussed later).

Random Reinitialization [29]. Infeasible components are reini-
tialized randomly inside the bounds of the search space.

𝑣𝑖, 𝑗 ←
{
U(𝑥min

𝑗
, 𝑥max

𝑗
) if 𝑣𝑖, 𝑗 < 𝑥min

𝑗
or 𝑣𝑖, 𝑗 > 𝑥max

𝑗

𝑣𝑖, 𝑗 otherwise
(8)

Projection [7]. Infeasible components are placed on the violated
boundary:

𝑣𝑖, 𝑗 ←


𝑥min
𝑗

if 𝑣𝑖, 𝑗 < 𝑥min
𝑗

𝑥max
𝑗

if 𝑣𝑖, 𝑗 > 𝑥max
𝑗

𝑣𝑖, 𝑗 otherwise
(9)

Reflection [31]. Infeasible components are reflected to the other
side of the violated boundary. This can result in the component
being placed outside of the opposite boundary, in which case the
reflection is repeated until a feasible component is obtained.

𝑣𝑖, 𝑗 ←


2𝑥min

𝑗
− 𝑣𝑖, 𝑗 if 𝑣𝑖, 𝑗 < 𝑥min

𝑗

2𝑥max
𝑗
− 𝑣𝑖, 𝑗 if 𝑣𝑖, 𝑗 > 𝑥max

𝑗

𝑣𝑖, 𝑗 otherwise
(10)

Wrapping [24]. This method assumes the search space to be of
a toroidal shape, making infeasible components enter the search
space on the opposite side.

𝑣𝑖, 𝑗 ←


𝑥max
𝑗
− (𝑥min

𝑗
− 𝑣𝑖, 𝑗 ) (mod |𝑥max

𝑗
− 𝑥min

𝑗
|) if 𝑣𝑖, 𝑗 < 𝑥min

𝑗

𝑥min
𝑗
+ (𝑣𝑖, 𝑗 − 𝑥max

𝑗
) (mod |𝑥max

𝑗
− 𝑥min

𝑗
|) if 𝑣𝑖, 𝑗 > 𝑥max

𝑗

𝑣𝑖, 𝑗 otherwise
(11)

Boundary Transformation [17]. This BCHM is used by default in
the implementation of the CMA-ES in Python [18] and C [17]. In
contrast to other BCHMs discussed in this work, it can also perturb
feasible individuals. Predetermined offsets 𝒂𝑙 and 𝒂𝑢 from the lower
and upper bounds are used:

𝑎𝑙𝑗 = min((𝑥max
𝑗 − 𝑥min

𝑗 )/2, 1 + |𝑥
min
𝑗 |/20) (12)

𝑎𝑢𝑗 = min((𝑥max
𝑗 − 𝑥min

𝑗 )/2, 1 + |𝑥
max
𝑗 |/20) (13)

Values 𝑣𝑖, 𝑗 ∈ [𝑥min
𝑗
+ 𝑎𝑙

𝑗
, 𝑥max

𝑗
− 𝑎𝑢

𝑗
] are not modified. Values in

[𝑥min
𝑗
− 3𝑎𝑙

𝑗
, 𝑥min

𝑗
−𝑎𝑙

𝑗
] and [𝑥max

𝑗
+𝑎𝑢

𝑗
, 𝑥max

𝑗
+ 3𝑎𝑢

𝑗
] are first shifted

into the feasible preimage [𝑥min
𝑗
− 𝑎𝑙

𝑗
, 𝑥max

𝑗
+ 𝑎𝑢

𝑗
] by reflecting the
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value using𝑥min
𝑗
−𝑎𝑙

𝑗
or𝑥max

𝑗
+𝑎𝑢

𝑗
respectively as a bound. Values fur-

ther away from the boundaries are shifted upwards or downwards
by a periodic transformation with period 2 · (𝑥max

𝑗
−𝑥min

𝑗
+𝑎𝑙

𝑗
+𝑎𝑢

𝑗
).

After the component is shifted into the feasible preimage, it is
transformed as follows:

𝑣𝑖, 𝑗 ←


𝑥min
𝑗
+ (𝑣𝑖, 𝑗 − (𝑥min

𝑗
− 𝑎𝑙

𝑗
))2/4𝑎𝑙

𝑗
if 𝑣𝑖, 𝑗 < 𝑥min

𝑗
+ 𝑎𝑙

𝑗

𝑥max
𝑗
− (𝑣𝑖, 𝑗 − (𝑥max

𝑗
+ 𝑎𝑢

𝑗
))2/4𝑎𝑢

𝑗
if 𝑣𝑖, 𝑗 > 𝑥max

𝑗
− 𝑎𝑢

𝑗

𝑣𝑖, 𝑗 otherwise
(14)

Rand Base [29]. This method places infeasible components on
a random location between the violated boundary and the corre-
sponding component of the base vector 𝒃 .

𝑣𝑖, 𝑗 ←


U(𝑥min

𝑗
, 𝑏 𝑗 ) if 𝑣𝑖, 𝑗 < 𝑥min

𝑗

U(𝑏 𝑗 , 𝑥max
𝑗
) if 𝑣𝑖, 𝑗 > 𝑥max

𝑗

𝑣𝑖, 𝑗 otherwise
(15)

Midpoint Base [29]. This method places infeasible components
halfway between the violated boundary and the corresponding
component of the base vector 𝒃 .

𝑣𝑖, 𝑗 ←


(𝑥min

𝑗
+ 𝑏 𝑗 )/2 if 𝑣𝑖, 𝑗 < 𝑥min

𝑗

(𝑏 𝑗 + 𝑥max
𝑗
)/2 if 𝑣𝑖, 𝑗 > 𝑥max

𝑗

𝑣𝑖, 𝑗 otherwise
(16)

Midpoint Target [5]. This method places infeasible components
halfway between the violated boundary and the corresponding
component of the target vector 𝒕 .

𝑣𝑖, 𝑗 ←


(𝑥min

𝑗
+ 𝑡 𝑗 )/2 if 𝑣𝑖, 𝑗 < 𝑥min

𝑗

(𝑡 𝑗 + 𝑥max
𝑗
)/2 if 𝑣𝑖, 𝑗 > 𝑥max

𝑗

𝑣𝑖, 𝑗 otherwise
(17)

Conservatism [2]. If the individual is infeasible, i.e., at least one
of its components is infeasible, the entire vector is copied from the
base vector 𝒃 .

𝒗𝑖 ←
{
𝒃 if 𝒗𝑖 ∉ 𝐷

𝒗𝑖 otherwise
(18)

Projection to Midpoint [23]. This method projects an infeasible
individual onto the boundary of the search space, towards the center
of the search space:

𝒗𝑖 ← (1 − 𝛼) · (𝒙min + 𝒙max)/2 + 𝛼 · 𝒗𝑖 , (19)
where 𝛼 ∈ [0, 1] is the largest value such that 𝑥min

𝑗
≤ 𝑣𝑖, 𝑗 ≤ 𝑥max

𝑗
,

for all 𝑗 ∈ {1, . . . , 𝑛}.

Projection to Base [5]. Similar to ‘projection to midpoint’, but the
projection is performed towards the base vector 𝒃 :

𝒗𝑖 ← (1 − 𝛼) · 𝒃 + 𝛼 · 𝒗𝑖 (20)

where 𝛼 ∈ [0, 1] is the largest value such that 𝑥min
𝑗
≤ 𝑣𝑖, 𝑗 ≤ 𝑥max

𝑗
,

for all 𝑗 ∈ {1, . . . , 𝑛}.

Death Penalty [29]. An infeasible individual is assigned an arbi-
trarily large fitness value, greater than any individual in the feasible
space can obtain. This will ensure that the resulting trial vector is
not accepted in the selection step. This BCHM is applied directly
after the crossover step.

4 EXPERIMENTS
A modular DE framework1 was implemented in C++, in which
each previously discussed mutation method, crossover method, and
BCHM can be combined arbitrarily. We consider 14 mutation meth-
ods, 2 crossover methods and 13 BCHMs, using which we can gener-
ate a total of 14 × 2 × 13 = 364 different instances of DE. We bench-
mark the performance of each DE instance on IOHprofiler [10],
which contains the 24 test functions from BBOB/COCO [19]. We
perform experiments on all 24 test functions, in 30 dimensions.
Each DE instance is run 100 times on each function, with a func-
tion evaluation budget of 𝑛 · 10000 = 300000, and a population
size𝑀 = 100 [27]. Due to the computationally heavy nature of the
experiment, it is parallelized using Open MPI [14] and run on the
DAS-5 cluster [4].

To quantify the behavioral impact of BCHMs onDEs, we consider
two measures, 1) the best-reached objective function value as a
measure of performance and 2) the total percentage of solutions
that required repairing or penalization. Since both measures are
stochastic, we need to aggregate them through multiple runs, and
even over function groups.

We collected the best-reached objective function values from
independent runs of each DE variant, and then used these to pro-
duce statistical rankings of DE variants, via the well-known the
Kolmogorov-Smirnov test2. To avoid a huge number of pairwise
comparisons (which usually drastically decreases the statistical
power), we first group the DE variants by their combination of mu-
tation/crossover operators and then compute the ranks for those 13
variants (differing only in their BCHMs). Furthermore, to make the
results more comprehensible, we aggregated the statistical rank-
ings over each function group in BBOB3. Also, the ranking in each
function group is tested for statistical significance using the Fried-
man test and the corresponding post-hoc test using the Hochberg
procedure, with a confidence level 𝛼 = 0.05, indicating if a pair of
ranks is significantly different.

In addition, we record the percentage of solutions that required
a repair or penalization. For most BCHMs, this percentage is equiv-
alent to the percentage of generated infeasible donor vectors. The
only two exceptions are ‘Boundary Transformation’, where solu-
tions can be repaired even if they are feasible, and ‘Death Penalty’,
which is applied to the trial vectors (i.e., after the crossover step).

5 RESULTS
5.1 Comparison of BCHMs
Here, we present the experimental results. Figure 1, plotted us-
ing Matplotlib [20], shows two heatmaps for each function group.

1The source code is available at: https://github.com/rickboks/pso-de-framework
2We used the implementation of DSCTool [11].
324 BBOB problems are categorized into five function groups, within which problems
share some common characteristics to some degree, e.g., ill-conditioning, regularity,
separability, symmetry, and multimodality.
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Heatmaps on the left show the mean rank of each BCHM when
combined with a particular mutation and crossover strategy, for
the function group in question. Each cell is colored with a shade
of blue, where a darker shade corresponds to a lower (better) rank.
The best ranked BCHM(s) for each mutation/crossover combination
in a particular function group are marked with a green font. All
BCHMs that showed significantly worse performance compared to
the best BCHM(s) are marked with a red font. Note that the lowest
rank(s) in each column of a heatmap are always marked green, even
if no other BCHM is significantly worse. The heatmaps on the right
side of Figure 1 show the average percentage of repaired solutions
(PORS) for each DE configuration combined with each BCHM. To
signify the irregularities regarding the Boundary Transformation
and Death Penalty BCHMs discussed earlier, they are marked with
an asterisk (*) in Figure 1.

BBOB Function Group 1: Seperable functions (functions 1–5). In
the first function group, Death Penalty, Resampling, and Rand Base
seem to be a good choice for most configurations. Conservatism is
the worst choice in many cases, and often significantly worse than
the best option. Looking at the PORS, it is clear that two BCHMs
result in the least repairs: Conservatism and Death Penalty. The
lower PORS for Death Penalty can in part be due to the fact that
it is applied after the crossover step, instead of directly after the
mutation step, allowing infeasible components of the donor vector
to still be discarded by the crossover operator. The Transformation
BCHM results in the largest PORS, which can likely be explained
by its property of altering even feasible solutions. The same can
be observed in the other four function groups. Exploitative DE
configurations, for example those incorporating the ‘best’ vector
in their mutation scheme, generate fewer infeasible solutions than
exploratory ones, resulting in a lower PORS. The PORS in this
function group are generally quite high, taking into account the
relatively simple nature of the problems in this function group. This
can be explained by the fact that the optimum of function 5, ‘Linear
slope’, is located on the boundary of the search space, resulting in
PORS of > 90% for many DE instances.

BBOB Function Group 2: Functions with low or moderate condition-
ing (functions 6–9). In function group 2, the preferred BCHMs are
much more pronounced. In contrast to function group 1, many con-
figurations now perform best with Conservatism, specifically those
using exponential crossover. For binomial crossover, Resampling is
generally a good choice. DE instances seem to be more sensitive to
the choice of BCHM when using exponential crossover, as the per-
formance differs with statistical significance more frequently. The
differences in PORS are much larger compared to function group 1.
In general, binomial crossover results in significantly fewer re-
pairs. Many instances using exponential crossover required approx-
imately 50% repairs, perhaps explaining the increased sensitivity
to the BCHM choice. However, even with exponential crossover,
few repairs are needed when using the Death Penalty. The ‘target-
to-best’ mutation variants generate the fewest infeasible solutions,
with both crossover operators. Note that the ‘ranking’ mutation
scheme is a variation on target-to-𝑝best/1.

BBOB Function Group 3: Functions with high conditioning and uni-
modal (functions 10–14). In function group 3, configurations with

exponential crossover generally work best with either Projection
Base, Projection Midpoint, or Conservatism. Resampling is again a
good choice for most configurations with binomial crossover. The
sensitivity to the BCHM is much higher for DEs with exponential
crossover, and especially Midpoint Base, Projection, Rand Base and
Transformation often result in significantly worse performance for
these DEs. The PORS are similar to those of function group 2.

BBOB Function Group 4: Multi-modal functions with adequate
global structure (functions 15–19). The generally preferred BCHMs
in function group 4 are comparable to those of function group 3.
Midpoint Target additionally performs well in combination with
binomial crossover. It seems that the sensitivity to the choice of
BCHM is highest in function group 4, especially when using expo-
nential crossover. The optimal choice here is also highly dependent
on the mutation strategy (instead of just the crossover strategy).
The PORS in this function group are much higher than in others.
Many instances using exponential crossover show over 80% repairs.
We expect these high PORSs to be a result of the high degree of
multimodality of functions 𝑓 15 − 𝑓 19, stimulating the search of
local optima close to the boundary.

BBOB Function Group 5: Multi-modal functions with weak global
structure (functions 20–24). The differences in terms of performance
are much less pronounced in function group 5. It seems impossible
to give a general recommendation for the BCHM here. At the same
time, most DE configurations are less sensitive to the BCHM. Few
configurations perform significantly better or worse with differ-
ent BCHMs. The PORS are overall slightly lower than in function
group 4.

In general. It is clear that choice of BCHM influences the per-
formance of DE and, thus, should not be disregarded during algo-
rithmic design. Furthermore, choice of BCHM has direct impact on
the number of required repairs of infeasible solutions (the so-called
PORS). Tracking such number during optimization of the BBOB
functions reveals surprisingly high values (up to 93%), even for the
best performing configurations. The nature of such observation
requires further study. DE instances with exponential crossover gen-
erate considerably more infeasible solutions, which likely explains
their increased sensitivity to the choice of BCHM.

Guidelines. Table 1 shows the number of times each BCHM had
the lowest rank for a configuration, per function group and in total.
Conservatism and Resampling are clearly two important BCHMs
to consider, as they perform best with many DE configurations.
However, in some cases they are also poor choices. As a rule of
thumb, a practitioner could first try Conservatism for a DE config-
uration with exponential crossover and Resampling for one with
binomial crossover. Judging from Figure 1, this policy will, however,
not always give optimal results. Therefore, a second option should
be considered. For binomial crossover, Midpoint Target is rarely the
optimal choice, but nearly always a good choice. In the exponential
crossover case, Projection Midpoint can be employed as a reliable
second option.
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Figure 1: Two heatmaps for each BBOB function group. On the left, heatmaps of the mean performance ranks over of the
BCHMs when combined with each mutation/crossover combination. On the right, heatmaps of the mean percentage of re-
paired solutions (PORS) of each DE instance. Results are averaged over 100 runs for each function in each function group. See
Section 5.1 for explanation of cell and font colours.

5.2 Comparison of DE Configurations
Since so far we only ranked DE instances with the same mutation
and crossover operators, we cannot extract knowledge about the
relative performance between instances with differing mutation
and/or crossover. For this reason, Empirical Cumulative Distribu-
tion Functions (ECDFs) with the best DE instance for each muta-
tion/crossover combination are computed with IOHanalyzer [10],
and the corresponding graph is plotted with ggplot2 [34]. In Fig-
ure 2, for each function group, we plot an ECDF graph with one line
for each mutation/crossover combination, where each DE instance
uses the best ranked BCHM for that configuration in the function
group in question. This means that the set of plotted instances dif-
fers across the five plots. If there are multiple best BCHMs, the one
appearing first (from top to bottom) in the heatmaps of Figure 1, is

used. The ECDF shows the average proportion of targets hit across
all runs in a certain function group on the 𝑦-axis, given a number
of used function evaluations, which is displayed on the 𝑥-axis. The
number of function evaluations is divided by 30, the dimensionality
of the benchmark problems. The targets are 𝑓opt + {101, . . . , 10−8},
where 𝑓𝑜𝑝𝑡 is the objective function value of the optimum. The
mutation scheme is encoded using color, and the crossover by the
line type, where a solid line indicates binomial crossover and a
dashed line exponential crossover.

BBOB Function Group 1. In function group 1, configurations with
exponential crossover perform significantly better than those with
binomial crossover. In fact, all instances with exponential crossover,
except the one using best/1 mutation, reach 100% of the targets
within the allocated budget, while only one instance with binomial
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Table 1: For each DE configuration, the performance of each
BCHM is determined based on theirmean ranks over a func-
tion group. This table shows the number times each BCHM
has the best mean rank over all such DE configurations. In
some cases there were two best BCHMs, in which case a col-
umn can sum up to more than 28 (the number of considered
DE configurations). The largest value in each column is high-
lighted in bold.

Function group
BCHM 1 2 3 4 5 total

Conservatism 1 12 6 4 1 24
Death Penalty 10 1 0 0 0 11
Midpoint Base 2 0 0 0 2 4

Midpoint Target 3 3 1 5 1 13
Projection Base 0 1 3 3 4 11

Projection Midpoint 0 1 6 2 3 12
Projection 0 0 1 0 1 2
Rand base 6 0 0 2 3 11
Reflection 2 1 1 2 5 11

Reinitialization 0 2 0 1 6 9
Resampling 6 8 10 12 2 38

Transformation 0 0 1 0 1 2
Wrapping 0 1 1 0 5 7

crossover (using target-to-best/2 mutation) does. Best/1 and best/2
mutations combined with binomial crossover show to be too ex-
ploitative, as they hit many targets quickly but seem get stuck in
local optima, preventing them from hitting the final target.

BBOB Function Group 2. Interestingly, binomial crossover gener-
ally performs better than exponential in function group 2. A large
portion of the instances using exponential crossover reaches fewer
than 10% of the targets. All target-to-best variants, in particular
target-to-best/2 and ranking-based mutation, perform very well
when combined with binomial crossover. Ranking-based mutation
is a good choice regardless of the crossover operator. In fact, the rel-
ative performances of the mutation schemes is very similar between
the two crossover schemes.

BBOB Function Group 3. The ECDF of function group 3 is very
similar to that of function group 2, but fewer targets are reached
by most instances. The ‘target-to-best’ mutation schemes are again
most successful. The performance difference between binomial
and exponential crossover is more pronounced in this function
group; all instances using binomial crossover perform better than
all instances using exponential crossover.

BBOB Function Group 4. Similar to function groups 2 and 3, bi-
nomial crossover outperforms exponential crossover in function
group 4. The best mutation schemes, are, however, completely
different. Each of the top 5 DE instances (all of which use bino-
mial crossover) in this function group use an exploratory mutation
scheme: rand/1, rand/2, or variations thereof: 2-opt/1, 2-opt/2 and
proximity-based rand/1. In contrast, the instances with exponential
crossover performed better with exploitative mutation schemes.

BBOB Function Group 5. As in function group 1, DE instances
with exponential crossover outperform most instances using bi-
nomial crossover in function group 5. The best instance used the

NSDE mutation scheme. Furthermore, the best/1 and all the ‘target-
to-best’ mutation schemes performed well.

In general – guidelines. The ECDFs show an advantage for ex-
ponential crossover in function groups 1 and 5, one for binomial
crossover in function groups 2, 3 and 4. The performance difference
between instances differing only in the crossover operator can be
huge. Therefore, it is especially important to carefully consider the
choice of crossover operator based on the characteristics of the
problem at hand. In all function groups except function group 4, DE
instances using binomial crossover perform best with ‘target-to-
best’ mutation variants. In function group 4, exploratory mutation
schemes like rand/1 or 2-opt/1 performed better. This can be ex-
plained by the high degree of multimodality of the test functions in
this function group, where exploratory mutation schemes are more
likely to escape local optima. When using exponential crossover,
too, a ‘target-to-best’ mutation variant is often a good choice, as
well as best/1 mutation or the neighborhood search mutation oper-
ator from NSDE. It is important to note that the choice of BCHM,
in this case the optimal choice according to Figure 1, can, as demon-
strated, have a significant impact on the performance of the DE
configurations, and different results could be obtained by selecting
different BCHMs.

6 CONCLUSIONS AND FUTUREWORK
We aim to quantify the impact of boundary constraint handling
methods (BCHMs) on Differential Evolution (DE) algorithms in
terms of the empirical performance and algorithm’s behavior. For
this purpose, we took the so-called modular DE framework [6],
which is capable of instantiating a huge number of DE variants
by combining different mutation, crossover, and BCHM operators.
This paper puts a special emphasis on the BCHM, as this operator
is often overlooked in existing literature. In detail, 14 mutation
operators, 2 crossover operators, and 13 BCHMs have been tested
in this work, resulting in 364 DE instances. We benchmarked those
instances on the well-known BBOB/COCO problem set [19] in 30
dimensions. The experimental results were aggregated over each
of the five function groups, where the members of each function
group share similar characteristics.

As for the empirical performance, we measure the best-reached
function value. The results show that the choice of BCHMs requires
careful consideration, as it can impact the performance of DE sig-
nificantly. The best choice depends on the problem to optimize
and the DE instance to use, but general guidelines can be given
based on the crossover operator, as this seems to have by far the
greatest influence on the optimal choice. For a DE instance using
exponential crossover, Conservatism is the best choice for BCHMs
concerning most mutation operators and most function groups,
but it can result in sub-optimal results in some cases, where using
Projection Midpoint as a second option would improve the per-
formance. For the binomial crossover, we recommend to employ
Resampling as the initial choice, and consider Midpoint Target as a
reliable fallback option.

For quantifying the algorithm’s behaviour with respect to bound-
ary constraints, we recorded the percentage of repaired solutions
(PORS) and observed that a large difference of PORS between DE
instances using binomial crossover and those using exponential
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Figure 2: Empirical Cumulative Distribution Functions (ECDFs) of the best DE instances for each combination of mutation
and crossover (with the best BCHM according to Figure 1), aggregated over the 100 runs of each function in each function
group. Note that the plotted DE instances differ across the 5 function groups.

crossover, which is likely explained by the more aggressive per-
turbations made by the exponential variant. We expect the higher
PORS to be the reason that DEs with exponential crossover are
much more sensitive to the choice of BCHM, compared to those
using binomial crossover. As a high PORS indicates a higher level
of exploration near the boundary of the search space, it could be
beneficial to switch from exponential to binomial crossover during
the course of the run, favoring exploitation in the later stages of the
optimization process. The ‘target-to-best’ mutation variants gener-
ally generate fewer infeasible solutions than others. Additionally,
these mutation schemes showed to perform well in most function
groups. The BCHM has also been shown to have a direct impact
on the PORS. We have, however, not been able to show causality
between the PORS and the performance of a DE instance. This is
an interesting direction for future efforts.

In our experiments, we observed a significant difference in per-
formance between instances with different crossover operators.
Instances using exponential crossover performed better in function
groups 1 and 5, and those with binomial crossover performed better
in function groups 2, 3, and 4. The four ‘target-to-best’ mutation
scheme variants we experimented with showed the best perfor-
mance overall. In some cases, a more exploratory mutation scheme
like rand/1 or NSDE yielded better results.

In future work, the experiments should be repeated in more
dimensionalities, as the results could vary. We expect the BCHM
to be even more critical in higher dimensionalities, where more
infeasible solutions are generated [22]. Further, the large number
of DE operators present in the implemented software framework
arouse the interest for adaptive selection of operators, similar to
SaDE [30]. This possibility should also be explored in future efforts.
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