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ABSTRACT
Metaheuristics employ a variety of different components using a
wide array of operators to execute their search. This determines
their intensification, diversification and all other behavioural fea-
tures and is thus critical for success on different optimisation prob-
lems. Choosing the right components with the right operators
remains a difficult task. In this paper we propose a design of exper-
iments that should be used for extensive component studies. We
demonstrate the applicability of this design by exploring the differ-
ences in operator specific performance in two closely related meta-
heuristic frameworks—the well-known (𝜇 + 𝜆)-Evolution Strategy
and the strongly metaphor-focussed Invasive Weed Optimisation—
where operators show varying degrees of similarity in different
components. This experiment shows that similarity of operators
does not comprehensively account for similarity in performance.
Presumably small changes of an operator can influence the algorith-
mic behaviour more than the utilisation of a completely different
operator in another component. Even when employed in different
combinations, these influences remain strong. This emphasises the
need for a more detailed analysis of the specific effects of compo-
nents and their respective operators on the search process.
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1 INTRODUCTION
The performance of a metaheuristic varies dependent on the given
optimisation problem. This variation not only occurs respective to
the metaheuristic framework but also to the components included
in this framework, i. e. the utilised operators and the conditions for
their usage. Furthermore, many components and their operators
are not exclusive to one single metaheuristic but are incorporated
in a range of different frameworks.

This creates similarities between metaheuristics with very differ-
ent descriptions and inspirational aspects and results in the question
if it is possible to describe metaheuristics in a unified way [3, 18].
A unified metaheuristic framework can then provide the basis to
construct algorithms from the set of components, customised for
the problem at hand. This strongly relates to approaches of meta-
heuristic hybridisation and hyperheuristics, which could both profit
from prior knowledge of the influences of components. However,
this requires extensive analysis of the influences of metaheuris-
tic components, in terms of their concepts, their behaviour and
the resulting performance [18]. In addition, the combination of
certain components can cause a different behaviour as their indi-
vidual evaluations would suggest [44], thus extending the required
analysis.

There are some studies on metaheuristic components concerning
the incorporation of different operators into the framework and how
their combinations influence the overall performance (e. g. [38, 44]).
Furthermore, a number of studies has been performed analysing
the hyperparameters of a metaheuristic, which are often part of an
operator or provide conditions for its usage (e. g. [26]). However,
these existing studies are insufficient as they have some major
restrictions:

(1) Most studies analyse components of and in the same meta-
heuristic frameworks, e. g. the Genetic Algorithm, Evolution
Strategy and, more rarely, Particle Swarm Optimisation.

(2) Components and operators are often only evaluated on few
optimisation problems and their instances.

(3) Not all components have been included in previous evalua-
tions. This is especially a problem in light of the vast number
of different generally applicable and problem-dependent op-
erators.

(4) Combinations of different operators have not been analysed
in detail, although the few available studies show that they
can have strong influences on the performance.
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(5) The influences of components are mostly evaluated with
respect to the overall performance. Their behaviour during
the search process is often not analysed.

Gaining a better understanding of metaheuristic components by
extending the existing analysis can positively affect the applicabil-
ity of metaheuristics for a given problem. At that, it is important
to include not only well-known approaches, but also those heav-
ily relying on their underlying metaphor, to prevent overlooking
new, efficient strategies. Operators can be incorporated utilising the
information on their behaviour and the search for suitable hyper-
parameters may be facilitated through prior knowledge. Further-
more, new combinations of operators from different metaheuristics
can result in effective hybrid approaches and novel metaheuristic
frameworks can be built by expanding the range of component
combinations.

To this end, an analysis of how metaheuristic components influ-
ence the search behaviour of the algorithms is required [53]. For
a comprehensive understanding of these influences, the following
questions need to be answered:

RQ-1 How do the components of metaheuristics relate to the
search behaviour, e. g. exploration and exploitation, the so-
lution quality, the convergence of the algorithm, etc.?

RQ-2 How do interactions/combinations of operators influ-
ence the search?

RQ-3 How can we quantify and evaluate these influences?
RQ-4 Is it possible to derive general statements on the be-

haviour and applicability of the components?
In this paper, we present a strategy for the execution of large-

scale studies of metaheuristic components to provide insights re-
lated to these research questions.Wewant to focus on operators and
their combinations, initially restricting the hyperparameter studies
to the necessary minimum. Therefore, in Section 2 we describe
existing approaches to the evaluation of component behaviour
and influences. Section 3 presents descriptions and definitions for
components and operators in the context of a conceptual frame-
work for their interactions. Then we will illustrate how large-scale
operator studies should be performed (Section 4). This includes
the required assumptions (Section 4.1), the design of the experi-
ments (Section 4.2) and a first evaluation to show the feasibility of
our approach (Section 4.3). In the end, we summarise our findings
(Section 5) and provide an overview on future work on the topic
(Section 6).

2 RELATEDWORK
Operators have been researched primarily for Evolutionary Algo-
rithms. For these metaheuristics, there is a large set of different
operators, resulting from extensions to the original algorithms and
adaptations for specific problems.

The analysis of these operators can be divided into two areas:
comparing the concepts of the operators, and performing studies
to assess the performance of an algorithm utilising one or more
specific operators. Reviews on operator descriptions exist on many
different mutation and crossover variants [32, 40, 48, 49, 52], as
well as on different selection operators [43, 46]. Studies on the per-
formance influences an operator provides include the analysis of
different mutation operators [8, 12, 41], crossover operators [1, 41]

and combinations of both operators [38, 54], and often evaluate
only the change in overall algorithmic performance on one or few
optimisation problems. Analysis of the selection operators in Ge-
netic Algorithms (GA) and Evolution Strategies (ES) is more detailed,
providing further evaluations of the loss of diversity and selec-
tion intensity [10], the population diversity and the selection pres-
sure [29] for the GA, and of the selection pressure in the ES [2],
respectively. Only very few analyses include all three components
in different variants [44].

There are some studies comparing components and certain oper-
ators in different metaheuristic frameworks [37]. However, frame-
work-independent studies of operators are not yet in the focus of
research. They require a notion of a unified framework that can be
used to compose several different metaheuristics from a basic set of
components, including operators. One approach for a generalised
metaheuristic model and a resulting operator analysis is provided
by Cruz-Duarte et al. [18]. They construct and evaluate 20 different
metaheuristics from the same basic set of components. Furthermore,
unified metaheuristic frameworks were used to improve Differential
Evolution [39] and Particle Swarm Optimisation [20] by utilising
operators from other metaheuristics. Other unification approaches
are focused on a conceptual comparison [3], the detection of similar-
ities between different metaheuristics [14, 19] or the construction
of new algorithms from the same basic building blocks [47].

Another strategy to unify metaheuristic concepts is provided
by Chicco and Mazza [16] and Batrinu et al. [6], focussing on find-
ing more detailed common principles instead of a general algo-
rithmic structure. These principles describe common capabilities
of metaheuristic components that are required in a metaheuris-
tic. They can be extended or specified by other categorisations
of components, including their intensification and diversification
capabilities [11] and the categorisation according to their search be-
haviour [33, 34]. Other criteria to categorise components according
to their behaviour or their influence on the overall metaheuristic can
be found inwork on classification ofmetaheuristics (e.g. [36, 50, 51]).
Furthermore, research on metaheuristic design patterns provides
common structures for components [30].

3 METAHEURISTIC COMPONENTS
In this section, we clarify our understanding of metaheuristic com-
ponents, operators and a unified or general metaheuristic frame-
work. Furthermore, we describe how the components can be inte-
grated into such a general framework so that it enables conducting
operator studies. To this end, we use existing approaches as a basis
and extend or adapt them if necessary.

Following Blum and Roli [11] and Lones [33, 34], we use the term
component to describe any part of a metaheuristic that represents a
recurring scheme and is related to intensification or diversification
or any other behavioural feature of the metaheuristic. Components
consist of operators that determine their behaviour, and parameters
that determine the behaviour of the operators, respectively.

The different types of components can be derived from unifi-
cation concepts. These often structure metaheuristics into distin-
guishable functional parts. However, the current approaches differ
in denotation and level of detail. Bandaru and Deb [3] and de Ar-
mas et al. [19] use similar descriptions for a unified metaheuristic
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framework. Central aspects are component structures for selection,
variation and replacement and update of solutions. Bandaru and
Deb [3] further add a structure for termination of the algorithm,
while de Armas et al. [19] include the initialisation and the usage of
an archive or memory. Furthermore, de Armas et al. [19] focus on
the different sets of solutions at the stages between the structures.
Cruz-Duarte et al. [18] use a different approach, where a combina-
tion of two structures, the perturbator and the selector, is repeated
several times between initalisation and termination. Perturbator
and selector can be used to describe any component ascribed to
selection, variation and replacement of solutions. The approach by
Song and Fong [47] is somewhere in between these strategies, con-
sisting of initialisation, searching method, environmental response
and adaptive method.

While the approaches of Cruz-Duarte et al. [18] and Song and
Fong [47] are well suited as a template for implementation, they
require additional information to conceptually analyse the utilised
components. An approach differentiating the components in detail
can facilitate both, the understanding of the resulting algorithmic
concepts and the implementation and evaluation of different com-
binations. We will therefore combine the approaches of Bandaru
and Deb [3] and de Armas et al. [19] to describe the possible types
of components and to obtain a template for a structured analysis
(see Figure 1).

The identified relevant structures of a general metaheuristic
framework are the initialisation, selection, generation, replacement,
update, archiving and termination. The naming of the structures
is based on Bandaru and Deb [3] as these present more intuitive
descriptions of the functions. Initialisation is not present as a com-
ponent structure in Bandaru and Deb [3], while in de Armas et al.
[19] it is termed generation method. It is included as the initialisa-
tion component influences the search process by its specification,
e. g. if it is random or deterministic and how this is achieved. The
selection structure (output functions in [19]) determines which solu-
tions provide the basis for the generation (or updating mechanism
in [19]) of new solutions. Replacement and update define which
old solutions will be replaced and which new solutions are kept
for the next iteration and can be combined to a single structure
(input functions in [19]). The archiving structure acts as a memory
for solutions and allows using them to generate new solutions. Fi-
nally, the termination determines when to stop the search process.
All structures are composed of one or more components, except
archiving, which is optional. However, there is often exactly one
component for each structure present in a metaheuristic, although
employing several components for generation is common.

The structures of a unified framework allow the categorisation of
components according to their general functions in a metaheuristic.
Furthermore, components can be categorised according to several
sets of criteria. These include their intensifying and diversifying
effects depending, for example, on how strongly the component
is guided by the objective function, other functions or random-
ness [11]. Additionally, common underlying principles [6, 16] and
recurring concepts [33, 34] can highlight influences and functional
similarities of components. Chicco and Mazza [16] list the com-
mon principles as Parallelism, Acceptance, Elitism, Selection, De-
cay/Reinforcement, Immunity, Self-adaptivity and Topology. Recur-
ring concepts are, according to Lones [33, 34],Neighbourhood Search,

Initialisation

Selection

Generation

Replacement

Update

Archiving

Termination

Figure 1: Component Structure of Metaheuristics (adapted
from [3, 19]).

Hill Climbing, Accepting Negative Moves, Restarts, Adaptive Memory
Programming, Population-based Search, Intermediate Search,Directed
Search, Variable Neighbourhood Search and Search Space Mapping.
An important aspect is that these principles or concepts are not nec-
essarily attributable to individual components but can also result
from combinations of components.

4 ANALYSIS OF METAHEURISTIC
COMPONENTS

This section outlines an approach on the analysis of metaheuristic
components. After stating the assumptions this analysis is based
on, the experimental design is elucidated. Furthermore, an example
for the execution of the analysis is presented.

4.1 Assumptions
We assume that all (or at least most) metaheuristics can be (re-)built
by inserting components into a general framework and that this
process does, if done right, neither influence the overall perfor-
mance nor the behaviour of the metaheuristic. This is required for
constructing a common basis for comparisons. Furthermore, we
assume that we can utilise all components in all metaheuristics, as
long as the essential structure of a general framework is preserved.
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If this does not apply, it is not possible to compare components in
different frameworks. Our last assumption is that the composition
of components and the specific operators and parameters account
for the search behaviour and the performance on a given problem.
The refutation of this final assumption would necessitate further
discussions about the applicability of this kind of study.

4.2 Design of Experiments
The experimental design of metaheuristic component studies is
planned according to general guidelines for design of experiments
[4, 9, 27, 28] and benchmarking [5, 31].

Goals: The overarching goal of the studies is to understand the
influence of algorithmic components, specifically the individual
operators, in terms of performance and search behaviour. This,
however, is an abstract goal that needs to be specified by posing
several questions directly connected to it. Among those are the
research questions from section 1, but many more questions can be
stated, for example:

• Are there operators that always result in at least “good”
performance?

• Are there operators that always produce poor results?
• Which operators cause the same behaviour (at least in certain
aspects)?

• Are problem-specific operators always better (on the specific
problem they are intended for) than universally applicable
ones?

• Is it possible to match operators to certain problem features?
• Do some operators perform better for a given problem than
others, even with the best possible parameter settings?

Each of these questions requires specific measurements of per-
formance and behaviour and suitable statistics for the evaluation.
It is imperative to clearly state these for the respective analysis.

Problems: The next step is to find suitable optimisation problems
for the analysis. These have to be diverse in terms of their diffi-
culty to make performance differences of the components visible.
Furthermore, they should possess different and preferably known
characteristics or features that could require specific behaviour for
good performance.

First evaluations should therefore be performed on standard
benchmark problems, e. g. Black-Box Optimization Benchmarking
(BBOB) functions [25], the Travelling Salesperson Problem (TSP) [42]
and the Quadratic Assignment Problem (QAP) [13]. Later on, an
extension to some real-world problems is necessary to see if the
conclusions still hold. This is especially interesting when trying to
match components to specific problem features or when determin-
ing generally well-functioning components.

Algorithms: Components cannot be evaluated without integra-
tion into an algorithm. To this end, all components will be integrated
into the general metaheuristic framework described in section 3.
This integration comprises two different approaches: the recon-
struction of existing metaheuristics from the components and their
specific operators and the construction of additional algorithms
by new component combinations or operators. However, no com-
prehensive analysis is possible without considering the respective

hyperparameters that guide the utilisation of operators. The neces-
sary hyperparameter studies enable the establishing of a suitable
parameter set to make operator combinations comparable. Further-
more, their influences on the performance as well as the behaviour
of the algorithms can be examined.

Performance: The components have to be evaluated in terms of
their influence on the performance but also the search behaviour,
depending on the question to be answered or specific hypothesis
stated. This requires different measures, with an additional distinc-
tion of those purely for continuous or discrete problems. For some
established measures for discrete problems, it should be evaluated
if they can be utilised for continuous problems as well.

A comprehensive list of measures with a focus on efficiency and
effectiveness is provided by Halim et al. [24] while Scheibenpflug
et al. [45] list suitable behavioural measures for combinatorial op-
timisation problems. Some measures can naturally be utilised for
both, the assessment of performance and behaviour.

Appropriate measures for the performance relate to the solu-
tion quality, the computational budget, and the robustness of the
algorithm [5]. These include, among others, the difference to the
(known) optimum, the number of function evaluations, the number
of successful runs, and statistics. Furthermore, the convergencemea-
sures are of interest [24], though they also relate to the behaviour
of the algorithm. Behavioural measures include, the population
diversity [15], selection pressure [23], exploration and exploitation
steps [17], and amount of improvement, coverage of solution space
and intensification and diversification ratios [45].

Analysis: The resulting measures for performance and behaviour
must then be analysed to answer the research questions. In this
case of component comparison, multiple algorithms are evaluated
on multiple problems. Furthermore, for each research question and
each measure, there has to be a clearly specified hypothesis. The
first step is the exploratory data analysis, with the evaluation of
mean, median, best, worst, first quartile, third quartile and standard
deviation for the suitable measures [5]. Additionally, somemeasures
such as convergence and population diversity can be analysed by
suitable plots. The next step is the confirmation of the results by
hypothesis tests, where the appropriate tests have to be carefully
selected [22, 24].

Finally, the results of the performance and behaviour measure-
ments and the consequent analysis are used to answer the stated
questions. To this end, they have to be clearly presented and have
an obvious relation to the research questions.

4.3 Example: ES and IWO
A first exemplary evaluation aims at showing the feasibility of
the approach and demonstrating how much information can be
gathered with just a small-scale analysis. We therefore analyse the
components of two similar metaheuristics, namely (𝜇 + 𝜆)-Evolution
Strategy (ES) [7] and InvasiveWeed Optimisation (IWO) [35] in terms
of the utilised operators. The similarity results from an identical
component structure within the general framework, enabling the
evaluation of the incorporated operators in different combinations.

4.3.1 Experiment. The goal is to answer the following questions:
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Q1 What are the differences in the performance for the opera-
tor combinations?

Q2 Is there a “best” operator (on all test problems)?
Q3 How do the operator combinations influence population

diversity?

Table 1: Test functions, all with known optimum 0 at (0, ..., 0).

Name Function Range &
Dimensions

Sphere
∑𝑛
𝑖=1 𝑥

2
𝑖

[-5.12, 5.12]
10, 20, 30

Rastrigin 10𝑛 +∑𝑛
𝑖=1 (𝑥2𝑖 − 10 cos(2𝜋𝑥𝑖 )) [-5.12, 5.12]

10, 20, 30

Ackley 20 − 20 ∗ exp(−0.2
√︃

1
𝑛

∑𝑛
𝑖=1 𝑥

2
𝑖
) −

exp( 1𝑛
∑𝑛
𝑖=1 cos(2𝜋𝑥𝑖 )) + exp(1)

[-32, 32]
10, 20, 30

The specific algorithms evaluated are a basic version of the
(𝜇 + 𝜆)-ES as described in [7] and the IWO [35]. The (𝜇 + 𝜆)-ES was
chosen as it constitutes a well analysed metaheuristic, while the
IWO contains new, yet strongly metaphor-based, operators, which
have not been analysed in detail. Both are designed for continuous
search spaces and will be evaluated on a small set of continuous
real-parameter optimisation problems with different dimension-
alities (see Table 1). Though this selection of algorithms is kept
small and simple, it will suffice as a proof of concept for the study
design. In addition, both algorithms share the same structure, i. e.
they contain exactly one component for initialisation, selection, gen-
eration, replacement and update and termination and no archiving.
Furthermore, the basic versions of both metaheuristics share the
same common operators for some components (see Table 2), namely
the initialisation and termination. The operator for selection clearly
distinguishes both algorithms, while generation and replacement
and update operators are essentially identical but utilise different
parameters. We evaluate the original operator sequences of the
algorithms as well as different combinations, exchanging operators
or utilising parameters from the respective other approach. The
combinations are listed in Table 3.

The parameter settings for the operators have to result in a
similar performance of the examined algorithms to enable a fair
comparison. We therefore conduct a small parameter study to es-
tablish the settings for the experiment. However, for now we only
evaluate the parameters in the original algorithms. Further, more
detailed experiments require finding optimal parameter settings for
all individual component combinations. The tested parameter sets
can be obtained from Table 4. All combinations of the presented
sets are evaluated five times and the best settings are utilised in
the respective operators in the further evaluation. Furthermore, the
input ranges of the test functions are scaled to [−1, 1], which facili-
tates the comparison of the generation component by a more similar
standard deviation 𝜎 of the operators. We are aware that compre-
hensive parameter studies are indispensable for a comprehensive
and meaningful analysis. However, for the purpose of this initial
example, we select the parameters within these ranges determined
by experience and similarity.

Table 2: Components and operators of (𝜇 + 𝜆)-ES and IWO.

Component (𝜇 + 𝜆)-ES [7] IWO [35]

Initialisation uniform random uniform random
Selection uniform random fitness ranking with

linear increase of chil-
dren

Generation normally distributed
mutation,
𝜎 fixed

normally distributed
mutation,
𝜎 =

(itermax−𝑖𝑡𝑒𝑟 )𝑛
(itermax)𝑛 ∗

(𝜎ini − 𝜎end) + 𝜎end
Replacement
and Update

keep best from (𝜇 + 𝜆) keep best from parents
and children consider-
ing 𝑝max

Termination max. number of gener-
ations

max. number of gener-
ations

Archiving none none

Table 3: Operator combinations for experiments (S, G and R
for selection, generation, and replacement operators, respec-
tively, utilised by ES and IWO as described in Table 2).

Combination

ES ES𝑆 + ES𝐺 + ES𝑅
IWO IWO𝑆 + IWO𝐺 + IWO𝑅

C1 ES𝑆 + ES𝐺 + IWO𝑅

C2 IWO𝑆 + IWO𝐺 + ES𝑅
C3 ES𝑆 + IWO𝐺 + ES𝑅
C4 IWO𝑆 + ES𝐺 + IWO𝑅

C5 IWO𝑆 + ES𝐺 + ES𝑅
C6 ES𝑆 + IWO𝐺 + IWO𝑅

Table 4: Parameters studied for (𝜇 + 𝜆)-ES and IWO.

(𝜇 + 𝜆)-ES [7] IWO [35]

𝜇 = {5, 10, 15, 20, 25} 𝑝0 = {5, 10, 15, 20, 25}
𝑝max = {10, 20, 30, 40, 50}

𝜆 = {20, 30, 40, 50, 60} 𝑠min = {0, 1, 2, 3, 4}
𝑠max = {2, 3, 4, 5, 6}

𝜎 = {1, 0.8, 0.5, 0.1, 0.01} 𝜎ini = {1, 0.8, 0.5, 0.1, 0.01}
𝜎end = {0.1, 0.08, 0.05, 0.01, 0.001}
𝑛 = {1, 2, 3, 4, 5}

gen = 500 gen = 500

All conducted experiments are repeated 50 times. The perfor-
mance is evaluated by measuring the found optimum. Appropriate
statistics for this are mean, standard deviation, median and best
and worst value. For the assessment of the algorithmic behaviour,
the population diversity in comparison to the development of the
best found value is of interest. The changes are plotted against the
generations. The population diversity is calculated as described
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by Cheng et al. [15]:

Div =
1
𝐷

𝐷∑︁
𝑗=1

Div𝑗 (1)

with Div𝑗 = 1
𝑚

∑𝑚
𝑖=1 |𝑥𝑖 𝑗 − 𝑥 𝑗 |.

4.3.2 Results. The source code, written in Rust, and all exper-
imental data, including the hyperparameter study, are available
here1.

The results for the performance of the tested combinations are
presented in Table 5. Altogether, the original IWO combination
performs best on all functions and dimensionalities, followed by
C2 which is very similar in its performance statistics when all test
functions are considered. Furthermore, other pairs of combinations
with comparable performance for all test problems can be found: ES
and C1, C3 and C6, and C4 and C5. All of these have the selection and
generation operators in common. The performance of ES, C1, C4 and
C5 is quite similar. They all utilise the generation operator of the ES.
C3 and C6 utilise ES selection but IWO generation. They differ from
the performance of IWO and C2 especially for the Sphere function,
where they show the worst performance of all combinations for 10
and 20 dimensions but perform well for 30 dimensions.

To test the significance of the differences, the Wilcoxon signed-
rank test with a significance level of 0.05was performed on all pairs
of evaluated operator combinations on all functions and dimensions.
The results are summarised in Table 6.

Figure 2 shows the influence of the different combinations on
the population diversity and the respective progress of the found
optimum for the iterations of the runs. Here, a similar behaviour
can be found for ES, C1, C4 and C5, and IWO, C2, C3 and C6, respec-
tively. These similarities corresponds to the utilisation of the same
generation method. The combinations with the ES generation does
not reduce the population diversity as far as those with the IWO
generation within the 500 iterations of the runs. This also applies to
the best function value found within the iterations. Similar results
were found for all other functions and dimensions1 .

4.3.3 Discussion. The results of the experiment show differ-
ences in performance and behaviour of the tested operator com-
binations. Combinations using the generation operator of IWO
perform better than those utilising the respective operator of the
simple ES. Furthermore, the population diversity during the runs
of the algorithms also strongly depends on this operator. This is
especially interesting as the generation operators only differ in the
applied standard deviation, which is fixed for the ES and varies
with proceeding iterations for IWO. The selection operators which
differ far more in their design show little influence on performance
or behaviour. Only in case of the Sphere function, the performance
of combinations with ES selection and IWO generation differs from
those with ES selection and ES generation. The replacement and
update component has no discernible influence on performance
and population diversity.

With these results, the research questions of this exemplary study
can be answered. The differences in the performance of the operator
combinations (Q1) are displayed in Table 5. The “best” operator
(Q2) found in this small experiment is the generation operator of
1https://git.rz.uni-augsburg.de/luleyleo/mahf-demo

IWO. All combinations utilising this operator clearly show a better
performance than those with ES generation. In terms of population
diversity (Q3), the generation operator of IWO again has the most
influence. Altogether, though being quite simple in terms of test
functions, algorithms and measures, the experiment showed the
capabilities and the impact of component and operator studies.

However, some additional aspects need to be considered. The re-
sults are limited to the utilised operators, the parameter settings and
the test functions. Especially the parameter settings can influence
the results strongly. Therefore, a better approach to determine them
is necessary. In terms of algorithmic progress, we only evaluated
using iterations. It is important to evaluate function evaluations
as well, considering that the ES has a predetermined number of
function evaluations by a constant number of children, whereas
the IWO selection can provide different numbers of children in each
iteration, depending on the current function values and the param-
eter settings. Furthermore, other measures are of interest but were
not be displayed to keep this study focussed on its immediate goals.
Therefore, the results of the example are not comprehensive enough
to determine the full capabilities and behavioural influences of the
operators.

5 CONCLUSION
Metaheuristic frameworks are formed by combining metaheuris-
tic components. Specific algorithms are then built from operators
implementing the component. Starting from previous work we pre-
sented a unified approach of a metaheuristic component structure
and the order in which they are employed to facilitate the search
behaviour (cf. Figure 1). We assume that all metaheuristics can be
rebuilt by usage of these components within a general framework
without any loss of quality. Building on that assumption, we deter-
mine that, by analysing components and the specific operators, they
can be attributed with behavioural properties of the metaheuristics
where they are typically employed. To perform such analyses we
presented a concise general design of experiments.

We then demonstrated the applicability of this design by us-
ing it in a small scale study comparing two closely related—algo-
rithmically, but less in the guiding metaphor—metaheuristics, the
(𝜇 + 𝜆)-Evolution Strategy and the Invasive Weed Optimisation.
They use the same component structure but individual operators
differ to varying degrees. We then tested the original metaheuris-
tics, as well as versions where we swapped operators between
them, on optimising the Sphere, Rastrigin and Ackley functions
with 10, 20 and 30 dimensions each. We found that the very similar
replacement operator (after some runtime they are identical) had
negligible influence on performance. The selection operator which
distinguishes the metaheuristics substantially showed only a small
influence. The generation operator which is either fixed (in ES) or
changes based on runtime (in IWO) was most important for the
overall performance and behavioural differences.

In this experiment, operator combinations with the changing
generation operator from IWO showed a better performance on all
functions compared to the basic generation operator utilised in the
ES. Furthermore, it reduces the population diversity more efficiently
during runtime. Influences of the selection operator were visible for
the Sphere function, where the selection operator of the ES and the
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Table 5: Performance of the tested combinations for the test functions and the respective dimensionalities.

FunctionDim Measures ES IWO C1 C2 C3 C4 C5 C6

Sphere10 mean
std
median
best
worst

2.19e-3
5.64e-4
2.15e-3
6.10e-4
3.74e-3

1.94e-5
4.86e-6
1.94e-5
7.22e-6
2.76e-5

2.32e-3
5.14e-4
2.35e-3
1.17e-3
3-39e-3

2.19e-5
4-95e-6
2.11e-5
1.27e-5
3.41e-5

2.48e0
1.93e0
1.98e0
7.91e-3
6.77e0

1.68e-3
4.24e-4
1.72e-3
7.75e-4
2-49e-3

1.79e-3
4.32e-4
1.67e-3
8.14e-4
2.99e-3

2.44e0
2.23e0
1.74e0
2.36e-5
8.89e0

Sphere20 mean
std
median
best
worst

1.57e-2
2.33e-3
1.58e-2
9.84e-3
2.01e-2

1.65e-4
2.60e-5
1.72e-5
9.68e-5
1.06e-4

1.98e-2
3.02e-3
1.99e-2
1.27e-2
2.79e-2

9.58e-4
5.25e-3
2.15e-4
1.49e-4
3.73e-2

1.41e1
5.83e0
1.47e1
2.42e0
2.53e1

1.29e-2
1.69e-3
1.28e-2
9.49e-3
1.66e-2

1.55e-2
2.77e-3
1.53e-2
7.40e-3
2.14e-2

1.42e1
6.38e0
1.46e1
4.07e-1
2.68e1

Sphere30 mean
std
median
best
worst

4.12e-2
6.54e-3
4.21e-2
2.33e-2
5.28e-2

4.76e-4
5.91e-5
4.88e-4
3.23e-4
5.88e-4

6.87e-2
8.40e-3
6.95e-2
5.36e-2
8.94e-2

5.32e-4
5.00e-5
5.19e-4
4.33e-4
6.48e-4

6.98e-4
9.23e-5
7.18e-4
4.60e-4
9.25e-4

3.86e-2
4.28e-3
3.88e-2
2.82e-2
4.75e-2

4.30e-2
5.64e-3
4.30e-2
2.72e-2
5.25e-2

7.08e-4
9.10e-5
7.01e-4
4.68e-4
8.89e-4

Rastrigin10 mean
std
median
best
worst

2.89e1
4.95e0
2.96e1
1.56e1
3.87e1

4.07e0
1.46e0
4.01e0
1.02e0
8.00e0

2.94e1
4.16e0
2.91e1
2.19e1
3.80e1

6.11e0
2.95e0
5.03e0
2.04e0
1.70e1

4.87e0
1.88e0
5.06e0
1.07e0
9.09e0

2.28e1
3.46e0
2.33e1
1.41e1
2.95e1

2.65e1
4.33e0
2.73e1
1.70e1
3.42e1

5.09e0
2.06e0
5.09e0
1.08e0
1.11e1

Rastrigin20 mean
std
median
best
worst

1.13e2
1.15e1
1.13e2
9.14e1
1.38e2

1.73e1
3.95e0
1.96e1
9.98e0
2.89e1

1.13e2
9.90e0
1.14e2
8.72e1
1.33e2

3.44e1
1.11e1
3.39e1
1.30e1
6.17e1

2.32e1
5.99e0
2.39e1
1.10e1
3.89e1

9.71e1
7.51e0
9.87e1
7.94e1
1.14e2

1.20e2
1.25e1
1.20e2
8.33e1
1.50e2

2.55e1
7.28e0
2.59e1
1.10e1
4.19e1

Rastrigin30 mean
std
median
best
worst

1.98e2
2.56e1
1.99e2
1.37e2
2.58e2

3.74e1
8.71e0
3.55e1
2.40e1
6.38e1

1.99e2
1.86e1
2.03e2
1.21e2
2.62e2

5.30e1
1.37e1
5.29e1
3.10e1
9.97e1

4.82e1
1.11e1
4.67e1
2.72e1
8.69e1

1.98e2
2.57e1
1.99e2
1.62e2
2.61e2

2.06e2
2.84e1
2.09e2
1.46e2
2.91e2

4.82e1
1.14e1
4.82e1
2.64e1
7.60e1

Ackley10 mean
std
median
best
worst

4.73e0
4.52e-1
4.75e0
3.60e0
5.47e0

4.23e-2
5.89e-3
4.24e-2
2.89e-2
5.39e-2

4.99e0
3.49e-1
5.02e0
3.93e0
5.71e0

4.72e-2
8.31e-3
4.87e-2
1.82e-2
6.05e-2

5.06e-2
6.42e-3
5.04e-2
3.29e-2
6.27e-2

4.53e0
3.49e-1
4.51e0
3.45e0
5.33e0

4.71e0
5.17e-1
4.79e0
3.46e0
5.60e0

5.19e-2
6.25e-3
5.30e-2
3.17e-2
6.18e-2

Ackley20 mean
std
median
best
worst

7.43e0
3.89e-1
7.49e0
6.19e0
8.08e0

9.52e-2
7.54e-3
9.47e-2
8.19e-2
1.13e-1

7.47e0
3.54e-1
7.50e0
6.43e0
8.06e0

1.00e-1
9.19e-3
1.00e-1
8.10e-2
1.19e-1

9.96e-2
8.11e-3
1.00e-1
8.06e-2
1.22e-1

7.21e0
3.71e-1
7.31e0
6.39e0
7.84e0

7.37e0
4.02e-1
7.39e0
6.48e0
8.18e0

1.00e-1
8.58e-3
1.00e-1
8.26e-2
1.19e-1

Ackley30 mean
std
median
best
worst

8.82e0
3.54e-1
8.83e0
8.00e0
9.50e0

1.29e-1
9.19e-3
1.29e-1
9.52e-2
1.44e-1

9.48e0
2.40e-1
9.50e0
9.01e0
9.97e0

1.34e-1
1.30e-2
1.36e-1
9.16e-2
1.54e-1

1.69e-1
1.34e-2
1.71e-1
1.38e-1
1.94e-1

8.65e0
3.01e-1
8.65e0
7.55e0
9.18e0

8.71e0
3.45e-1
8.77e0
8.01e0
9.27e0

1.67e-1
1.41e-2
1.70e-1
1.18e-1
1.94e-1

generation operator of IWO resulted in worse performance for the
dimensions 10 and 20, but a good performance for 30 dimensions.
This answered the three specific research questions stated for our
exemplary study. However, it only emphasises the need for further
studies as the results are limited to the small range of problems,
operator combinations and measures utilised for these experiments.

Component/operator studies—as presented here—help predict-
ing the behaviour of metaheuristics based on which operators they
use by comparing them to metaheuristics using similar operators.
We furthermore assume that these studies will provide a source of
inspiration for detailed theoretical studies, as they point out inter-
esting behavioural features that are worth investigating theoreti-
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Figure 2: Progression of mean population diversity (Mean Div) and mean found optimum (Mean Opt) during the iterations of
the runs for all combinations on the 30 dimensional Ackley function.

Table 6: Results of Wilcoxon signed-rank test. For each func-
tion (Sphere (S), Rastrigin (R), Ackley (A)) and algorithm, we
show all other algorithms without significant difference.

ES IWO C1 C2 C3 C4 C5 C6

S10 C1 ES C6 C5 C4 C3

S20 C5 C6 ES C3

S30 C5 C6 ES C3

R10 C1 ES C6 C6 C2,
C3

R20 C1 ES C6 C3

R30 C1,
C4,
C5

ES C3,
C6

C2,
C6

ES,
C5

ES,
C4

C2,
C3

A10 C5 C6 ES C3

A20 C1,
C5

ES,
C5

C3,
C6

C2,
C6

C5 ES,
C1,
C4

C2,
C3

A30 C5 C2 IWO C6 C5 C4,
ES

C3

cally. Altogether, component/operator studies are highly suitable
to deepen the understanding of metaheuristics.

6 FUTUREWORK
For this approach to be ultimately successful, it is necessary to
derive components and operators from many more metaheuristics
and incorporate them into the analysis. This will be the immediate
next step. However, it has to be considered that some metaheuristic
components might not fit into the current concept for a unified
framework, so it is possible that some refinement is necessary. Fur-
thermore, a comprehensive set of performance and behavioural
measures has to be established, building upon the first descriptions
in Section 4.2. In terms of analysis, it is important to formulate ade-
quate hypotheses that correspond to the research questions. Only
then is it possible to start large-scale studies to answer these ques-
tions. These studies will start with analysing known metaheuristic
approaches and their established operator settings to verify the re-
sults by comparing them to existing studies. Then, not yet utilised
operators and additional component combinations will be evaluated.
Additionally, at this point, it is important to include the operator
related hyperparameters in the evaluation. Without hyperparam-
eter studies, the results of the component evaluations would not
adequately represent the actual influences.

Another problem that remains to be solved is the presentation
of the results and gathered data. Due to the extensiveness of the
approach this is an important issue. All information has to be made
publicly available. However, an appropriate clear and descriptive
format has to be found and existing tools, e. g. the IOHanalyzer of
the IOHprofiler platform [21], have to be evaluated to determine
their suitability for behavioural evaluation.
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